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The response of a two degree of freedom system with, strong non-linearity to external 
excitations in the presence of three – to –one internal resonance is investigated. The intensity 
of the external forces, which is called external excitation is independent upon the response of 
the system. The multiple time scale method is used to derive the differential equations which 
govern the amplitude and phase angle for the two resonance modes of excitations. The 

analysis is focused on the response characteristics in the neighborhood of the simultaneous 
external and internal resonance conditions in the presence of strong non- linearity impact 
terms. The results  indicate that, the impact suppresses the system response in the second 

mode. In the presence of the internal resonance, which is the scope of this paper, the two 
amplitudes are excited with energy sharing between the two modes. However, the absence of 
the internal resonance causes one of the two amplitudes to reach zero.  

راسة سلوك الأنظمة اللاخطية المعبرة عن  الحرةنة التدنيدمية للسنوالم المتحرةنة بلعنم التحمنم الخنيرئ  الني ن  بد يختص هذا البحث
الزمننن  المتعندد اسنتخدمط ةطريقنة رييلإنية  يئنيد ع  قوى أفقية خيرئية غير بيرا مترية ف  وئود الرني  الداخل . طريقة المقييس 

هنني ني ن  عن  وئنود النرني  النداخل  النذى ينربط بني  التنرددي  الحنري  . النرني  المقتنر  الرني  ف  معيدلاط الحرةةالمعبرة ع  هذا 
الرنينية الخيدة بيلاهتزازاط الرليسية المعتمدة عل  وئود علاقة بني  التنردد الخنيرئا والتنرددي  الحنر بنسبة الثلث ألإيفة ال  الحيلة 

إحداهمي بإهميم حدود وفيهني تنم هذه المعيدلاط لتعبر ع  ولإعي  للمنظومة: وقد تم حم الأوم والثينا وةلاهمي عل  الدورة الرليسية. 
فن  ةنم دراسة تأثير قوى التديدم علن  الحرةنة و نةلهي ودف الحرةة اللاتديدمية والأخرى عند دراسة الحرةة بوئود التديدم. تم 

لتغيينر معيمنم الحينود نطني  واسن  ط وذلنك بيسنتعميم الحلنوم العددينة لهنذه المعنيدلاةسنيبقهي علن  وتعتمد النتيلج فن  هنذا البحنث حيلة. 
عن  م  المنحنينيط الزمنينة التن  تعبنر م  خلام الحلوم العددية ايئيد العديد امة  لمعيمم الحيود الداخل . وقد الخيرئ  وقيمة دلرية 

  ةم الحرةة سواء ذاط السعة الثيبته أو المتغيرة.
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1. Introduction 

 
In this paper, we study the response of a 

two degrees of freedom system with a strong 

non-linearity to external excitations in the 

presence of three –to–one internal resonance. 

The behavior of a non-linear system 

simulating liquid sloshing impact subjected to 
an external horizontal non-parametric excita-

tions in the presence of the internal resonance 

will be presented. It is found that the non-

linearity is responsible of the occurrence of 

internal resonance. However, the linear modal 
analysis will reveal that the system configura-

tion allows the internal resonance occurrence. 

The problem of liquid sloshing involving an 

impact loading are the most important 

dynamical systems which can be simulated by 

these non-linear systems. The dynamic 
behavior of these systems is greatly affected by 

the dynamics of the liquid free surface. The 

basic problem of liquid sloshing dynamics 

involves the estimation of hydrodynamic 
pressure distribution, forces and moments.  

These hydrodynamic forces and moments 

have direct effect on the dynamic stability and 

performance of moving containers. In the 

present work, the non-linear interaction 

between liquid hydrodynamic pressure impact 
and an elastic support structure will be 

examined. It is important to know that the 

equivalent mechanical modeling method is the 

key issue of treating liquid sloshing impact. 

There is no theory in the liquid 
hydrodynamics that can describe the fluid free 

surface motion under impact loading.  For this 

reason the equivalent model is innovative and 

a clever way to handle the problem. It is also 

important to note that, the equivalent model is 

phenomenological, i.e., its parameters are 
checked with experimental measurements and 

determined from these tests. 
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The parametric excitation of an elevated 

water tower experiencing liquid sloshing hy-

drodynamic impact have been studied by El-

Sayad and Ibrahim [1,2]. These works were 

interested in the parametric excitation in the 

absence and presence of the internal reso-
nance. The strongly non-linearity due to 

impact forces under parametric vertical excita-

tion are investigated by using the multiple 

scales method. The vertical parametric force is 

a function of the system response and  is 
completely different from the external force 

which is independent upon this response and 

it is usually horizontal. Many results were 

introduced for the study of the first and 

second mode excitations. In the presence of 

the internal resonance, the steady state 
response for the two modes was investigated. 

In the presence of the simultaneous internal 

resonance, the chaotic response of the system 

was presented and the results for the different 

cases were obtained. The behavior of an 
impact system simulating liquid sloshing 

subjected to external horizontal non-

parametric excitations in the absence of the 

internal resonance was examined by El-Sayad 

and Ghazy [3]. The system response has been 

examined in the neighborhood of two external 
resonance conditions. When the first mode is 

externally excited in the presence of impact 

forces, the system preserves fixed response 

amplitude  within a certain range depends 

upon the external detuning parameter. For the 
excitation of the second mode, the response 

amplitude increased as the impact parameter 

increased, indicating that the impact sup-

presses the system response. The dynamics of 

a non-linear system simulating liquid sloshing 

impact in moving structures was investigated 
by Pillpchuk and Ibrahim [4]. The liquid 

impact is modeled based on a 

phenomenological concept, by introducing a 

power non-linearity with higher exponent. 

Phenomenologically, they described the inter-
action between the pendulum and the tank 

walls with a special potential field of interac-

tion. Ye and Birk [5] studied the fluid pressure 

in a partially liquid-filled horizontal cylindrical 

vessel undergoing impact acceleration.  They 

conducted a series of experimental tests to 
measure fluid pressures in partially liquid 

filled vessels when they are suddenly acceler-

ated by impact along the longitudinal axis. 

Internal wall pressure of the tank, caused by 

the acceleration, was measured with transient 

pressure transducers. Different types of pres-

sure time histories were obtained and it was 

revealed that the pressure profile changes 
with fill level and transducer location. The 

nonlinear interaction of liquid free surface 

motion with the dynamics of elastic support-

ing structure of elevated water towers 

subjected to vertical sinusoidal ground motion 
was examined in the neighborhood of internal 

resonance by Ibrahim and Barr [6], Ibrahim 

[7] and Ibrahim et al. [8].  In the neighborhood 

of internal resonance conditions the liquid 

structure system experienced complex re-

sponse phenomena such as jump phenomena, 
multiple solution, and energy exchange. Non 

stationary responses with cases including 

violent system motion, which can lead to 

collapse of the system, were reported in the 

neighborhood of multiple internal resonances. 
Ibrahim and Li [9] studied liquid-structure 

interaction under horizontal periodic motion.  

Soundararajan and Ibrahim [10] examined 

more realistic cases, such as the case of si-

multaneous random horizontal and vertical 

ground excitations for elastic structures. 
 

2. Analysis 
 

Under external horizontal non-parametric 

excitations in the presence of the internal 
resonance, the two equations of motion for the 

system shown in fig. 1-a, 1-b are [1, 2]:    
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where 1  and 2 are the linear damping 

coefficients of the two modes.11 and 22 
stand for all secular terms corresponding to 

the present case. According to the procedures 
of the multiple scale method. Introducing the 

uniform expansion for the solution X(t, ) in 

the form :   
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    ...,...T,T,TY,...T,T,TYY iii  21012100
,   (2) 

 

where, tT.e.i,...tT,tT,tT n
n   2

210 , 

n=0,1,2…    

 
We note that the Tn represent different time 

scales because  is a small parameter. Using 
the Chain rule, we have: 

 

 
 

Fig. 1-a. The first mode shape for the amplitude X1 
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Fig. 1-2. The second mode shape for the amplitude X2 

sign)(
K)(





2

1

2
2

1

2
2








. 

 

 

...
TTTdt

d


2

2

10 












          

...+ )D2D+D(+DD2+D

d

d
20

2
10

t

2
1

2
02

2

 ,  (3-b) 

 

where 
n

n
T

D



 . 

Substituting the solution (2) into eqs. (1) 

using the transformed time  derivativegives: 
 

  ..DDDDDD  20
2
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2
10

2
0

22   
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2  .           (4)                        

 

Equating the coefficients of equal powers 

of 0 and 1 (n) gives a set of differential 
equations to be solved for Xi0, and Xi1.  For eq. 

(1-a) the zero- and first-order equations in  
are, respectively. 
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Where, ii stands for nonlinear and excitation 

terms. For eq. (1-b) the zero- and first-order 

equations in  are, respectively. 
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The general solutions of (5-a) and (6-a) can 

be written in the form. 
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Where the terms A and B  are the 

conjugates of A and B, respectively , 1i  

and A (T1) and B (T1) are functions of the time 
scale T1 and will be determined by eliminating 

the secular terms from eqs. (5-b) and (6-b).  

Substituting solutions (7) and (8) into (5-b) 

and (6-b) gives: 
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where 11and22 are functions which contain 
terms that produce secular terms in Xi1. They 

are defined in appendix A. 
Substituting solutions (7) and (8) into eqs.  

(9) and  (10), one obtains: 
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The right-hand sides of eqs. (11-a, 11-b) 
contain terms that produce secular terms in 
Xi1 (i.e., terms with a small divisor). Obviously 

the exponents on the right-hand sides in these 

equations decide the resonance conditions 

associated with each equation. For this 

excitation case (the parametric excitation), we 
will consider only the two relationships 

between the horizontal excitation frequency x  

in the external horizontal direction and the 

two natural frequencies of the system 1 and 

2 in addition to the internal resonance. The 
case of combination parametric resonance of 

the summed type (x = 1 + 2) will not be 

considered here. Under this simultaneous 

external and internal resonance conditions, 

the following resonance conditions will be 

considered:  
1. Principal external resonance of the first 

mode and three to one internal resonance (x 

= 2 = 3 
2. Principal external resonance of the second 

mode and three to one internal resonance (x 

=  = 3 
The response characteristics correspond-

ing to these resonance conditions are consid-

ered in the next sections. 

 

3. First mode external excitation 
 

The response characteristics correspond-

ing to simultaneous occurrence of the internal 

resonance 2 = 3  and the first  parametric 
resonance condition which  is given by the 

relation (x= 1) will be now considered. 
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Introducing the detuning parameters x and 1  

defined by: 
                                                                                                                     

2T1 = 31T0 - 1T1,      x = 1 + x.       (12) 

 

For this case, we will express the solutions 
for the unknown amplitudes A and B, which 

are functions in the slow time scale T1  in the 

complex polar forms: 
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Substituting into eqs. (11-a) and (11-b), 

and following the standard procedures of the 

multiple scale method,   gives the following set 

of the first-order differential    equations in the 

amplitudes a, b and  phases  angles
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Where,  
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Eqs. (14-a) through (14-d) define the 
response amplitudes and phase angle in the 

neighborhood of the combination parametric 
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resonance condition (x = The 

response can be obtained by setting the left-
hand side to zero since T1 is a slow time scale.  

Before we examine the influence of impact 

interaction on the system response, we will 

examine first the response in the absence of 

impact. 

The non-impact response is examined by 
dropping the fifth-order terms from eqs. (14-a)  

through (14-d). These equations are integrated 

numerically using (MACSYMA 2.3) that 

applies, step by step, Runge Kutta fourth 

order integration technique with suitable time 

step size. The following values will be 

assumed: the mass ratio  = 0.2, length ratio  

= 0.2, local frequency ratio  = 0.5, excitation 
amplitude ratio X0 =  0.1, and  damping  ratios 
 

 

 
(a)          time scale 

 

 

 
(b)        time scale 

 

Fig. 2-a, b. Time history phase record for non-impact case under first mode external excitation with internal resonance 

(X0 = 0.1, = 0.2,  = 0.2, x = 15, 1 = 2 = 0.1). 
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1= 2= 0.1. The system of first-order 
differential eqs. (14-a) through (14-d) is 

belonging to a non-integrable, non-conserva-

tive class. It is found that in the presence of 

internal resonance the system responds in 

different ways when the external detuning 

parameter x  is varying.  For the steady state 

response case, figs. 2-a, 2-b show a sample of 
time history records for the two amplitudes a 

and b corresponding to 15x  and 0I . 

For the first amplitude a,  the steady state 

solutions are related to the values of the 

external detuning parameter 90°  x - 90° 

and this range of the steady state amplitude is 

more wide than the second amplitude b which 

is limited in the range of 3030  x . Figs. 

3-a, 3-b show the amplitude- frequency 

response curves for the steady state response, 
and all these results are taken for zero values 

of the internal detuning parameter 0I . 

Any change for x out of this region will draw 

the amplitude for the random behavior. The 

observed fluctuation is accompanied by energy  

transfer to the second mode which oscillates 

about its zero equilibrium position. Obviously, 
the presence of internal resonance causes an 

irregular energy sharing between the two 

modes. As the result of the internal resonance, 

the second amplitude b is exists while it is 

vanishes in the absence of the internal 

resonances for this excitation mode. However, 
for any changes for the initial conditions, the. 

system response will not be change, which is 

known as non strange attractor oscillator.  

For the impact case, the impact terms 

should be included and equations (14-a) 
through (14-d) should be considered. These 

equations are integrated numerically using 

Runge-Kutta method (MACSYMA 2.3) for 

impact coefficients C15 = -0.5, C16 =  -0.1, and 
external  excitation amplitude X0 = 0.1 with 

zero values of the internal detuning parameter 

0I . The numerical integration has re-

vealed that the amplitude response posses the 

same behavior of the steady state similarly to 
the non-impact case. These different scenarios 

can be summarized as shown in the following 

figs.  3-a, 3-b show the dependence of  the re-

sponse amplitudes on the external parameter. 

The first amplitude is to be steady state 

solution for certain values of  the detuning  

parameter, where the second amplitude is 

steady within another certain range. These 

results are shown in the same figures. The 

solid curves are belonging to the impact case 

and the dotted one is belonging to the non-
impact case.  However, the impact loads are 

increasing the domain of steady state with 

effective increasing in amplitude values. These 

important results are investigated for the 

impact coefficientsC15 = -0.5 and C16 = -0.1.  

Figs. 4-a, 4-b show the time history records 

for the two amplitudes by changing the 
external detuning parameter. The first 

amplitude is steady and the second one is in 

chaotic form. For another change of the values 

of the external detuning parameter, the 

behaviors of the system response for the two 
amplitudes will be change in different chaotic 

forms which will be indicated in the following 

figures: figs. 5-a, 5-b show sample of time 

history records for the periodic form.  The 

quasi-periodic form is demonstrated in figs. 6-

a, 6-b. For another variation of the value of 
the detuning parameter , the chaotic behavior 

in the snap- through form is happened as 

shown in figs. 7-a, 7-b. Further more, the 

increasing of the external detuning parameter 

will drag the system to the random looking as 
shown in figs. 8-a, 8-b.  According to these 

results, it is found that the amplitude is 

behaving as linear oscillator in the defined 

region of the steady state solutions. However, 

the linear damping has a great effect in con-

trolling the amplitude response in this region. 
Out of this region, the characteristics of   non-

linear oscillator are controlling the impact 

response in the random form for this excita-

tion case.             
 
5. Second mode external excitation 

 

In this case, we will extract the secular 

terms corresponding to the   second   mode  of  

the external excitation,  from eqs. (11-a) 

through (11-b) and follow the same proce-
dures of the multiple scale method, by intro-

ducing the internal and the external detuning 

parameters (I and x) through the following 

relations:       
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            (a)      External detuning parameter 

 

 

 
(b)       External detuning parameter  

 
Fig. 3-a, b. Amplitude- frequency response curves under the external excitations with internal resonance for the first 

mode resonance case (X0= 0.1 ___  Impact -----Non-Impact. 
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         (a)      Time scale 

 

 
(b)      Time scale 

 
Fig. 4-a, b. Time history - amplitude record  for impact case under first mode external excitation with internal resonance 

X0= 0.1,x = 50,). 

 

XX   2  10102 3 TTT I  .

 

Separating the real and imaginary parts of 

the solvability conditions, one gives the follow-

ing autonomous form of first order differential 

equations which express the impact and non-

impact loading: 
 








4
16

22
4

4
16

2
2

2
11

0
21

11

1

16

5

8

15

4

1

aCbaGbC

aGbG)sin(
b

X
G{

T
x 






 

)(abG)(ab
G

cossin 262
2118

8



  

)(baC)(abG sinsin 2
3

1152
3

7
8

3
   

)}cos(abC 2
3

215
16

15
 ,        (15-a) 

 








)cos(ba
G

(aC

baCabGa
T

a

2
221185

15
1

23
15

14
31

2
1

1
1

816

8

3







   

 )cos(baG)cos(baC 2
32

72
4

15
1

8

3



                                              

)sin(baC)sin(baG 2
32

15
2

2
2

6
16

15



    (15-b) 

1
st
 m

o
d

e 
am

p
li

tu
d
e 

2
n
d
 m

o
d

e 
am

p
li

tu
d

e 



M. El Sayad et al. / Non-linear impact system 

672                                          Alexandria Engineering Journal, Vol. 44, No. 4, July 2005 

 
(a)       Time scale 

 
(b)       Time scale 

 

Fig. 5-a, b. Time history - amplitude record  for impact case under first mode external 

excitation with internal resonance X0= 0.1,x = 105,). 
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Where, the phases angles  


These equations are integrated numeri-

cally using Runge-Kutta method (MACSYMA 

2.3) for mass ratio =0.2, length ratio =0.2, 

local frequency ratio =0.5, excitation ratio 
X0=0.1 and zero internal detuning parameter. 

In the absence of the impact loading, it is 
found that, within the defined range of  the 

external detuning parameter,  the second 

response is a steady state. However the first 

one is always vanishing as shown in fig. 9-a, 

9-b. The second amplitude b, which is 
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(a)      time scale 

 

 
  (b)     time scale 

 
Fig. 6-a, b. Time history - amplitude record  for impact case under first mode external excitation with internal resonance 

(X0= 0.1,x = 110,). 

 

important in the absence of   first one, reaches 

its maximum value at x = -17.5,  and that is 

shown in fig.  10. This figure is summarizing 

the amplitude response to the change of 

external detuning parameter. Similarly to the 

scenario of the first mode, any increasing of 
the external detuning parameter will drag the 

amplitude to take the random looking. For the 

impact case, one is consider the terms of the 

fifth order which were dropped in the non 

impact case of excitation in the given 

equations. These equations are integrated 
numerically using Runge-Kutta method 

(MACSYMA 2.3) for impact coefficients C16 = -

0.5 and C16 = -0.1. The steady state solutions 

are expected in a limited range more wide 

than the non-impact one, for certain values of 

external detuning parameter, which is similar 

to the results of the first mode, and that is 
shown in fig. 10. Out of this regime, the 

chaotic behavior is repeated as shown in fig. 

11-a for the quasi periodic looking.  Fig. 11-b 

is showing an interesting chaotic phenomenon  

which is the hopf-biforcation amplitude 
response, where the response grows gradually 

to reach its maximum value and then lost the
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(a)       time scale 

 
(b)      time scale 

 
Fig.7-a, b. Time history-amplitude record for impact case under first mode external excitation with internal resonance  

(X0= 0.1,x = 115,). 

 

gained energy, so that it is dropping to the 

minimum value. Figs. 12-a, 12-b show the 
hopf-biforcation phenomena related to the 

snap through form, where one can find the 

oscillations varying about two non-zero mean 

values. The random fluctuations are expected 

out of these regions. It is clear that impact 
loading suppresses amplitudes for the steady 

state and leads the system response to 

different form of chaotic behaviors.                                                             

 

6. Conclusions 

 
The response of a two degrees of freedom 

system with strong non-linearties to an 

external excitations in the presence of three –

to-one internal resonance is investigated. The 

behavior of an impact system simulating 

liquid sloshing subjected to external 

horizontal non-parametric excitations was 
examined for two external resonance 

conditions in the presence of the internal 

resonance. The system response has been 

examined in the neighborhood of two external 

resonance conditions and for the exact 
internal resonance case. When the two modes 

are externally excited separately, the response 

of the amplitude behaved as linear oscillators 

within a certain range of the external detuning 

parameters x, where the amplitudes are 

steady state response. For the non-impact 

loading, and out of this range, the amplitudes 
are taking the random behaviors of the non-

linear systems directly. In the impact case for 

the first mode, the two amplitudes are

2
n
d
  
m

o
d
e 

am
p
li

tu
d

e 
2

n
d
  
m

o
d
e 

am
p
li

tu
d

e 



M. El Sayad et al. / Non-linear impact system 

                                                Alexandria Engineering Journal, Vol. 44, No. 4, July 2005                                           675 

 
(a)      time scale 

 

 
 

(b)      time scale 

 

Fig. 8-a, b. Time history - amplitude record for non-
impact case under first mode external excitation with 

internal resonance (X0= 0.1,

x = 100,). 
 

 
 

 
(a)     time scale 
 

 
(b)      time scale 

 

Fig. 9-a, b. Time history –amplitude  record  for non-
impact case under second mode external excitation with 

internal resonance (X0= 0.1,x = -

10,). 

 

      x  

          external detuning parameter    

 
Fig. 10. Amplitude- frequency response curves under the 

external excitations with internal resonance for the 

second mode resonance case (,X0= 0.1,

 ) ___  Impact ----   Non-Impact. 
 
 

 
     Ti 

time scale 

Fig. 11-a. Time history - amplitude record  for impact case 
under second mode external excitation with internal 

resonance X0= 0.1,x = 100,). 
 

 

 
     Ti 

time scale 

Fig.11-b. Time history -amplitude record  for impact case 
under second mode external excitation with internal 

resonance X0= 0.1,x = 105,). 
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          time scale 
Fig. 12-a. Time history phase record  for  impact case 
under second mode external excitation with internal 

resonance X0= 0.1,x = 110,). 

 

 
          time scale 

Fig. 12-b. Time history phase record for impact case 
under second mode external excitation with internal 

resonance X0= 0.1,x = 115,). 

 

following the chaotic behaviors of the non-

linear oscillators and the observed fluctuation 

is accompanied by energy transfer between 
the two modes for the second excitation case, 

the first amplitude vanishes and there is no 

energy shearing between the two modes. The 

chaotic behavior for this excitation mode 

includes the hopf-biforcation chaotic 

response, which is an interesting phenomena 
for the non-linear oscillators. It is important to 

note that different characteristics for the 

amplitude and phase angle were independent 

upon the initial conditions. It is also important 

to show that impact loading is increasing the 
domain of steady state response with effective 

increasing in the amplitude values.  Out of 

these regions, the impact loading leads the 

system to the non-linear chaotic behaviors. 
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Appendix B 
 

ii = (ii)gn +(ii)Impact +(ii)ex ,  i = 1,2 . 

(11)gn and (22)gn contain the terms which represent the geometric nonlinearities 

(11)Impact and (22)Impact contain the terms which represent impact nonlinearities. 

(11)ex and (22)ex contain terms which represent the external excitations. 
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