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In this work, Petri nets are used to analyse Flexible Manufacturing Systems (FMS) to derive 
a theorem for checking the buffer overflows in an FMS. The second objective is to schedule 

the earliest starting times for a sequence of operations in an FMS by the timed Petri net. The 
FMS may involve many part types, machines, pallets and so on. The third objective is to 
detect the deadlock phenomenon by a corrected algorithm of the P - invariant theory for 

Petri nets. This method will enable the manager to know whether there exists any deadlock 
in an FMS. The Petri net is basically a graph structure. By adding the activity duration times 
and resource allocation conditions, the dynamic behaviour of a system at any one time can 
be studied.  

هذه الورقة البحــثية تهــدف إلى وضــع الحلول المناســبة لتـكدس المـواد بالــقرب من الالات مع جدولة تسلسل عمليات التصنيع 
ضلة والأكثر استخداما فى تصميم أنظمة تعتبر شبكة بيترى من الأدوات المف0واكتشاف الإختناقات ووضع الحل المناسب لها 

المواد الخــام أو  بإضافة مصادر .الخ... لإنتاجيةالتصنيع المرن وأكثر فعالية فى تحليل المشاكل مثل الإختناقات، الجدولة، ا
ومن خلال ذلك نستطيع  0كيةبيترى الدينامي المــعدات إلى شـــبكة بيــترى  تتـــحول  شــبكة بــيترى الإعتـــيادية الثابتة  إلى شبكة

أما جدولة عمليات التصنيع فتتم بإضافة زمن كل عملية إلى  .إيجاد الإختناقات أو تكدس المواد وذلك بمعرفة خواص شبكة بيترى
تم عمل برنامج كمبيوتر لشبكة بيترى لإيجاد وأكتشاف تكدس المواد للإختناقات ووضع  .شبكة بيترى وتسمى شبكة بيترى الزمنية

 .اص شبكة بيترى وماركت البيانيةحل لها من خلال خوال
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1.   Introduction and background 

 

In the present competitive market, greater 

flexibility is required for the automated 

manufacturing systems in order to respond to 
the needs of different product types of market. 

But this greater flexibility implies a greater 

complexity in manufacturing processes. In 

order to run Flexible Manufacturing Systems 

(FMS) smoothly and efficiently, mathematical 
or computerized tools may be used. 

In this paper the study of Petri nets which 

is gaining more popularity in the analysis of 

the FMS performance such as scheduling, 

throughput, boundness, and deadlocks. Petri 

nets are suitable tool for analyzing these 
problems. It was originally developed in com-

puter science field where many interactions 

and dynamic behaviours in computer archi-

tecture can be determined by Petri nets. 

The Petri net is basically a graph struc-
ture. By adding the activity duration times 

and resource allocation conditions, the dy-

namic behaviour of a system can be obtained 

at any time. The emphasis of this work is to 

solve some problems in FMS such as checking 

buffer overflows, determining the earliest 
starting times of the machines, identifying 

deadlocks. 

A Work In Process (WIP) of FMS analysis 

methods based on (Time Petri Net) unfolding is 

proposed by Kun [1]. Unfolding of PN is a 
partial order based method for the verification 

of concurrent system without the state space 

explosion. The aim of this work is to formulate 

the general cyclic state-scheduling problem to 

minimize WIP to satisfy economical 

constraints. The method is based on unfolding 
of the original net into the equivalent acyclic 

description. 

Chung et al. [2] presented a Genetic Algo-

rithm (GA) for embedded adaptive scheduling 

over a Timed Petri Net (TPN) model provides a 
new method for a FMS. The chromosome 
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representation of the search nodes is 

constructed directly from TPN model of FMS.A 

TPN based schedule builder receives a 
chromosome and an initial marking as input, 

and then produces a near-optimal schedule. 

Petri net based method for dead lock-free 

scheduling of flexible manufacturing systems 

is presented by Ziong and Zhou [3]. The 

deadlock states are explicitly defined in Petri 
net framework, so no more equations are used 

to describe deadlock avoidance constraints to 

derive deadlock-free schedules. Hybrid heu-

ristic search algorithm, which combines heu-

ristic best-first search and near-optimal back-
tracking search, is proposed to generate an 

optimal or near-optimal deadlock-free sched-

ule. Interesting results are reported through 

comparison of the Petri net method and other 

methods such as mathematical programming 

and dispatching rules. 
A Petri net model, called Colored Re-

source-Oriented Petri Net (CROPN) is devel-

oped by Wu [4]. The concurrent resource con-

tention and the important characteristics of 

the production processes necessary for dead-
lock control are well represented by this model 

based on the developed model, necessary and 

sufficient conditions and an efficient control 

law are presented for deadlock-free operation 

in FMSs. This control law is a policy of dy-

namic resource allocation. It determines when 
a resource can be allocated to which job to 

avoid deadlock. This control law allows as 

many active parts as possible to be in the 

system, while deadlock is totally avoided. This 

control law is easy to implement and can be 
embedded into the real-time scheduler. 

A heuristic search method using Petri net 

structures for FMS scheduling is presented by 

Jeng and Chen [5]. To minimize make-span, 

an FMS scheduling problem is formulated as 

finding a firing sequence reveals the minimal 
cost. The reachability graph is partially gener-

ated and searched. The search process is 

guided by a heuristic function based on firing 

count vectors of the state equation, predicting 

the total cost. The proposed algorithm exploits 
the concurrency information to reduce the 

searched state space. 

A general approach to modelling and 

analysis of Flexible Manufacturing Systems 

(FMSs) is proposed by Basile et al. [6]. It puts 

together a trace-based formal specification 

method and a compositional Petri Nets (PN) 

approach with predefined building blocks. The 
structure of this system leads to a unified 

framework whose goals are to cope with the 

complexity of the FMSs behaviours and con-

straints, and provide a practical engineering 

means to translate behaviours into PN librar-

ies. The P-invariants of the resulting model are 
used to obtain a reduced net of the system 

which points out the resources availability 

rather than the behaviours of the system 

components. 

Zhang et al. [7] introduced a Generic Petri 
Net (GPN) model and proposes an approach 

for the development of control software for 

FMSs. The principle of this approach is based 

on checking the control parts of FMSs with 

the help of temporal relationships between 

physical operation, and the specification of the 
FMS controller with GPN. The strategy of GPM 

modelling is then incorporated with more gen-

eral strategies in artificial intelligence. A case 

study for testing FMS controller software is 

provided to show effectiveness and cost saving 
over development of conventional methods in 

which only ordinary Petri net and procedural 

language is used. 

 A software tool for modelling and simula-

tion of flexible manufacturing systems is pro-

posed by. Patak and Struhar [8].  A variety of 
robots, conveyors and working machines can 

be used in building the FMSs control pro-

grams for the whole system are written 

through Petri net models. Transformation 

from Petri net into control program in auto-
mated programming language is derived from 

real language for robot control. Simulation is 

done in 3D environment with full real-time 

animation. 

A Colored Timed Petri Net (CTPN) is used 

to model the process behaviour of an FMS by 
Kuo and huang [9]. CTPN-based SPC (statisti-

cal process control), fault diagnosis, and fail-

ure model and effect analysis are modelled 

and analysed individually. The proposed 

CTPN-based simulator can be acted as a real-
time FMS monitor and controller through the 

G2 standard interface. 

 An optimal deadlock prevention policy for 

flexible manufacturing systems (FMSs) is pro-

posed by Uzam [10]. The proposed optimal 
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deadlock prevention policy is based on the use 

of reachability graph analysis of a Petri Net 

Model (PNM) of a given FMS and the synthesis 
of a set of new Net elements, namely places 

with initial marking and related arcs, to be 

added to the PNM, using the theory of regions, 

which is a formal synthesis technique to de-

rive Petri nets from automaton-based models. 

The policy proposed is optimal in the sense 
that it allows the maximal use of resources in 

the system according to the production re-

quirements.  

Chen, and Chen [11] introduced an object-

oriented approach to modelling of FMS dy-
namic tool allocation and control under a non-

hierarchical shop floor control scheme using 

modelling method. The complete FMS model is 

partitioned into individual classes (machines, 

magazines, tool transport system, SGVs, tool 

storage, etc.) thereby significantly reducing 
the complexity of the model to a tractable size 

.The proposed method can provide the de-

signer of a tool management system with a 

high-level and structured representation of 

tool sharing control. It also provides an effec-
tive method for prototyping and evaluating 

performance of object-oriented shop floor con-

trol software. 

 Fu-Shiung [12] presented a framework to 

model and control FMS based on fusion of 

perti net and multi-agent system theory. The 
main results include: (1) a multi-agent model 

and a collaboration process to form commit-

ment graphs in FMS based on contract net 

protocol, (2) a procedure to convert commit-

ment graph to Collaborative Perti Net (CPN), 
and (3) feasible conditions and collaborative 

algorithms to award contracts in FMS based 

on CPNs. 

 

2. Petri nets 

 
A Petri Net (PN) is formally defined as a 

four-tuple C= (P, T, I, O) where P is a finite set 

of places p, T is a finite set of transitions t, I is 

a mapping from transitions to a bag of places 
such that I (t) defines the input places of tran-

sition t, and O are mapping from transitions to 

a bag of places such that O (t) defines the out-

put places of t.  A PN can also be represented 

by a bipartite directed graph with two types of 

nodes: circles for places and bars for transi-

tions. Directed arcs connected the circles and 

bars. Note that a bag is a multiple set occur-

rences of an element that are allowed. Let 
B(p,t) and F(p,t) be, respectively, the number of 

occurrences of places P in the input and out-

put bags of transition t. Then B, F and A = F - 
B, respectively, define the backward, forward 

and incidence matrices of PN. These matrices 

define the PN topology. The dynamics of PN 

are defined by marking  0 of the PN;  is a 

state vector with  (p) being the number of 

tokens in place p. The PN dynamics are con-
trolled by the execution of it. A PN executes by 

firing its transitions. A transition fires by re-

moving tokens from its input places and de-
positing tokens at its output places. A transi-

tion may fire if it is enabled. A transition t is 

enabled in marking   if    B.ft where ft 

=(0,0,...,1,0,...,0) with 1 corresponding to tran-

sition t. If  ’ is a new marking after firing 

transition t, then  ’ =   + A.ft defines the PN 

dynamics.  For a sequence   of n transitions, 

the dynamics equation becomes  n =  0 + 

A.ft where f = t,   is a set of n transitions 

and  0 is the initial marking; f is called the 

firing sequence vector. Each marking defines a 

state. Firing a transition may result in a new 

state. All the possible states define the PN 

state space. From an analytical perspective, it 
is quite important to determine all the reach-
able states. It is also important to determine 

whether or not PN is live or deadlock free, 

bounded (number of tokens in any place is 

finite in any marking), conservative (the 

weighted number of tokens in any marking is 
fixed and finite) and consistent (there is a fir-

ing vector with all positive elements). A live 

and consistent PN is cyclic, which is typical 
property of manufacturing systems. One may 

also be interested in other features of a PN as 
a controller, such as recoverability and fair-
ness. Some of these properties can be mathe-

matically analyzed through P- and T- invari-

ants of PN [13-16].  

 
3. Buffer overflow detection and determi-

nation of the earliest schedule time 
 

3.1. Buffer overflow analysis 
 

Definition - 1:   A Petri  net C  = (P, T, I, O)  with  
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initial marking µ is strictly conservative if for 

all µ` R(C, µ),         

 

 µ` (pi) =   µ (pi), pi P            pi P.               
 

If a marked Petri Net model is conservative 

then the sum of all tokens will remain a con-
stant in all-reachable markings. Such a PN 

model will represent a system with a constant 

number of resources or jobs, for example, a 

closed manufacturing system. If it is required 

to prove the conservative property of a Petri 
Net model, then a nonzero weight vector N 

should be defined such that the weighted 

sums over all the reachable markings are 

equal. In a real system, the meaning of the 

conservative property is that the system is op-

erating normally and there are no resources, 
such as machines, robots, and AGV’s, which 

are inoperative. In an FMS, if the buffer over-

flow situation is considered, then the machine 
(s) before an overflow buffer will be forced 

down and the marked Petri Net will not pos-

sess the conservative property [14,15]. The 
mathematical derivation of the process is 

shown as follows: 

 

0 * N =  * N      (N is a nonzero vector),  (1) 

 

where  and 0 are 1 by m matrices, and N is 

an m by 1 matrix. 

 

  R [0]. 

 
So there must exist a sequence of transi-

tions to be fired. 

 

where,   
 

 = 0 + Y * C.         (2) 

 
Combined (1) and (2) we get: 

 

0 * N = (0 + Y * C) * N 

     = 0 * N + (Y * C) * N, 
 

and  
 

(0 * N ) - ( 0 * N ) = ( Y * C ) * N. 
 

By the association of matrix multiplica-

tion: (0 - 0) * N = (Y * C) * N, and for a zero – 
matrix: 0 * N = Y * (C * N), then:  

 
0 = Y * (C * N).         (3) 

 
This is true for every Y vector. The result 

can be as follows: "A Petri net model is con-

servative  There exists a nonzero positive 
vector N such that C * N = 0". 

   The example in fig. 1 is used to verify that 

the above theorem is a sufficient condition but 

not a necessary condition. The example is an 
FMC, which has one machine and two part 

types. 

This machine can only serve one part type 

at a time. Transitions and places are changed 
slightly. Let p1 and p3 be the input buffer for 

part A and part B respectively, and p2 be the 

machine. Let t1 and t2 represent starting times 
of machining part A and part B separately, t3 

and t5 denote the finishing times of machining 
A and B, and t4 is the return operation of this 

machine. p4 and p5 are the operational proc-

esses of parts A and B individually. 

               

-1   0    1   0  0

-1  -1    0   1  0

 0  -1    0   0  1

 1   0   -1  -1  0

 0   1   0   -1 -1

C   =

 
- n1+ n3  = 0 

- n1 – n2 + n4 = 0 

- n2 + n5 = 0 

n1- n3 - n4 = 0 

n2 - n4 - n5 = 0 

 

The first column (-1, -1, 0, 1, 0) of the in-
cidence matrix indicates that p4 (the machin-
ing operation of part A) must wait until p1 (in-

put part for part A) and p2 (the machine) are 

both available. The third column (1, 0, 0, -1, 

0) indicates that p1 can only send one more 

part A to the machine until it finishes proc-
essing a part p4. Other columns in the inci-

dence matrix are obtained similarly. 
The system is not conservative from the 

following calculations. Then n1 = n4 = n5 = -n3 

and n2 = 0. So the PNM is not conservative 

and buffer overflows may occur. Some ma-

chines will be forced down due to buffer over-

flows [16-18]. 
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p1

p 2

p 3

p 4

p 5

     t1

t2

t3

t4

t5

 
 

Fig. 1. PNM for a system of one robot and two part types. 

 

 
3.2. TPN and earliest schedule for FMS opera-

tions   

 

In this section, Timed Petri Net (TPN) is 
used to apply a certain methodology for find-

ing the earliest starting times for a sequence 

of transitions corresponding to the real opera-

tions of a system. The earliest schedule for a 

sequence of transitions can be used to decide 
the earliest possible starting times for each 

machine when there are no machine break-

downs, part jams or other delays. 

 
3.2.1. Timed petri net 

By adding the ‘ time quantity ‘to the ordi-
nary (pure) Petri net for every transition, a 

new PN called TPN is obtained. The TPN is a 

powerful tool for modelling systems with dy-

namic behaviours. In such extended nets, an 

execution time r is associated with each tran-
sition is fired, it takes r units of time to com-

plete its execution [16, 18]. 
Definition 2: A timed Petri net is a five – tuple 

structure C = (P, T, I, O, R), P, T, O, and I are 

defined before, and R is a function of the fol-

lowing type: R: t  R, where R is a positive 

real number and t is a transition. 

The main concept of the methodology is to 
use a stack and its recursive calls [16,17, 19]. 

1. First, the overall Petri Net Module (PNM) is 

traced and finds all time point sets of transi-

tions, which are possibly fired. 

2. List time point sets of transitions and de-
note them by A (1), A (2),…, A(N) in a table. 

3. Use the recursive calls and stack to parti-

tion the friable sequence of transitions. For 

example, if  = (((((… (t1 (t2) t3) t4) … tn-1) tn), put 
them into a stacks as follows. S1 is a pointer 

to the top position of the stack and Sn indi-

cates position n in the stack. 
4. Let the initial condition a1 = 0 for transition 

t1.  

5. Determine a2 if the following two conditions 

are satisfied: (a) X  A (a1) and X is active at 

a1, and (b) (p) at the end of x  I (p, t2). The 
meaning of condition (b) is that the number of 

tokens, which are required to start t2, must be 

larger or equal to the present token number in 

the places. 
6. Pop S2 = (t1t2) t3 to determine a3.  

7. Continue to calculate S3, S4,…, Sn-1 until all 

the (a1, a2,…, an) are found. 

 
3.2.1. An example 

Fig. 2 is a PNM of an FMS. The system 

contains one lathe, one milling machine and 

one drilling machine. The system produces 
two part types. Both of t1 (3) and t3 (3) repre-

sent the operational times of part type A at p2 

(lathe) and p5 (drilling machine) separately. 
The t2 (2) and t4 (3) represent the operational 

times of part B at p2 (lathe) and p5 (drilling 

machine). Transition t6 (1) is the transfer time 

of a part. P7 denotes the milling machine. The 

friable sequence of transitions (operations) are 

 = t1t7t2t5t2t7t1t4t3t6. The above method is used 

to find the earliest schedule for this sequence. 
Step 1:  

We trace the entire PNM by moving the friable 
tokens to classify the event sets. We use three 
three tuples (a1: B, a2: E, t) where a1 repre-

sents the time when transition t is fired, and 
a2 represents the finishing time of t. 

 

   

     n1     n2

 INPUT B UF F E R 

                              OUTPU T B UF F E R

p1

p2

p3

p7

p4

p8

 p5
p6

p9

p10

t1(3)
  t7(2)

t2(2)

t3(3) t4(3) t5(2)

t6(1)

 
 

Fig. 2. The FMS example. 
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Step 2:   

All the possible friable and ending times for all 

transitions are showing in the following table: 
All the possible friable and ending times 

for all transitions 

 
  0: B  t1, t2, t7  2: E t2, t7  
  2: B  t4, t5  3: E t1  
  5: B  t3   4: E t5  
  8: B  t6   5: E t4  
        8: E t3  
        9: E t6  

 
Step 3:  
(t1) t7, ( t1t7 )t2, …. , ( t1t7…t4 )t3, and ( t1t7…t3 )t6. 

Step 4:   
a1 = 0 for all t1. 

Step 5:   

X  A (0) and (P) at the finishing time of X  I 
(P, t7), and we get X = 0. 

Step 6:  
Determine a3 from the schedule (a1, a2) = (0, 

0) and a3 = 0 for transition t2. 
Step 7:  

The above steps are continued to obtain 

the following schedule diagram. 

The overall scheduling starting times are 
shown in fig. 3, whereas tiS are different from 

those in fig. 2. Here, the tiS represent the earli-

est starting times for the operations from the 
start of FMS at time 0. 

 

4. Deadlock detection in the PNM 

 
4.1. Deadlock detection by using the p-invariant 
 

This method includes the following steps: 

1. Before obtaining the final PN model of a 

given system, one can construct the union of 

simpler PN models that represent the various 

functional subsystems into which the given 
system can be decomposed. This divide-and-

conquer approach to obtaining the PN of a 

given system can help us in computing P-in-

variants of a PN models. If a given system is 

very large, the corresponding PNM is also 

large. The computation of P-invariant will be-
come very complex. So the overall system 

should be partitioned to compute the P-invari-

ant of subsystems and then combine them to 

obtain the overall P-invariant of the entire 

system.  

t1

      t7

  
  t2

  t5

  t2

  t7

  t1

  t4

  t3

  t6

 1     2    3    4    5    6    7     8    9    10   11  0

Ti m e

Tr ans i ti ons

 
 

Fig. 3 The starting times of sequence of transitions se-
quence. 

 
2. The method can help to compute the P-in-

variant of the union of two PNs when P-invari-

ant of individual nets are known and the nets 

satisfy the theorem conditions. 

3. Basically the method uses the incidence 
matrix representation C of a PN to compute P-

invariant characterized by U through the 

equation U * C = 0. Again from the equation; 

 
µ = µ0 + C*Y, multiplying by U, we obtain: 

 
U*µ = U*µo + U*(C*Y),                

 
where,  

 
U*C = 0.        

 

Then, 

 
U*µ = U*µ0 .              (4) 

 

4. Step 3 is used to get some equations and 

then choose some states to verify if these 

states are deadlocked. Then one can say if the 

original system is deadlocked or not. 
By applying the same example (fig. 1) to 

detect the deadlock of a PN model by using P-

invariant. First the incidence matrix are 
evaluated by using this equation C = C+ - C-, 

where C is the incidence matrix and C+ is out-

put matrix and C- is an input matrix. 
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The relation U * C = 0, ui  0 can rewritten as: 
-u1 - u3= 0 
- u1 - u2+ u4 = 0  
- u2 + u5 = 0 
+ u1 - u3 - u4 = 0 
u2 - u4 - u5 = 0 

 

From these equations, it can be concluded 

that: 
 
u1 = u4 = u5 = -u3,   and  u2 = 0. 

 
Some values of ui < 0, then this means that 

the PN model is not deadlock-free. 

     The implementation of the above method in 

computers has some difficulties. The first one 
is how to solve the equation U * C = 0. Be-

cause there are no exact solutions of the 

equation, we must assume some unknown 

integers to represent these variables. Using a 

computer it is difficult to implement the proc-

ess. The second problem is in step 4, where it 
is difficult to choose a special marking of 

deadlock property. The computer is not intelli-

gent enough to know the event. 

The completeness and consistency exami-

nation are closed linked to the reachability 
problem. In order to illustrate this fact let us 

introduce the concept of a Marked Graph (MG) 
which is a Petri net C = (P, T, I, O, µ0) [17- 19]. 

 
4.2.  Marked graph 

 
A marked graph is a PN in which each 

place is an input for exactly one transition and 

an output for exactly one transition. Alterna-

tively, each place exactly considered as one 

input and one output [13, 20]. 

A marked graph is a PN C = (P, T, I, O) 

such that for each pi P,I (pi)  = {tj/pi O (tj)} 

=1 and O (pi) = {tj/pi I (tj)} =1. 

Marked graphs can model concurrence 

and synchronisation but cannot model conflict 

or data-dependent decisions. The properties, 

which have been investigated for marked 
graphs, have been Liveness, safeness, and 

reachability. 

In the investigation of these properties, the 

major structural parts of a marked graph of 

interest are its cycles. A cycle in a marked 
graph is a sequence of transitions tj1tj2...tjk 
such that for each tjr and tjr+1 in the sequence 

there is a place pir the pir  O (tjr) and pirI (tjr+1) 
and tj1= tjk. 

A cycle is such a closed path from a tran-

sition back to that same transition. The im-

portance of cycles for marked graphs derives 

from a number of theorems that are coverd in 
the paper [16]. 

 
4.3. Computer implementation of the corrected 

algorithm 
 

The mean idea of the use of P-invariants to 
detect the system is free of deadlocks or not, 

and also to determine the other properties of 

PN (Safe, Reachable and Conservative). This 

algorithm is represented in fig. 4 [16, 18].  

In order to illustrate the application of the 
approach proposed, consider the example pro-

vided in fig. 1.  An event graph (like PN in gen-

eral) said to be strongly connected if there is a 

directed path joining any node A to any node 

B of the graph. 

The event graph presented in fig. 1 
strongly connected. In this aspect, an ele-

mentary circuit in a strongly connected event 

as a directed path goes from one node, i.e. a 

place or transition, back to the same node, 

which any other node is not repeated. For in-

stance, fig. 1 exposes four elementary circuits, 
namely: 

 

1 = (p1, t2, p4, t3), 
 

2 = (p2, t2, p4, t4), 
 

3 = (p2, t1, p5, t4), and 
 

4 = (p3, t1, p5, t5).  
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from M

NO

YES

NOYES

 
 

Fig. 4. Flow chart of computing P-invariants 

 

If the number of tokens in a marking re-

mains fixed for all markings in the reachability 

set, the Petri net is then said to be strictly 

conservative. An immediate consequence of 
conservativeness is boundedness of the Petri 

net. The boundedness property implies that 

the number of tokens in any place does not 

increase beyond a limit. This in turn guaran-

tees a finite reachability set for the Petri net. 

In some manufacturing applications, the to-
kens in the Petri net model could represent 

moving entities, such as workpieces or parts, 

in the system. Here, the strict conservative-

ness guarantees that the total number of parts 

in the system remains fixed at all times. 

Through, the conservativeness property can be 

established through the reachability set or 

graph, a more efficient approach would be 
through the P-invariants of a Petri net. If there 
exist a U with all positive elements the Petri 

net is then said to be conservative. If U = 

(1,...,1) then the Petri net is strictly conserva-

tive. 

The total number of tokens in i (i=1,2,4 

is then:  

n1(1) = ( number of tokens in p1) + ( number of 
tokens in p4 ) = 1 + 0 = 1 

 

n2(2) = (p2) + (p4) = 1 + 0 = 1, 

 

n3(3) = (p2)+ (p5) = 1 + 0 = 1,  and 

 

n4(4) = (p3) + (p5) = 1 + 0 = 1 . 

 

Therefore, the relevant set of P-invariants 

contains the following elements; 
U1= (10010), U2 = (01010), U3 = (01001), U4 = 

(00101), U5 = (12122)  

 
4.4. Applying the equations 

 

U*C = (12122) * C  0, this means that the 

system is not Live (Deadlock is not free). The 

system is not conservative from the previous 

equation. So the PNM is not conservative and 

the buffer overflows may occur.  
UT * µ = (12122) T (11100) = 4, and UT*µ0 = 

(12122) T (00110) = 3, this means that the 

marking µ cannot be reached from µ0, i.e. that 

µ  R(C, µ0). But, in each cycle there is only 

one token, it means that the system is Safe. 

Let consider the example provided in the 

previous example of fig. 1 by using the soft-

ware analysis. 
1. The result of applying two rules R1 and R2 

were as shown in fig. 5: 
 

p-1

p2

p3

t6   p 6

p7

t2

t1 p4

p 5

t7 p8

p9
t3

t4

t5

p11

p10

t8

 
 

Fig. 5. New Petri net model after applying R1 and R2 rules. 
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2. Computes loops of the new PN model by 

using the computer software. 
 
Loops: 

 
p1*; p4 ; p8 ; (1: p1), 

 
p2*; p6 ; p4 ; p9 ; (1: p2), 

 
p2*; p7 ; p5 ; p10 ; (1: p2), and 

 
p3*; p5 ; p11 ; (1: p3). 

 
P invariants (U): 

 

(1,2,1,2,2,1,1,1,1,1,1) 
 
U by incidence matrix = (0,0,0,0,0,0,0,0), then 

the system is live (deadlock-free) 

 
U by tokens:  

 

U * 0 = U *  = 4, then  is reached from 0.  

Each loop has one token and a marked 
graph PN in which each place is an input for 

exactly one transition and an output for ex-

actly one transition, this means that the sys-

tem is safeness. 

 
5. Conclusions and remarks 

 

In this work, Petri nets are used to study three 

problems: the check of buffer overflows, the 

determination of earliest starting times, and 

deadlock detection. The first two problems can 
be done manually. A theorm is proposed to 

find the overflow conditions and a method-

ology to find the earliest starting times for a 

given sequence of operations has been 

suested. This methodology is based on the 
timed Petri net, which is developed by using 

the concept of recursion. This method is better 

than the other methods in its dynamic behav-

iour. The last problem can be solved by the 

proposed computer programs, which are 

based on the Petri net concept. 
The advantages of the Petri net include its 

ease of understanding and its readability. The 

dynamic behaviour and parallelism are the 

two major aspects for PN outperform other 

tools. So Petri net is must suitable for use in 
the real time control. If the Petri net can be 

embedded in a controller then it can make fast 

decisions and correct the system states as 

needed. 
There are some suggestions and future re-

search areas for Petri nets. For the deadlock 

problem, deadlock prevention and recovery 

can be a future research. 
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