

Alexandria Engineering Journal, Vol. 44 (2005), No. 4, 517-526 517
© Faculty of Engineering Alexandria University, Egypt.

Petri net approach to solve a flexible manufacturing
system problems

M.A. Shouman a and Ibrahim M. Buseif b

a Faculty of Computers and Informatics, Zagazig University, Zagazig, Egypt
Profshouman@hotmail.com

b Faculty of Eng., Industrial Eng. Dept., University of Garyounis, Benghazi, Libya

In this work, Petri nets are used to analyse Flexible Manufacturing Systems (FMS) to derive
a theorem for checking the buffer overflows in an FMS. The second objective is to schedule

the earliest starting times for a sequence of operations in an FMS by the timed Petri net. The
FMS may involve many part types, machines, pallets and so on. The third objective is to
detect the deadlock phenomenon by a corrected algorithm of the P - invariant theory for

Petri nets. This method will enable the manager to know whether there exists any deadlock
in an FMS. The Petri net is basically a graph structure. By adding the activity duration times
and resource allocation conditions, the dynamic behaviour of a system at any one time can
be studied.

هذه الورقة البحــثية تهــدف إلى وضــع الحلول المناســبة لتـكدس المـواد بالــقرب من الالات مع جدولة تسلسل عمليات التصنيع
ضلة والأكثر استخداما فى تصميم أنظمة تعتبر شبكة بيترى من الأدوات المف0واكتشاف الإختناقات ووضع الحل المناسب لها

المواد الخــام أو بإضافة مصادر .الخ... لإنتاجيةالتصنيع المرن وأكثر فعالية فى تحليل المشاكل مثل الإختناقات، الجدولة، ا
ومن خلال ذلك نستطيع 0كيةبيترى الدينامي المــعدات إلى شـــبكة بيــترى تتـــحول شــبكة بــيترى الإعتـــيادية الثابتة إلى شبكة

أما جدولة عمليات التصنيع فتتم بإضافة زمن كل عملية إلى .إيجاد الإختناقات أو تكدس المواد وذلك بمعرفة خواص شبكة بيترى
تم عمل برنامج كمبيوتر لشبكة بيترى لإيجاد وأكتشاف تكدس المواد للإختناقات ووضع .شبكة بيترى وتسمى شبكة بيترى الزمنية

 .اص شبكة بيترى وماركت البيانيةحل لها من خلال خوال

Keywords: Automated manufacturing systems, Petri nets, Automatic control, Structured
analysis, Computer control

1. Introduction and background

In the present competitive market, greater

flexibility is required for the automated

manufacturing systems in order to respond to
the needs of different product types of market.

But this greater flexibility implies a greater

complexity in manufacturing processes. In

order to run Flexible Manufacturing Systems

(FMS) smoothly and efficiently, mathematical
or computerized tools may be used.

In this paper the study of Petri nets which

is gaining more popularity in the analysis of

the FMS performance such as scheduling,

throughput, boundness, and deadlocks. Petri

nets are suitable tool for analyzing these
problems. It was originally developed in com-

puter science field where many interactions

and dynamic behaviours in computer archi-

tecture can be determined by Petri nets.

The Petri net is basically a graph struc-
ture. By adding the activity duration times

and resource allocation conditions, the dy-

namic behaviour of a system can be obtained

at any time. The emphasis of this work is to

solve some problems in FMS such as checking

buffer overflows, determining the earliest
starting times of the machines, identifying

deadlocks.

A Work In Process (WIP) of FMS analysis

methods based on (Time Petri Net) unfolding is

proposed by Kun [1]. Unfolding of PN is a
partial order based method for the verification

of concurrent system without the state space

explosion. The aim of this work is to formulate

the general cyclic state-scheduling problem to

minimize WIP to satisfy economical

constraints. The method is based on unfolding
of the original net into the equivalent acyclic

description.

Chung et al. [2] presented a Genetic Algo-

rithm (GA) for embedded adaptive scheduling

over a Timed Petri Net (TPN) model provides a
new method for a FMS. The chromosome

mailto:Profshouman@hotmail.com

M. Shouman, I. Buseif / Petri net

518 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005

representation of the search nodes is

constructed directly from TPN model of FMS.A

TPN based schedule builder receives a
chromosome and an initial marking as input,

and then produces a near-optimal schedule.

Petri net based method for dead lock-free

scheduling of flexible manufacturing systems

is presented by Ziong and Zhou [3]. The

deadlock states are explicitly defined in Petri
net framework, so no more equations are used

to describe deadlock avoidance constraints to

derive deadlock-free schedules. Hybrid heu-

ristic search algorithm, which combines heu-

ristic best-first search and near-optimal back-
tracking search, is proposed to generate an

optimal or near-optimal deadlock-free sched-

ule. Interesting results are reported through

comparison of the Petri net method and other

methods such as mathematical programming

and dispatching rules.
A Petri net model, called Colored Re-

source-Oriented Petri Net (CROPN) is devel-

oped by Wu [4]. The concurrent resource con-

tention and the important characteristics of

the production processes necessary for dead-
lock control are well represented by this model

based on the developed model, necessary and

sufficient conditions and an efficient control

law are presented for deadlock-free operation

in FMSs. This control law is a policy of dy-

namic resource allocation. It determines when
a resource can be allocated to which job to

avoid deadlock. This control law allows as

many active parts as possible to be in the

system, while deadlock is totally avoided. This

control law is easy to implement and can be
embedded into the real-time scheduler.

A heuristic search method using Petri net

structures for FMS scheduling is presented by

Jeng and Chen [5]. To minimize make-span,

an FMS scheduling problem is formulated as

finding a firing sequence reveals the minimal
cost. The reachability graph is partially gener-

ated and searched. The search process is

guided by a heuristic function based on firing

count vectors of the state equation, predicting

the total cost. The proposed algorithm exploits
the concurrency information to reduce the

searched state space.

A general approach to modelling and

analysis of Flexible Manufacturing Systems

(FMSs) is proposed by Basile et al. [6]. It puts

together a trace-based formal specification

method and a compositional Petri Nets (PN)

approach with predefined building blocks. The
structure of this system leads to a unified

framework whose goals are to cope with the

complexity of the FMSs behaviours and con-

straints, and provide a practical engineering

means to translate behaviours into PN librar-

ies. The P-invariants of the resulting model are
used to obtain a reduced net of the system

which points out the resources availability

rather than the behaviours of the system

components.

Zhang et al. [7] introduced a Generic Petri
Net (GPN) model and proposes an approach

for the development of control software for

FMSs. The principle of this approach is based

on checking the control parts of FMSs with

the help of temporal relationships between

physical operation, and the specification of the
FMS controller with GPN. The strategy of GPM

modelling is then incorporated with more gen-

eral strategies in artificial intelligence. A case

study for testing FMS controller software is

provided to show effectiveness and cost saving
over development of conventional methods in

which only ordinary Petri net and procedural

language is used.

 A software tool for modelling and simula-

tion of flexible manufacturing systems is pro-

posed by. Patak and Struhar [8]. A variety of
robots, conveyors and working machines can

be used in building the FMSs control pro-

grams for the whole system are written

through Petri net models. Transformation

from Petri net into control program in auto-
mated programming language is derived from

real language for robot control. Simulation is

done in 3D environment with full real-time

animation.

A Colored Timed Petri Net (CTPN) is used

to model the process behaviour of an FMS by
Kuo and huang [9]. CTPN-based SPC (statisti-

cal process control), fault diagnosis, and fail-

ure model and effect analysis are modelled

and analysed individually. The proposed

CTPN-based simulator can be acted as a real-
time FMS monitor and controller through the

G2 standard interface.

 An optimal deadlock prevention policy for

flexible manufacturing systems (FMSs) is pro-

posed by Uzam [10]. The proposed optimal

M. Shouman, I. Buseif / Petri net

 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005 519

deadlock prevention policy is based on the use

of reachability graph analysis of a Petri Net

Model (PNM) of a given FMS and the synthesis
of a set of new Net elements, namely places

with initial marking and related arcs, to be

added to the PNM, using the theory of regions,

which is a formal synthesis technique to de-

rive Petri nets from automaton-based models.

The policy proposed is optimal in the sense
that it allows the maximal use of resources in

the system according to the production re-

quirements.

Chen, and Chen [11] introduced an object-

oriented approach to modelling of FMS dy-
namic tool allocation and control under a non-

hierarchical shop floor control scheme using

modelling method. The complete FMS model is

partitioned into individual classes (machines,

magazines, tool transport system, SGVs, tool

storage, etc.) thereby significantly reducing
the complexity of the model to a tractable size

.The proposed method can provide the de-

signer of a tool management system with a

high-level and structured representation of

tool sharing control. It also provides an effec-
tive method for prototyping and evaluating

performance of object-oriented shop floor con-

trol software.

 Fu-Shiung [12] presented a framework to

model and control FMS based on fusion of

perti net and multi-agent system theory. The
main results include: (1) a multi-agent model

and a collaboration process to form commit-

ment graphs in FMS based on contract net

protocol, (2) a procedure to convert commit-

ment graph to Collaborative Perti Net (CPN),
and (3) feasible conditions and collaborative

algorithms to award contracts in FMS based

on CPNs.

2. Petri nets

A Petri Net (PN) is formally defined as a

four-tuple C= (P, T, I, O) where P is a finite set

of places p, T is a finite set of transitions t, I is

a mapping from transitions to a bag of places
such that I (t) defines the input places of tran-

sition t, and O are mapping from transitions to

a bag of places such that O (t) defines the out-

put places of t. A PN can also be represented

by a bipartite directed graph with two types of

nodes: circles for places and bars for transi-

tions. Directed arcs connected the circles and

bars. Note that a bag is a multiple set occur-

rences of an element that are allowed. Let
B(p,t) and F(p,t) be, respectively, the number of

occurrences of places P in the input and out-

put bags of transition t. Then B, F and A = F -
B, respectively, define the backward, forward

and incidence matrices of PN. These matrices

define the PN topology. The dynamics of PN

are defined by marking 0 of the PN; is a

state vector with (p) being the number of

tokens in place p. The PN dynamics are con-
trolled by the execution of it. A PN executes by

firing its transitions. A transition fires by re-

moving tokens from its input places and de-
positing tokens at its output places. A transi-

tion may fire if it is enabled. A transition t is

enabled in marking if B.ft where ft

=(0,0,...,1,0,...,0) with 1 corresponding to tran-

sition t. If ’ is a new marking after firing

transition t, then ’ = + A.ft defines the PN

dynamics. For a sequence of n transitions,

the dynamics equation becomes n = 0 +

A.ft where f = t, is a set of n transitions

and 0 is the initial marking; f is called the

firing sequence vector. Each marking defines a

state. Firing a transition may result in a new

state. All the possible states define the PN

state space. From an analytical perspective, it
is quite important to determine all the reach-
able states. It is also important to determine

whether or not PN is live or deadlock free,

bounded (number of tokens in any place is

finite in any marking), conservative (the

weighted number of tokens in any marking is
fixed and finite) and consistent (there is a fir-

ing vector with all positive elements). A live

and consistent PN is cyclic, which is typical
property of manufacturing systems. One may

also be interested in other features of a PN as
a controller, such as recoverability and fair-
ness. Some of these properties can be mathe-

matically analyzed through P- and T- invari-

ants of PN [13-16].

3. Buffer overflow detection and determi-

nation of the earliest schedule time

3.1. Buffer overflow analysis

Definition - 1: A Petri net C = (P, T, I, O) with

M. Shouman, I. Buseif / Petri net

520 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005

initial marking µ is strictly conservative if for

all µ` R(C, µ),

 µ` (pi) = µ (pi), pi P pi P.

If a marked Petri Net model is conservative

then the sum of all tokens will remain a con-
stant in all-reachable markings. Such a PN

model will represent a system with a constant

number of resources or jobs, for example, a

closed manufacturing system. If it is required

to prove the conservative property of a Petri
Net model, then a nonzero weight vector N

should be defined such that the weighted

sums over all the reachable markings are

equal. In a real system, the meaning of the

conservative property is that the system is op-

erating normally and there are no resources,
such as machines, robots, and AGV’s, which

are inoperative. In an FMS, if the buffer over-

flow situation is considered, then the machine
(s) before an overflow buffer will be forced

down and the marked Petri Net will not pos-

sess the conservative property [14,15]. The
mathematical derivation of the process is

shown as follows:

0 * N = * N (N is a nonzero vector), (1)

where and 0 are 1 by m matrices, and N is

an m by 1 matrix.

 R [0].

So there must exist a sequence of transi-

tions to be fired.

where,

 = 0 + Y * C. (2)

Combined (1) and (2) we get:

0 * N = (0 + Y * C) * N

 = 0 * N + (Y * C) * N,

and

(0 * N) - (0 * N) = (Y * C) * N.

By the association of matrix multiplica-

tion: (0 - 0) * N = (Y * C) * N, and for a zero –
matrix: 0 * N = Y * (C * N), then:

0 = Y * (C * N). (3)

This is true for every Y vector. The result

can be as follows: "A Petri net model is con-

servative There exists a nonzero positive
vector N such that C * N = 0".

 The example in fig. 1 is used to verify that

the above theorem is a sufficient condition but

not a necessary condition. The example is an
FMC, which has one machine and two part

types.

This machine can only serve one part type

at a time. Transitions and places are changed
slightly. Let p1 and p3 be the input buffer for

part A and part B respectively, and p2 be the

machine. Let t1 and t2 represent starting times
of machining part A and part B separately, t3

and t5 denote the finishing times of machining
A and B, and t4 is the return operation of this

machine. p4 and p5 are the operational proc-

esses of parts A and B individually.

-1 0 1 0 0

-1 -1 0 1 0

 0 -1 0 0 1

 1 0 -1 -1 0

 0 1 0 -1 -1

C =

- n1+ n3 = 0

- n1 – n2 + n4 = 0

- n2 + n5 = 0

n1- n3 - n4 = 0

n2 - n4 - n5 = 0

The first column (-1, -1, 0, 1, 0) of the in-
cidence matrix indicates that p4 (the machin-
ing operation of part A) must wait until p1 (in-

put part for part A) and p2 (the machine) are

both available. The third column (1, 0, 0, -1,

0) indicates that p1 can only send one more

part A to the machine until it finishes proc-
essing a part p4. Other columns in the inci-

dence matrix are obtained similarly.
The system is not conservative from the

following calculations. Then n1 = n4 = n5 = -n3

and n2 = 0. So the PNM is not conservative

and buffer overflows may occur. Some ma-

chines will be forced down due to buffer over-

flows [16-18].

M. Shouman, I. Buseif / Petri net

 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005 521

p1

p 2

p 3

p 4

p 5

 t1

t2

t3

t4

t5

Fig. 1. PNM for a system of one robot and two part types.

3.2. TPN and earliest schedule for FMS opera-

tions

In this section, Timed Petri Net (TPN) is
used to apply a certain methodology for find-

ing the earliest starting times for a sequence

of transitions corresponding to the real opera-

tions of a system. The earliest schedule for a

sequence of transitions can be used to decide
the earliest possible starting times for each

machine when there are no machine break-

downs, part jams or other delays.

3.2.1. Timed petri net

By adding the ‘ time quantity ‘to the ordi-
nary (pure) Petri net for every transition, a

new PN called TPN is obtained. The TPN is a

powerful tool for modelling systems with dy-

namic behaviours. In such extended nets, an

execution time r is associated with each tran-
sition is fired, it takes r units of time to com-

plete its execution [16, 18].
Definition 2: A timed Petri net is a five – tuple

structure C = (P, T, I, O, R), P, T, O, and I are

defined before, and R is a function of the fol-

lowing type: R: t R, where R is a positive

real number and t is a transition.

The main concept of the methodology is to
use a stack and its recursive calls [16,17, 19].

1. First, the overall Petri Net Module (PNM) is

traced and finds all time point sets of transi-

tions, which are possibly fired.

2. List time point sets of transitions and de-
note them by A (1), A (2),…, A(N) in a table.

3. Use the recursive calls and stack to parti-

tion the friable sequence of transitions. For

example, if = (((((… (t1 (t2) t3) t4) … tn-1) tn), put
them into a stacks as follows. S1 is a pointer

to the top position of the stack and Sn indi-

cates position n in the stack.
4. Let the initial condition a1 = 0 for transition

t1.

5. Determine a2 if the following two conditions

are satisfied: (a) X A (a1) and X is active at

a1, and (b) (p) at the end of x I (p, t2). The
meaning of condition (b) is that the number of

tokens, which are required to start t2, must be

larger or equal to the present token number in

the places.
6. Pop S2 = (t1t2) t3 to determine a3.

7. Continue to calculate S3, S4,…, Sn-1 until all

the (a1, a2,…, an) are found.

3.2.1. An example

Fig. 2 is a PNM of an FMS. The system

contains one lathe, one milling machine and

one drilling machine. The system produces
two part types. Both of t1 (3) and t3 (3) repre-

sent the operational times of part type A at p2

(lathe) and p5 (drilling machine) separately.
The t2 (2) and t4 (3) represent the operational

times of part B at p2 (lathe) and p5 (drilling

machine). Transition t6 (1) is the transfer time

of a part. P7 denotes the milling machine. The

friable sequence of transitions (operations) are

 = t1t7t2t5t2t7t1t4t3t6. The above method is used

to find the earliest schedule for this sequence.
Step 1:

We trace the entire PNM by moving the friable
tokens to classify the event sets. We use three
three tuples (a1: B, a2: E, t) where a1 repre-

sents the time when transition t is fired, and
a2 represents the finishing time of t.

 n1 n2

 INPUT B UF F E R

 OUTPU T B UF F E R

p1

p2

p3

p7

p4

p8

 p5
p6

p9

p10

t1(3)
 t7(2)

t2(2)

t3(3) t4(3) t5(2)

t6(1)

Fig. 2. The FMS example.

M. Shouman, I. Buseif / Petri net

522 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005

Step 2:

All the possible friable and ending times for all

transitions are showing in the following table:
All the possible friable and ending times

for all transitions

 0: B t1, t2, t7 2: E t2, t7
 2: B t4, t5 3: E t1
 5: B t3 4: E t5
 8: B t6 5: E t4
 8: E t3
 9: E t6

Step 3:
(t1) t7, (t1t7)t2, …. , (t1t7…t4)t3, and (t1t7…t3)t6.

Step 4:
a1 = 0 for all t1.

Step 5:

X A (0) and (P) at the finishing time of X I
(P, t7), and we get X = 0.

Step 6:
Determine a3 from the schedule (a1, a2) = (0,

0) and a3 = 0 for transition t2.
Step 7:

The above steps are continued to obtain

the following schedule diagram.

The overall scheduling starting times are
shown in fig. 3, whereas tiS are different from

those in fig. 2. Here, the tiS represent the earli-

est starting times for the operations from the
start of FMS at time 0.

4. Deadlock detection in the PNM

4.1. Deadlock detection by using the p-invariant

This method includes the following steps:

1. Before obtaining the final PN model of a

given system, one can construct the union of

simpler PN models that represent the various

functional subsystems into which the given
system can be decomposed. This divide-and-

conquer approach to obtaining the PN of a

given system can help us in computing P-in-

variants of a PN models. If a given system is

very large, the corresponding PNM is also

large. The computation of P-invariant will be-
come very complex. So the overall system

should be partitioned to compute the P-invari-

ant of subsystems and then combine them to

obtain the overall P-invariant of the entire

system.

t1

 t7

 t2

 t5

 t2

 t7

 t1

 t4

 t3

 t6

 1 2 3 4 5 6 7 8 9 10 11 0

Ti m e

Tr ans i ti ons

Fig. 3 The starting times of sequence of transitions se-
quence.

2. The method can help to compute the P-in-

variant of the union of two PNs when P-invari-

ant of individual nets are known and the nets

satisfy the theorem conditions.

3. Basically the method uses the incidence
matrix representation C of a PN to compute P-

invariant characterized by U through the

equation U * C = 0. Again from the equation;

µ = µ0 + C*Y, multiplying by U, we obtain:

U*µ = U*µo + U*(C*Y),

where,

U*C = 0.

Then,

U*µ = U*µ0 . (4)

4. Step 3 is used to get some equations and

then choose some states to verify if these

states are deadlocked. Then one can say if the

original system is deadlocked or not.
By applying the same example (fig. 1) to

detect the deadlock of a PN model by using P-

invariant. First the incidence matrix are
evaluated by using this equation C = C+ - C-,

where C is the incidence matrix and C+ is out-

put matrix and C- is an input matrix.

M. Shouman, I. Buseif / Petri net

 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005 523

11010

01101

10010

01011

00101

11000

01100

00010

00011

00001

00010

00001

10000

01000

00100

 C

The relation U * C = 0, ui 0 can rewritten as:
-u1 - u3= 0
- u1 - u2+ u4 = 0
- u2 + u5 = 0
+ u1 - u3 - u4 = 0
u2 - u4 - u5 = 0

From these equations, it can be concluded

that:

u1 = u4 = u5 = -u3, and u2 = 0.

Some values of ui < 0, then this means that

the PN model is not deadlock-free.

 The implementation of the above method in

computers has some difficulties. The first one
is how to solve the equation U * C = 0. Be-

cause there are no exact solutions of the

equation, we must assume some unknown

integers to represent these variables. Using a

computer it is difficult to implement the proc-

ess. The second problem is in step 4, where it
is difficult to choose a special marking of

deadlock property. The computer is not intelli-

gent enough to know the event.

The completeness and consistency exami-

nation are closed linked to the reachability
problem. In order to illustrate this fact let us

introduce the concept of a Marked Graph (MG)
which is a Petri net C = (P, T, I, O, µ0) [17- 19].

4.2. Marked graph

A marked graph is a PN in which each

place is an input for exactly one transition and

an output for exactly one transition. Alterna-

tively, each place exactly considered as one

input and one output [13, 20].

A marked graph is a PN C = (P, T, I, O)

such that for each pi P,I (pi) = {tj/pi O (tj)}

=1 and O (pi) = {tj/pi I (tj)} =1.

Marked graphs can model concurrence

and synchronisation but cannot model conflict

or data-dependent decisions. The properties,

which have been investigated for marked
graphs, have been Liveness, safeness, and

reachability.

In the investigation of these properties, the

major structural parts of a marked graph of

interest are its cycles. A cycle in a marked
graph is a sequence of transitions tj1tj2...tjk
such that for each tjr and tjr+1 in the sequence

there is a place pir the pir O (tjr) and pirI (tjr+1)
and tj1= tjk.

A cycle is such a closed path from a tran-

sition back to that same transition. The im-

portance of cycles for marked graphs derives

from a number of theorems that are coverd in
the paper [16].

4.3. Computer implementation of the corrected

algorithm

The mean idea of the use of P-invariants to
detect the system is free of deadlocks or not,

and also to determine the other properties of

PN (Safe, Reachable and Conservative). This

algorithm is represented in fig. 4 [16, 18].

In order to illustrate the application of the
approach proposed, consider the example pro-

vided in fig. 1. An event graph (like PN in gen-

eral) said to be strongly connected if there is a

directed path joining any node A to any node

B of the graph.

The event graph presented in fig. 1
strongly connected. In this aspect, an ele-

mentary circuit in a strongly connected event

as a directed path goes from one node, i.e. a

place or transition, back to the same node,

which any other node is not repeated. For in-

stance, fig. 1 exposes four elementary circuits,
namely:

1 = (p1, t2, p4, t3),

2 = (p2, t2, p4, t4),

3 = (p2, t1, p5, t4), and

4 = (p3, t1, p5, t5).

M. Shouman, I. Buseif / Petri net

524 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005

Input/Output

Incidence

Matrices

Transformation

Rule R1

Transformation

Rule R2

IS

[I(Pi)]=[O(

pi)]=1 ?

Compute Loops

U= U`+U``

YES

NO

IS

U*D=0

IS

MU=M`U

DEADLOCK

M` is not

reached from M

M` is reached

from M

NO

YES

NOYES

Fig. 4. Flow chart of computing P-invariants

If the number of tokens in a marking re-

mains fixed for all markings in the reachability

set, the Petri net is then said to be strictly

conservative. An immediate consequence of
conservativeness is boundedness of the Petri

net. The boundedness property implies that

the number of tokens in any place does not

increase beyond a limit. This in turn guaran-

tees a finite reachability set for the Petri net.

In some manufacturing applications, the to-
kens in the Petri net model could represent

moving entities, such as workpieces or parts,

in the system. Here, the strict conservative-

ness guarantees that the total number of parts

in the system remains fixed at all times.

Through, the conservativeness property can be

established through the reachability set or

graph, a more efficient approach would be
through the P-invariants of a Petri net. If there
exist a U with all positive elements the Petri

net is then said to be conservative. If U =

(1,...,1) then the Petri net is strictly conserva-

tive.

The total number of tokens in i (i=1,2,4

is then:

n1(1) = (number of tokens in p1) + (number of
tokens in p4) = 1 + 0 = 1

n2(2) = (p2) + (p4) = 1 + 0 = 1,

n3(3) = (p2)+ (p5) = 1 + 0 = 1, and

n4(4) = (p3) + (p5) = 1 + 0 = 1 .

Therefore, the relevant set of P-invariants

contains the following elements;
U1= (10010), U2 = (01010), U3 = (01001), U4 =

(00101), U5 = (12122)

4.4. Applying the equations

U*C = (12122) * C 0, this means that the

system is not Live (Deadlock is not free). The

system is not conservative from the previous

equation. So the PNM is not conservative and

the buffer overflows may occur.
UT * µ = (12122) T (11100) = 4, and UT*µ0 =

(12122) T (00110) = 3, this means that the

marking µ cannot be reached from µ0, i.e. that

µ R(C, µ0). But, in each cycle there is only

one token, it means that the system is Safe.

Let consider the example provided in the

previous example of fig. 1 by using the soft-

ware analysis.
1. The result of applying two rules R1 and R2

were as shown in fig. 5:

p-1

p2

p3

t6 p 6

p7

t2

t1 p4

p 5

t7 p8

p9
t3

t4

t5

p11

p10

t8

Fig. 5. New Petri net model after applying R1 and R2 rules.

M. Shouman, I. Buseif / Petri net

 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005 525

2. Computes loops of the new PN model by

using the computer software.

Loops:

p1*; p4 ; p8 ; (1: p1),

p2*; p6 ; p4 ; p9 ; (1: p2),

p2*; p7 ; p5 ; p10 ; (1: p2), and

p3*; p5 ; p11 ; (1: p3).

P invariants (U):

(1,2,1,2,2,1,1,1,1,1,1)

U by incidence matrix = (0,0,0,0,0,0,0,0), then

the system is live (deadlock-free)

U by tokens:

U * 0 = U * = 4, then is reached from 0.

Each loop has one token and a marked
graph PN in which each place is an input for

exactly one transition and an output for ex-

actly one transition, this means that the sys-

tem is safeness.

5. Conclusions and remarks

In this work, Petri nets are used to study three

problems: the check of buffer overflows, the

determination of earliest starting times, and

deadlock detection. The first two problems can
be done manually. A theorm is proposed to

find the overflow conditions and a method-

ology to find the earliest starting times for a

given sequence of operations has been

suested. This methodology is based on the
timed Petri net, which is developed by using

the concept of recursion. This method is better

than the other methods in its dynamic behav-

iour. The last problem can be solved by the

proposed computer programs, which are

based on the Petri net concept.
The advantages of the Petri net include its

ease of understanding and its readability. The

dynamic behaviour and parallelism are the

two major aspects for PN outperform other

tools. So Petri net is must suitable for use in
the real time control. If the Petri net can be

embedded in a controller then it can make fast

decisions and correct the system states as

needed.
There are some suggestions and future re-

search areas for Petri nets. For the deadlock

problem, deadlock prevention and recovery

can be a future research.

References

[1] L.J. Kun, "Working in Process (WIP)

Analysis of the Flexible Manufacturing

System using Time Petri Net Unfolding."

In: Proc. IEEE Int. Conf .on System, Man,
and Cybernetics (SMC’98), 11-14 October

1998, San Diego, CA, pp. 136-141 (1998).

[2] Y.Y. Chung, and L.C. Fu, and M.W. Lin,

"Petri net based Modelling and GA based

Scheduling for a Flexible Manufacturing

System," In: Proc.37th IEEE Conf. on
Decision and Control, 18-20 Tampa, FL,

Vol.4, pp. 4346-4347 (1998).

[3] H.H. Ziong, and M. Zhou, “Deadlock-free

Scheduling of Flexible Manufacturing

System Based on Perti Nets.” In:
International Journal of Intelligent

Control Systems, Vol. 3 (3), pp. 277-295

(1999).

[4] N. Wu, "Necessary and Sufficient

Conditions for Deadlock–Free Operation

in Flexible Manufacturing Systems Using
a Colored Perti Net Model," In: IEEE

Trans. on Systems, Man, and

Cybernetics: Part C: Applications and

Reviews, Vol. 29 (2), pp. a92-204 (1999).

[5] M.D. Jeng, and S.C. Chen, "Heuristic
Search Based on Perti Net Structures for

FMS Scheduling," In: IEEE Trans. On

Industry Applications, Vol.1, pp. 196-202

(1999).

[6] F. Basile, P. Chiacchio, V. Vittorini, and

N. Mazzocca, "Specification and Modelling
of Flexible Manufacturing Systems Using

Behaviours and Petri Nets Building

Blocks," In: Proc. Int. Symp. on Software

Engineering for Parallel and Distributed

Systems, pp. 17-18 (1999), Los Angeles,
CA, pp. 110-123 (1999).

[7] Zhang, W.J., Li, Q., Bi, Z, M., and Zha,

X.F, "A Generic Petri Net Model for

Flexible Manufacturing Systems and its

Use for FMS Control Software Testing,"

M. Shouman, I. Buseif / Petri net

526 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005

In: International Journal of Production

Research, Vol. 38 (5), pp. 1109-1131

(2000).
[8] R. Patak, and M. Struhar,” Modelling and

Simulation of Flexible Manufacturing

Systems Controlled be Perti Nets.” In:

proc. Ifac Conf. on Control Systems

Design (CSD’2000), 18-20 June 2000,

Bratislava, Slovak Republic, pp. 384-389
(2000).

[9] M. Uzam, "An Optimal Deadlock

Prevention Policy for Flexible

Manufacturing Systems Using Petri Net

Models with Resources and The Theory of
Region," In: International Journal of

Advanced Manufacturing Technology 19

(3), pp. 192-208 (2002).

[10] F.F. Chen, and J. Chen, "Performance

Modelling and Evaluation of Dynamic

Tool Allocation in Flexible Manufacturing
Systems Using Coloured Petri Nets: An

Object-Oriented Approach," In: the

International Journal of Advanced

Manufacturing Technology, Vol. 21 (2),

pp. 98-109 (2003).
[11] Hsieh, Fu-Shiung, “Model and Control

Holonic Manufacturing Systems Based on

Fusion of Contract Nets and Petri Nets,"

in: Automatica, Vol. 40, pp. 51-57 (2004).

[12] C.H. Kuo, and H.P. Huang, "Failure

Modelling and Process Monitoring for
Flexible Manufacturing Systems Using

Colored Timed Petri Nets," In: IEEE

Trans. On Robotics and Automation, Vol.

16 (3), pp. 301-312 (2000).

[13] Z. Banaszak Modelling and Control of
FMS: A Petri Net Approach, Wroclaw

Technical University Press, Wroclaw

(1991).

[14] Z. Banaszak K. Jedrzejek "Rule-Based

Knowledge Verification using Petri Nets,"

The Third Turkish Symposium on AI and
Networks (1994).

[15] Banerjee, Al Maliki, "A Structured

Approach to FMS Modelling," Int. J.

Computer Integrated Manufacturing,

Vol.1 (2) (1995).

[16] M.I. Buseif, an Approach to FMS Design
Using SADT and PN tools, PhD. Thesis

Warsaw University of Technology, Faculty

of Production Engineering, Warsaw-

Poland (1997).

[17] Chih-Ming Liu and Feng-Cheng Wu,
"Using Petri nets to Solve FMS Problems,"

Int. J. Computer Integrated

Manufacturing, Vol. 6 (3), pp. 175-185

(1993).

[18] F.G. Dicesare J.M. Harhalakis, M. Proth,

F.B. Silva, and Vernadat, Practice of Petri
Nets in Manufacturing, Chapman and

Hall (1993).

[19] K. Santarek M. and Ibrahim Buseif, "A

Structured Approach to FMS Modelling

and Design," First International
Conference on Mechanical Engineering

Advanced Technology for Industrial

Production, Assuit University Egypt

(1994).

[20] T.H. Boucher M.A. Jafari, "Design of a

Factory Floor Sequence Controller from
High Level System Specification," Journal

of Manufacturing Systems, Vol. 11 (6)

(1990).

Received April 23, 2005
Accepted June 6, 2005

