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The present paper is devoted mainly to present a higher-order accurate numerical solution 

to the problem of the unsteady diffusion of a chemical substance, such as pesticides or 

aerosols, through the human skin.A mathematical model is used to simulate the different 

processes by which a substance can penetrate the multi-layered skin structure to blood 

vessels. The resulting unsteady governing equations are solved using a fourth order 

accurate explicit finite difference scheme and the Du-Fort Frankel scheme. The question of 

numerical stability and convergence of the present schemes is addressed. The accuracy and 

the computational efficiency of the above schemes have been checked. This shows that the 

fourth-order accurate explicit scheme is stable and efficient for solving the unsteady skin 

diffusion type-problems, especially with large computation time. 

يقدم هذا البحث حلا عدديا ذا دقة من الدرجة الرابعة  لحل مشكلة الحالة غير المستقرة لنفاذية الجلد عند  تعرضه لمواد كيميائيةة ملةل 
ي؛ بغرض معرفةة التوييعةات اليمنيةة لنفاذيةة هةذا المةادة الكيميائيةة قةلال  جبقةات الجلةد المبيدات أو عند تعرضه لتلوث كيميائي جو

المقتلفة ومقدار تركييها فيها وتجبيقاتها في مجال العلوم البيئية وقصوصا التلوث البيئي. وقد تم وضع نموذج رياضي  لتمليل الجلد 
يمكةن بواسةجتها أن تنفةذ أي مةادة كيميائيةة فةي جبقةات  الجلةد  المقتلفةة وما يحتويه مةن جبقةات وكةذلم تمليةل العمليةات الحيويةة التةي 

هةذا النمةوذج  لناتجةة مةنومنها الي الشرايين الدموية. وتم استنتاج قواريم محدد صريح ذي دقة من الدرجة الرابعة لحل المعةادتت ا
وتم اقتبار هذا القةواريم فةي حةل مشةكلة النفاذيةة  وقد درسـت مشكلة استقرار ولبات قواريم الحل والقيود اللايمة لذلم.الرياضي. 

غير المستقرة لمادة كيميائية قلال جلد إنسان. وقد أوضحت النتائج التي تم الحصةول عليهةا فةي البحةث الحةالي مةدي كفةاقة واسةتقرار 
     القواريم الذي تم تجويرا وإمكانية استقدامه في العلوم البيئية وقصوصا علي المدي اليمني الجويل. 

 
Keywords: Unsteady skin diffusion, Percutaneous absorption modelling, Fourth-order 

accurate finite-Difference method 

 
 
1.  Introduction 
 

The interest in understanding the human 
skin permeability has increased recently, 
especially with the increase in industrializa-
tion of our life, and with the increase in the 
risks of aerosols and war gases. In recent 
studies about the skin permeability of different 
species including man, when they are exposed 
to several pesticides, Bartek and La Budde [6], 
and Wester and Noonan [18] have indicated 
that human skin is the least permeable skin to 
chemical substances. Even so, we are living in 
an age where we are constantly exposed to 
active substances in our environment which 
are capable of penetrating the healthy human 
skin in a sufficient degree of concentration to 
produce harmful effects. Often such exposure 
is intentional, mainly in the field of 
dermatology, where potent compounds are 
applied to skin for their local therapeutic 

effect. They are either anti-inflammatory 
agents that are used widely in treating skin 
diseases, or cosmetics such, as Scopolamine 
that can block the innervation of the eccrine 
sweat glands, thus preventing sweating, as 
indicated by Higuchi [9]. Also, the processes of 
penetration of medicinal substances from 
outside into the skin and through the skin 
layers into the blood streams, which are 
known as percutaneous absorption, have wide 
applications in the fields of pharmacy and 
dermatology [1-3,5,8,9]. For example, intelli-
gent formulation of dermatological prepara-
tions depends on a thorough understanding of 
percutaneous absorption. On the other hand, 
the exposure to harmful substances, such as 
pesticides and aerosols, is sometimes 
unavoidable and they can damage or even 
destroy the skin structure, thus allowing 
much greater quantities of material to pene-
trate in a nonselective manner. This defines 
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the scope of the problem, and also points to 
the need for better understanding of skin 
permeability and how it is changed by expo-
sure to various chemical substances.  
     It is appropriate to consider briefly the 
anatomical skin structure. The skin consists 
of two main parts: (a) the epidermis with 
multilayered structure, and a thickness of 1 to 
2 mm, as shown in fig. 1, and (b) the dermis 
with dense irregularly arranged connective 
tissues, and a thickness of 0.2 to 4 mm.   
There are also appendages and blood vessels 
which traverse the skin structure such as hair 
follicles, sweat gland ducts, and sebaceous 
glands, for more details, see Kelly et al. [11].  

Penetration of a chemical substance 
through the skin has been studied in detail 
especially in the field of pharmacy. Barr [5] 
has reviewed the subject and concluded that 
the main avenue of penetration is through the 
epidermis layers, rather than through hair 
follicles or sweat gland ducts, simply because 
the epidermis presents a surface area 
100-1000 times greater than the other routes. 
Albery and Hadgraft [2] developed a theoretical 
model for the transport of a drug through the 
epidermis with interfacial barriers between its 
layers. However, their model is simple and 
approximate since the epidermis is simulated 
by only two layers (corneum and granular 
layers) and the internal barrier between them.   
Albery et al. [3] presented a mathematical 
model for the percutaneous absorption of 3 
different esters of nicotinic acid through the 
epidermis and the dermis layers. Again, the 
model is simple and approximate because it 
neglects the diffusion through the various 
unequally permeable layers of epidermis, and 
considers them one layer. Hadgraft [8] 
reviewed the absorption of drug through the 
skin, and discussed the different possible 
routes of drug penetrations. From his review, 
one can conclude that the most accepted 
routes for penetration of a chemical substance 
through skin are due to the following two 
processes. The first process is the intracellular  
diffusion, in which the active substance 
diffuses through the various unequally 
permeable layers of the epidermis until it 
reaches the viable epidermis zone with small 
diffusion coefficient (10-7 cm2 s-1) and finally 
the   epidermal-dermal  interface  where  blood  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The multi-layered skin structure and its present 

model. 

 
vessels are situated. In most circumstances, 
the viable epidermis zone will not provide 
much of a diffusional resistance, and the 
blood vessels in the interface region remove 
the diffused substance efficiently. The second 
process is flow through the appendages on the 
surface, such as hair follicles and sweat gland 
ducts, with subsequent absorption of the 
substance through their membrane-like 
boundaries into the various layers of the 
epidermis and then diffusion as in the first 
process. 

Murdoch et al. [12] have presented a 
theoretical model to simulate the diffusion of a 
product through the skin using the above-
mentioned two popular mechanisms of 
penetration. The model simulates intracellular 
diffusion in each layer of epidermis by 
applying Fick's second law of diffusion, while 
the second process of penetration is 



S.F. Radwan / Unsteady diffusion 

                                          Alexandria Engineering Journal, Vol. 44, No. 5, September 2005                                 799 

incorporated in the model by adding a source 
term to the governing equation in each layer.    
Moreover, the model also, incorporated the 
process of continuous cell creation in the 
innermost layer of the epidermis (viable 
epidermis) that slows down absorption from 
the outer layer. The resulting governing 
equations are a system of partial differential 
-algebraic equations with mixed interface 
conditions, that are solved by using SPRINT 
package [7]. The package is based on the im-
plementation of Gear's method of Hindmarsh 
[10], and the Blended linear multistep method 
of Skeel and Hong [17].  Inspite of the 
accuracy of SPRINT package, they had to solve 
a system of ordinary differential-algebraic 
equations at each time step, which makes the 
package highly expensive and inefficient, 
especially for unsteady skin diffusion prob-
lems with long computation time. However, no 
much work has been done in the area of 
numerical modelling of the unsteady diffusion 
of a chemical substance through the skin, 
especially the application of the higher order 
accurate schemes. As such, the present study 
aims at studying the feasibility of extending 
the fourth-order accurate scheme to solve the 
unsteady diffusion of a chemical substance 
through the skin.  

Therefore, our goal is to develop a simple 
efficient higher-order accurate numerical 
method for solving the problem of unsteady 
diffusion of a chemical substance through the 
skin, when the outer surface of the skin is 
exposed to chemical hazards, using a fourth 
-order accurate finite difference explicit 
scheme, and also to determine the feasibility 
of its use as well as to verify the high-order of 
accuracy claimed. 
 
2. Mathematical formulation  
 

In the present study, a theoretical model 
similar to the model used by Murdoch et al 
[12], has been used. It simulates the three 
different processes by which a chemical 
substance can penetrate the skin structure to 
blood vessels. It simulates intracellular 
diffusion through the various layers of 
epidermis by applying Fick's second law of 
diffusion [14], while the second process of 
penetration is incorporated in the model by 
adding a source term to the governing 

equation in each layer.  Moreover, the model 
also incorporates the process of continuous 
cell creation in the innermost layer of the 
epidermis (viable epidermis) that slows down 
absorption from the outer layer. The model of 
the multilayered epidermis is shown in fig. 1.  
Each of the surface film and lucidum layer is 
very thin and its thickness can be neglected.  
However, their functions as barrier zones are 
incorporated by assigning them as partition 
coefficients ( 10    , ,…). The governing equation 

of the concentration Cj (z,t) in the j-th layer 

takes the following form :  
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where Dj (z) is the diffusion coefficient in the 

j-th layer,  is the advection rate representing 

cell creation and  is the reaction or neutrali-
zation rate. The last term in the equation 
above represents the additional diffusion 

through the appendage ducts where the   and 

 are related to the permeability of the duct 
membrane. Defining, 
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At the interface between the layers the 

concentrations C(z, t) may be discontinuous, 

but the flux is continuous,  which takes the 
following two imposed conditions: 
 

 ,  j    j  C   C j1  j = 0, 1, 2, 3 
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Initially, the concentration is zero 

everywhere except on the exterior skin 

surface, where it is equal to Co (t), the 

concentration of the substance on the outer 
surface. Therefor, the initial and boundary 
conditions are: 
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where the initial concentration, Co (t), and the 

partition coefficients, αj, are given.  The second 

boundary condition implies that the blood 
vessel flushes away any substance that 
permeates through the boundary of last layer. 
The governing equations, eq. (2) and eq. (3), 
are then non-dimensionalised using a scale 
appropriate for the given problem, which will 
depend upon the substance used.  For the 
present data listed in Appendix A., the 
following non-dimensionalised variables are 
used: 
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the resulting governing equations are: 
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where the coefficients am j  (m =0, 1, 2, 3)  are 

function of the skin parameters, and they take  

the following forms: 
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3. The numerical schemes 
 
    In the present study, higher order accurate 
finite difference schemes, namely the fourth 
-order accurate explicit finite difference 
scheme and the Du-Fort Frankel scheme, are 
used to solve the unsteady diffusion eqs. (8) 
and the interface conditions eqs. (3) together 
with the initial and the boundary conditions 
eq. (4) and eq. (5). The present numerical 
schemes are done explicitly to overcome the 
difficulties associated with the imposed jump 
conditions at the interface boundaries.  
 

3.1. The fourth-order accurate explicit scheme 
 

Let the interval [xo, xN] be discretized  into 

N grid steps of size x where x = (xi – xi-1), i  is 

an index of any grid-point in x direction. and n 

is an index for the temporal grid point. The 
fourth-order accurate finite difference approxi-
mations for the first-order derivative and for 
the second-order derivative can take the 
following forms [13]: 
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The explicit form of the present 

fourth-order accurate scheme for the time- 
dependent diffusion eq. (8) in each layer, using 
the previous approximations, takes the 
following form: 
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and the final form of the present fourth-order 
accurate explicit scheme for the unsteady 
diffusion equation, eq. (8), in each layer of the 
model becomes : 
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3.2. The Du-Fort  Frankel scheme 

 
     The Du-Fort Frankel scheme for the 
time-dependent diffusion eq. (8), in each layer, 
can be obtained by using second-order 
accurate central finite-difference approxima-
tions for both temporal and spatial derivatives.   
It takes the following form: 
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,  and  in order to 

obtain the final form of the explicit Du Fort 
Frankel scheme for the unsteady Diffusion 

equation, eq. (8), the center node value (Ci)) in 

the diffusion terms in eq. (16) are replaced by 

their average value at time levels (n-1) and 

(n+1). The final form of the explicit Du-Fort 

Frankel scheme for the unsteady Diffusion 
equation becomes: 
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3.3. The computation procedure 
 

The calculations start from the initial 

values of C (x, 0) = 0, and then, using the 

above-mentioned numerical schemes, the 
solution at the interior points in each layer at 
new time level can be obtained. While the 

solution at the interface nodes (CBL and CBR) 

are obtained by solving the interface- 
condition equations, eq. (3), using three- point 
second-order accurate finite differences.. The 
final discretized interface -conditions are: 
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where the subscripts BL and BR denote to the 

nodes to the above and under sides of the 

interface    respectively.  The   coefficients  qm  

(m = 1, 2, 3, 4) take the following forms: 
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Q = 3 (DBL +  DBR) + 2h2  x  (BL - BR).     (21) 
  

3.4. Stability limits and convergence 
 

The present fourth-order explicit scheme 
allows us to use considerably fewer discretized 
points, in comparison with the second-order 
schemes, to achieve a comparable accuracy.   
But because it is an explicit scheme, it is 
necessary to use Von Neumann linear stability 
analysis [15] to define the numerical stability 
limit of the present fourth-order explicit 

scheme. Let numerical solution C (x, ξ) be 

represented by a finite Fourier series, and for 
linear stability we can examine the behavior of 
a single term of the series as follows: 
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where G (ξ) is the amplitude function at time-

level n of this term whose wave number in the 

x direction is  k ,  and  I =    1- . Defining the x 

phase angle as  = kx, then, eq. (22) becomes: 
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and then substituting (23) into eq. (14),  we 
obtain the following equation for the amplifica-

tion factor  : 
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For stable numerical solution, Von Neumann 
stability requires: 
 

|ζ|   ≤   1     for all    | θ | ≤ π.      (26) 

 
This condition is satisfied for the present data 
if: 
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which is not the same condition for the second 

order accurate explicit scheme [4], (|d|  0.5). 

Fig. 2. shows the polar diagram of the ampl-

ification factor    for different values of d, for 
the present fourth-order accurate explicit 
scheme. Concerning the Du-Fort Frankel 
scheme for the present unsteady diffusion 
equation, it has the unusual property of being 
unconditionally stable [16]. Concerning the 
consistency of the present schemes, both of 
the schemes are consistent with the original 
differential eq. (8). The finite difference 
equations for the present schemes, eq. (14) 
and eq. (18), are consistent in the sense that 
the local truncation error tends to be zero as 

ξ and x approach zero. This concludes   that  

each of the finite-difference schemes to the 
unsteady   skin        diffusion  equation,   the f 
ourth-order explicit scheme and Du-Fort 
Frankel, satisfies the consistency condition. 
Then, the stability condition will be the 
sufficient condition for convergence [15]. 
 
4.  Numerical results 
 
The present numerical modelling for solving 
the unsteady skin diffusion problem has been 
tested using a set of data which represents 
"average" human skin. They are listed in 
Appendix A. The present fourth-order accurate 
explicit   scheme  calculations  are carried  out  

using space and time step sizes of x = 0.25 

and = 0.006, in comparison with x = 0.05 

and = 0.0012 used in the Du-Fort Frankel 

    
 
 
 
 
 
 
 
 
 
 

Fig. 2. The computed amplification factors of the 

numerical solution of the unsteady diffusion eq. (8), using 

the fourth-order accurate explicit  finite difference 

scheme for different values of  d. 
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calculations to achieve a comparable accu-
racy.  The time step was the maximum allow-
able from the stability limit and corresponds 
to a real time of 75 seconds this makes the 
present higher-order accurate scheme an 
efficient method of solution, especially if long 
time computations are required.   The present 
scheme is capable of computing the conce-
ntration in the various skin layers at various 
times ranging from one hour to 28 days, as 
shown in fig. 3 and fig. 4.  Once the substance 
penetrates into the skin, the concentrations 
evolve in a smooth way.  The concentrations 
change linearly with space coordinate x, in 
strata granulosum and basal.  While the 
change is nonlinear in strata corneum and 
spinosum.  Moreover, the flux across the last 
boundary in basal layer has been computed 
successfully by the present schemes, and it 
approaches asymptotically to a steady state 
after about 14 days, as shown in fig. 5. It is 
clear that the present fourth-order accurate 
explicit scheme is capable of predicting the 
solution of the unsteady skin diffusion 
problem without any numerical instability or 
oscillations, and even with a less grid points 
(80 points) across the skin layers, in 
comparison with Du-Fort Frankel scheme and 
the second-order accurate explicit scheme that 
each requires 200 grid points to achieve a 
comparable accuracy,   as   shown in figs. 3, 4 
and 8.  This  
verifies the high order of accuracy of the 
present fourth order accurate explicit scheme.  

The numerical results of the present 
fourth-order accurate scheme are checked by 
comparing them with the results obtained by 
Murdoch et al. [12], using SPRINT package 
based on the method of lines, and with 200 
grid points.  The comparison shows that they 
are in good agreement, as shown in fig. 5 and 
fig. 6. However, the present fourth-order 
accurate method is more efficient and 
economical than SPRINT package because it 
computes the solution by using a simple 
algebraic finite difference equation, and with a 
few discretized points. While for the SPRINT 
package, a system of ordinary differential 
-algebraic equations has to be solved, at each 
time step to obtain the solution.  

A remark about the computational 
efficiency of the present fourth-order accurate 
explicit scheme is appropriate. The present 

higher-order scheme can produce the 
solutions with a few grid points (80 points), 
and with an accuracy identical to the one 
obtained with 200 grid points, as shown in fig. 
7 and fig. 8, for the concentrations after 28 
days.  This verifies the efficiency of the present 
fourth-order accurate scheme. The computa-
tional efficiency of the present two schemes 
has also been checked. The execution times, 
using personal computer necessary to obtain 
stable solutions at real time =24 hours and 28 
days and with comparable accuracy for the 
present two schemes,   are listed in table 1.  

The fourth-order accurate explicit scheme 

computations with max = 0.01 required   

about 3 seconds of execution time, after 24 
hours, in comparison with 14 seconds of exe-
cution time needed by the Du-Fort Frankel 

scheme computations with max= 0.005. Simi-

larly after 28 days, the fourth-order accurate 
explicit scheme is five times more economical 
than the Du-Fort Frankel scheme. This indi-
cates that the present fourth-order accurate 
explicit scheme is efficient and economical for 
solving the unsteady skin diffusion-type prob-
lems, especially with large computation time. 

 
5.  Conclusions 
 

In conclusion, the fourth-order accurate 
explicit scheme and the Du-Fort Frankel 
scheme are used to solve the unsteady diffu-
sion of a chemical substance, like pesticides 
and aerosols, through the human skin layers. 
The computed results indicate that the pre-
sent fourth-order accurate numerical method 
is suitable for solving the unsteady skin 
diffusion type problems with interface jump 
conditions and it is found to be efficient and 
economical when, compared with the other 
methods. It has the following features. 
1. It results in an explicit finite difference 
equations with a fourth-order accuracy on all 
grid point.  
2. The boundary conditions and the interface 
-condition are easily applied without any 
difficulty. 
3. It is stable and efficient in comparison with 
the other methods. So, it can be used in 
solving the unsteady skin diffusion problems 
with long computation time.  
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Fig. 3. The computed  concentration curves in the corneum and granular layers  of the skin model, at various times, 

ranging from 1 hour to 28 days, using the present fourth-order accurate explicit scheme, and their comparison with the 

Du Fort Frankel scheme solutions. 

 
 
 
 
 
 

 
 

Fig. 4.  The computed  concentration curves in the spinous and basal layers  of the skin model, at various times, ranging 

from 1 hour to 28 days, using the present fourth-order accurate explicit scheme, and their comparison with the Du Fort 

Frankel scheme solutions. 
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Fig. 5. The computed  flux across the last boundary,  

using the present fourth-order explicit scheme, and 

their comparison with Murdoch et al. solutions [12]. 

 

 
 

Fig. 6. The computed concentration curves in the 

corneum layer, at times = 24 hours and 28 days, using 

the present fourth-order accurate explicit scheme and 

their comparison with Murdoch et al. solutions [12]. 

 
 

Fig. 7. The computed concentrations in the corneum 

layer, using the present fourth-order accurate explicit 

scheme for different grid sizes. 

 

 
 

Fig. 8.  The computed  concentrations in the corneum 

layer, using the present fourth-order accurate explicit 

scheme, and their comparison with the Du-Fort Frankel 

scheme solutions and the second-order accurate explicit 

scheme solutions. 

 
   Table 1 

  Comparison of execution times for computed  solutions  of unsteady  Skin diffusion  eq. (9), at  real times   

  equal to 24  hours  and  28 days. 

           

Time of computations Fourth-order accurate explicit scheme Du  fort  frankel scheme 

after 24 hours t =  0 .25   and    ξ = 0.01 

Ex. time =  3  sec. 

t =  0 .1   and    ξ = 0.005 

Ex. time =  14  sec. 

after 28 days 
 

t =  0 .25   and    ξ = 0.006 

Ex. time = 100  sec. 

t =  0 .2   and    ξ = 0.0012 

Ex. time =  680  sec. 
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Appendix  A 
 

The following data represents the average human skin, and they take the following values for 
skin parameters [12]:    

         
 

Layer name hj
 

Dj 
 

j
 

j 
 

i 

Corneum 10 10-4(1+z) 5x10-6 5x10-8 2.7x10-7 

Granulosum 5 2 x10-3 5x10-5 5x10-8 2.5x10-7 

Spinosum 70 4x10-3 5x10-5 5x10-8 2.7x10-7 

Basal 15 5x10-3 5x10-5 4.5x10-5 2.5x10-7 

where,  h 
j
 is the thickness  of  j-th  layer in (μm) ,  j = 1, 2, 3, 4,  D 

is the  diffusion  coefficient  in  (μm2 s -1), ν is the advection rate 

representing cell creation in (μm s –1 ),  μ  is the modified reaction 

rate in (s –1), and  λ is a constant related to the permeability rate of 

the duct membrane in (s –1).  The concentration of the substance on 

the outer skin surface, Co(t) , is equal to 1, and the partition 

coefficients ( α
0
 , α

1
, α

2
, α

3 
)  have the  values  of  (50 , 0.1 , 1 , 1), 

respectively. 
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