Internal resonance behaviors for a non-linear liquid sloshing

impact system subjected to simultaneous horizontal excitations
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The response of a two degree of freedom system with, strong non-linearity to external
excitations in the presence of three — to —one internal resonance is investigated. The intensity
of the external forces, which is called external excitation is independent upon the response of
the system. The multiple time scale method is used to derive the differential equations which
govern the amplitude and phase angle for the two resonance modes of excitations. The
analysis is focused on the response characteristics in the neighborhood of the simultaneous
external and internal resonance conditions in the presence of strong non- linearity impact
terms. The results indicate that, the impact suppresses the system response in the second
mode. In the presence of the internal resonance, which is the scope of this paper, the two
amplitudes are excited with energy sharing between the two modes. However, the absence of
the internal resonance causes one of the two amplitudes to reach zero.
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1. Introduction

In this paper, we study the response of a
two degrees of freedom system with a strong
non-linearity to external excitations in the
presence of three —to—one internal resonance.
The behavior of a non-linear system
simulating liquid sloshing impact subjected to
an external horizontal non-parametric excita-
tions in the presence of the internal resonance
will be presented. It is found that the non-
linearity is responsible of the occurrence of
internal resonance. However, the linear modal
analysis will reveal that the system configura-
tion allows the internal resonance occurrence.
The problem of liquid sloshing involving an
impact loading are the most important
dynamical systems which can be simulated by
these non-linear systems. The dynamic
behavior of these systems is greatly affected by
the dynamics of the liquid free surface. The
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basic problem of liquid sloshing dynamics
involves the estimation of hydrodynamic
pressure distribution, forces and moments.
These hydrodynamic forces and moments
have direct effect on the dynamic stability and
performance of moving containers. In the
present work, the non-linear interaction
between liquid hydrodynamic pressure impact
and an elastic support structure will be
examined. It is important to know that the
equivalent mechanical modeling method is the
key issue of treating liquid sloshing impact.
There is no theory in the liquid
hydrodynamics that can describe the fluid free
surface motion under impact loading. For this
reason the equivalent model is innovative and
a clever way to handle the problem. It is also
important to note that, the equivalent model is
phenomenological, i.e., its parameters are
checked with experimental measurements and
determined from these tests.
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The parametric excitation of an elevated
water tower experiencing liquid sloshing hy-
drodynamic impact have been studied by El-
Sayad and Ibrahim [1,2]. These works were
interested in the parametric excitation in the
absence and presence of the internal reso-
nance. The strongly non-linearity due to
impact forces under parametric vertical excita-
tion are investigated by using the multiple
scales method. The vertical parametric force is
a function of the system response and is
completely different from the external force
which is independent upon this response and
it is usually horizontal. Many results were
introduced for the study of the first and
second mode excitations. In the presence of
the internal resonance, the steady state
response for the two modes was investigated.
In the presence of the simultaneous internal
resonance, the chaotic response of the system
was presented and the results for the different
cases were obtained. The behavior of an
impact system simulating liquid sloshing
subjected to external horizontal non-
parametric excitations in the absence of the
internal resonance was examined by El-Sayad
and Ghazy [3]. The system response has been
examined in the neighborhood of two external
resonance conditions. When the first mode is
externally excited in the presence of impact
forces, the system preserves fixed response
amplitude within a certain range depends
upon the external detuning parameter. For the
excitation of the second mode, the response
amplitude increased as the impact parameter
increased, indicating that the impact sup-
presses the system response. The dynamics of
a non-linear system simulating liquid sloshing
impact in moving structures was investigated
by Pillpchuk and Ibrahim [4]. The liquid
impact is modeled based on a
phenomenological concept, by introducing a
power non-linearity with higher exponent.
Phenomenologically, they described the inter-
action between the pendulum and the tank
walls with a special potential field of interac-
tion. Ye and Birk [5] studied the fluid pressure
in a partially liquid-filled horizontal cylindrical
vessel undergoing impact acceleration. They
conducted a series of experimental tests to
measure fluid pressures in partially liquid
filled vessels when they are suddenly acceler-

ated by impact along the longitudinal axis.
Internal wall pressure of the tank, caused by
the acceleration, was measured with transient
pressure transducers. Different types of pres-
sure time histories were obtained and it was
revealed that the pressure profile changes
with fill level and transducer location. The
nonlinear interaction of liquid free surface
motion with the dynamics of elastic support-
ing structure of elevated water towers
subjected to vertical sinusoidal ground motion
was examined in the neighborhood of internal
resonance by Ibrahim and Barr [6], Ibrahim
[7] and Ibrahim et al. [8]. In the neighborhood
of internal resonance conditions the liquid
structure system experienced complex re-
sponse phenomena such as jump phenomena,
multiple solution, and energy exchange. Non
stationary responses with cases including
violent system motion, which can lead to
collapse of the system, were reported in the
neighborhood of multiple internal resonances.
Ibrahim and Li [9] studied liquid-structure
interaction under horizontal periodic motion.
Soundararajan and Ibrahim [10] examined
more realistic cases, such as the case of si-
multaneous random horizontal and vertical
ground excitations for elastic structures.

2. Analysis
Under external horizontal non-parametric
excitations in the presence of the internal

resonance, the two equations of motion for the
system shown in fig. 1-a, 1-b are [1, 2]:

X7 +of Xy = ef¥(Xy) - 2510 X10 /i =1,2,
(1-a)

my,

X§°+a)§X1 :S( ]{sz(xio)—ng(’)zxéo}’

(1-b)

ULSY)

where ¢ and ¢ are the linear damping
coefficients of the two modes. w11 and a2
stand for all secular terms corresponding to
the present case. According to the procedures
of the multiple scale method. Introducing the
uniform expansion for the solution X(t, & in
the form :
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Y; = Yio(To, Ty, Ty, .. ) + €Y (To, Ty, T, )+ oos (2)
where, To =t Ty =¢t, Ty = th,...i.e.Tn =g"'t,
n=0,1,2...

We note that the Tn represent different time
scales because ¢ is a small parameter. Using
the Chain rule, we have:

b

/ Viom

d o o o
— =——te— 4" —+
dt 0”To éTl 2

2
d_ = D3 +26DyD; + £ (D +2DyDy ) + .., (3-b)
d,
where D, = d

n

Substituting the solution (2) into egs. (1)
using the transformed time derivative, gives:

D2 + 25D D, +£2(D2 + 2Dy Dy )+ .|
X;+w?X; = g{svﬂ — 20,0, X; } (4)

Equating the coefficients of equal powers
of & and &' (&9 gives a set of differential
equations to be solved for Xip, and X;;. For eq.
(1-a) the zero- and first-order equations in ¢
are, respectively.

2 2
D0X10+(D1X10=O1 (S_a)
2 2
DOXI 1+ O Xll = —2DOD1X10
+11y1(X;j) - 2801 X1 0 (5-b)

Where, [7; stands for nonlinear and excitation

terms. For eq. (1-b) the zero- and first-order
equations in ¢ are, respectively.

2 2
DOXZO +a)2X20 = O, (6—3)

Dg Xy + w5 Xo1 =-2DoDy Xpg
+(my 1 / Mo 51 (X10)~ 28202 X 00 | (6-b)

The general solutions of (5-a) and (6-a) can
be written in the form.

X10 = A(Ty) exp(ion To) + A(T ) exp(~in To ) , (7)

X20 = B(T) exp(iw,T,) +B(T,) exp(ie, T, )-
(8)
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Where the Aand B are the

conjugates of A and B, respectively , i=-1
and A (T1) and B (Ti) are functions of the time
scale T1 and will be determined by eliminating
the secular terms from eqs. (5-b) and (6-b).
Substituting solutions (7) and (8) into (5-b)
and (6-b) gives:

terms

2 2 .
Dy X11 + @y X171 =-2Do Dy (A(Ty ) exp(icon To )
+A(Ty) exp(~ianTo )) + P11(Xi0) -

200781 (A(Ty) exp(ioo, T, ) + - 9)

2 .
D,y X21 + w3 X0 = —2Do Dy (B(Th) exp(w, Ty )
=) myi
+B i +———D(X;0) —
(TV) exp(~iw, T, ) ) —_— 22(Xi0)
2iw3 ¢y (B(Ty) exp(iowgTy ) + ..., (10)

where @;and®,, are functions which contain
terms that produce secular terms in Xi. They
are defined in appendix A.

Substituting solutions (7) and (8) into egs.
(9) and (10), one obtains:

2 .
D Xi1+ @ X1 1= ~2DoDy{A(Ty) exp(ienTy )}

- 2im&A explionTo ) - {iG 1 expl i( 2 To)) 72 +
{(3Gy g — 3G 2907 JA*A - (2Gy 19+ Gy 1 5 )ABB —
(12C; 50, —12iCy 50, + 60Cy 6~ 60C; 5)A*ABB +
(6iC 50, —24iCi50y +60C¢)B*AB?
+(2iCy50, +10C16)AA? )} exp(ianTy)
{(iG12102 + G12107 -Gy 1607 +G120)A°B
—24iCys A2 A2 B - (12iC 50, —30C 4

+6iC) 5wy )A2B2B ) exp(éa)gTo} +CC, (ll-a)

2
D, X21 +®3 X1 =-2DoD1{B(T})

exp(iwyTo )} — 2iwa¢ o Bexp(iwnTo ) —

(iG21B) exp{i(Qx To — wo To)}%

~{(4Gy1 w3 — 3Go9)BB +

2G220AAB~(Ga150, @5 +Gpy300]

+4Go1402 )A?B + (6i,Cy 5 +30C; g JBAZA?
+{60C; g +12iwyCy 5 +12iCy 5 JBZBAA +
{(Ga11 —Gapow? ) A3 +(10C; g +2iwyCy5)B°B?
exp(iwnTy) + (4iCysan, —20iC;5)ASBB

+(iCysmy +5C; 6 )AAY Jexp(Bian Ty ) + CC. (11-b)

The right-hand sides of egs. (11-a, 11-b)
contain terms that produce secular terms in
Xi (i.e., terms with a small divisor). Obviously
the exponents on the right-hand sides in these
equations decide the resonance conditions
associated with each equation. For this
excitation case (the parametric excitation), we
will consider only the two relationships
between the horizontal excitation frequency Qx
in the external horizontal direction and the
two natural frequencies of the system @ and
o in addition to the internal resonance. The
case of combination parametric resonance of
the summed type (2« = @ + @) will not be
considered here. Under this simultaneous
external and internal resonance conditions,
the following resonance conditions will be
considered:

1. Principal external resonance of the first
mode and three to one internal resonance ({2
=, =3 o)
2. Principal external resonance of the second
mode and three to one internal resonance ({2
=w, =3 w)

The response characteristics correspond-
ing to these resonance conditions are consid-
ered in the next sections.

3. First mode external excitation

The response characteristics correspond-
ing to simultaneous occurrence of the internal
resonance (= 3 @) and the first parametric
resonance condition which 1is given by the
relation (2= ) will be now considered.
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Introducing the detuning parameters ox and o3

defined by:

anTi = 3aonTo - o Th, = + 0. (12)
For this case, we will express the solutions

for the unknown amplitudes A and B, which

are functions in the slow time scale T; in the
complex polar forms:

A:%exp(ia), B:gexp(iﬂ). (13)

Substituting into eqs. (11-a) and (11-b),
and following the standard procedures of the
multiple scale method, gives the following set
of the first-order differential equations in the
amplitudes a, b and phases angles y; = o;7; -
a, p=ol - p+3a:

24! 1 Xo . )

——— =0, +—{Gy; —Ssin, +Gb

o1, o o {G11 1a (r1)+G1
+Gya? +%C16b4 ~G4a’b? +%C16a4 +

G189 oy, singy, ) + Geabcos(ys)
A 23 o 3 34 i
—Grab” sin(yz) -2 Cis@1a”bSN(y;)

15
n Eclsa)zabf” cos (7o)}, (14-a)

oa XO 25 — 4
o — = -Gy ——cos -wilia+Gyab
1o, 11 (r1) — o7 ¢1 3
30)1 3,2 6()1 5
+—=Ciza°bh“ +—Ciza” +
) 15 16 15

G
11:0)2 a2bcos(yy) _STC:lclsa“bcos(;/g)

- 570L2b3 cos(yy)— (_36a2bsin(72)

15(02 2,3 . 572 3
- Cisa”°b” sin = =07 —— 14-b
16 (15 (r2) ot or o ( )
G . —
11892 op singy, ) + Geab COS(7 )

_ . 3 .
—Grab® sin(y,) - gclswlasb Sinyz)+

1 = 2 =.2 15 4 S 4

—{Gga“ —Ggb“ + —Cyjga” +—Cigb
wQ{ 8 9 16 C16 16 C16
=~ 3 = 2,2

+ Gya” cos(yy)/ b ++Gioa“b” +

%leswzabs cos(ya)}+Graa’bsin(rs)

@y 5 S 5
+—Cqza” sin b+—C sa” cos b,
35 C15 (r2)/ 35 C16 (r2)/

(14-¢)
ob 2= = 3 .
Wy — = - b-Gy1a” sin
257, 562 11 (r2)
3w 1)
1 4 2 5
+——Cisa b+—=Cysb” +
16 C15 16 C15
Gi12a°b? cos(rs) +%C15a5 cos(y3)
OS¢ a® sin(y,) (14-d)
30 15 Yya)-
Where,

= _1 2 = _3 2
G1=§(2G119—a’2G112),G2=g(G18—w1G122),

= 3Css

(0, —-120,),
3
Gy = g(a’QCIS - 5Ci5 +5C6),

3
G7=—Ci5(201 +®9 ),
7716 15(201 +0g)

1 2 2
6 =§(G1210>1 -G11607 +G120)
1

= 2 2

Gg = g(2G22O_(°2‘91C218_‘91G213_4032G214))
Go = L (8G9 ~403G210)

Gg =§ 3G29—40)2G210

= 301 1)
= d —_— —
G1o {G118r3i’1a(I7}1)+G1b2 +Gaa®
a

B 15 4 _FEar2 . 9 4
Gi1= %@ﬁlﬁlﬁmgﬁz ilgl 2+=1§€3‘165%2 Tacye),

Egs. (14-a) through (14-d) define the
response amplitudes and phase angle in the
neighborhood of the combination parametric
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resonance condition (2x = @, ®m=3®). The
response can be obtained by setting the left-
hand side to zero since T is a slow time scale.
Before we examine the influence of impact
interaction on the system response, we will
examine first the response in the absence of
impact.

The non-impact response is examined by
dropping the fifth-order terms from eqs. (14-a)

through (14-d). These equations are integrated
numerically using (MACSYMA 2.3) that
applies, step by step, Runge Kutta fourth
order integration technique with suitable time
step size. The following values will be
assumed: the mass ratio g = 0.2, length ratio 4
= 0.2, local frequency ratio v = 0.5, excitation
amplitude ratio Xo= 0.1, and damping ratios

0.30 -
o 0.20—
=}
S _
= ]
IS g
[
P J
g O‘TO—_
‘!7";' -t
0.00_|
T T T T '[ T T T T T T T T I' T T T T |
0.0 50.0 100.0 150 0 200.0
Ty
(a) time scale
0.10 1
® i
=]
2
'_Q -
£
< J
[}
=
o
e ]
N gos
T 1 T b I T T 1 T 1 T 1 T T F T F T T I
00.0
50.0 100.0 150.0 200.0
T
(b) time scale

Fig. 2-a, b. Time history phase record for non-impact case under first mode external excitation with internal resonance
(X%0=0.1, = 0.2, 1=0.2, ox = 15, & = & = 0.1).
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6= &= 0.1. The system of first-order
differential eqgs. (14-a) through (14-d) is
belonging to a non-integrable, non-conserva-
tive class. It is found that in the presence of
internal resonance the system responds in
different ways when the external detuning
parameter o, is varying. For the steady state

response case, figs. 2-a, 2-b show a sample of
time history records for the two amplitudes a
and b corresponding to o, =15 and o; =0.

For the first amplitude a, the steady state
solutions are related to the values of the
external detuning parameter 90° > ox > 90°
and this range of the steady state amplitude is
more wide than the second amplitude b which
is limited in the range of 30 > o, > —-30. Figs.

3-a, 3-b show the amplitude- frequency
response curves for the steady state response,
and all these results are taken for zero values
of the internal detuning parameter o; =0.

Any change for o, out of this region will draw

the amplitude for the random behavior. The
observed fluctuation is accompanied by energy
transfer to the second mode which oscillates
about its zero equilibrium position. Obviously,
the presence of internal resonance causes an
irregular energy sharing between the two
modes. As the result of the internal resonance,
the second amplitude b is exists while it is
vanishes in the absence of the internal
resonances for this excitation mode. However,
for any changes for the initial conditions, the.
system response will not be change, which is
known as non strange attractor oscillator.

For the impact case, the impact terms
should be included and equations (14-a)
through (14-d) should be considered. These
equations are integrated numerically using
Runge-Kutta method (MACSYMA 2.3) for
impact coefficients Cis = -0.5, Ci = -0.1, and
external excitation amplitude Xo = 0.1 with
zero values of the internal detuning parameter
or =0. The numerical integration has re-

vealed that the amplitude response posses the
same behavior of the steady state similarly to
the non-impact case. These different scenarios
can be summarized as shown in the following
figs. 3-a, 3-b show the dependence of the re-
sponse amplitudes on the external parameter.
The first amplitude is to be steady state

solution for certain values of the detuning
parameter, where the second amplitude is
steady within another certain range. These
results are shown in the same figures. The
solid curves are belonging to the impact case
and the dotted one is belonging to the non-
impact case. However, the impact loads are
increasing the domain of steady state with
effective increasing in amplitude values. These
important results are investigated for the
impact coefficients, Cis = -0.5 and Cis = -0.1.
Figs. 4-a, 4-b show the time history records
for the two amplitudes by changing the
external detuning parameter. The first
amplitude is steady and the second one is in
chaotic form. For another change of the values
of the external detuning parameter, the
behaviors of the system response for the two
amplitudes will be change in different chaotic
forms which will be indicated in the following
figures: figs. 5-a, 5-b show sample of time
history records for the periodic form. The
quasi-periodic form is demonstrated in figs. 6-
a, 6-b. For another variation of the value of
the detuning parameter , the chaotic behavior
in the snap- through form is happened as
shown in figs. 7-a, 7-b. Further more, the
increasing of the external detuning parameter
will drag the system to the random looking as
shown in figs. 8-a, 8-b. According to these
results, it is found that the amplitude is
behaving as linear oscillator in the defined
region of the steady state solutions. However,
the linear damping has a great effect in con-
trolling the amplitude response in this region.
Out of this region, the characteristics of non-
linear oscillator are controlling the impact
response in the random form for this excita-
tion case.

5. Second mode external excitation

In this case, we will extract the secular
terms corresponding to the second mode of
the external excitation, from eqs. (11-a)
through (11-b) and follow the same proce-
dures of the multiple scale method, by intro-
ducing the internal and the external detuning
parameters (or and oy through the following
relations:
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Fig. 3-a, b. Amplitude- frequency response curves under the external excitations with internal resonance for the first
mode resonance case (#=02,1=0.2,Xo=0.1,¢ =¢4=0.1) ___ Impact ----- Non-Impact.
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Fig. 4-a, b. Time history - amplitude record for impact case under first mode external excitation with internal resonance

Xo= 0.1, 4=0.2, =02, 03 = 50, & =5=0.1).

‘QX =y +€Gx,602TO = Sa)lTO —UITI . _570.193 Sin{72)—gcl5a)la3b3in(]/2)

Separating the real and imaginary parts of
the solvability conditions, one gives the follow-
ing autonomous form of first order differential

+ %Clsa)zabs cos(ya)},

equations which express the impact and non- da - _ 4 3o 3.5

impact loading: o) - =-w;ja+Gzab’ +—Ci5a”b
oTy 8

Zal 1 Xo Gb2 4 o2 @ 5. ,Giig®s 2

= = +—{Gy1—=sin + G1b“ + Goa —= —1l0 72 —

o1y Ox 601{ 21, (n)+G 2 T Cisa” +( g @ bcos(yy)

15 4 ~ 2;2 S 4 3601 4 =~ 2,3
+§Cl6b G4a”b +Ecl6a + ?Cwa bcos(yy)—Gra”b” cos(yy) -
Gq 18w . — _ 15
ZLI8F2 absin(y, ) + Geabcos(y,) Gea2bsin(yy) - —22 C,sab® sin(yy)

16
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Fig. 5-a, b. Time history - amplitude record for impact case under first mode external
excitation with internal resonance (X¢=0.1, £=0.2, 2=0.2, ox = 105, {; = %=0.1).

072 3 Xo .
—= =07 —— {Gy—=sin(y) +
o7, =% wn {Go1 1a (r1)

Gle +(_32a2 +%Cl6b4 —(_}4Clb2 +%Cl6a4 +

G . _
T892 op singy, ) + Geab COS(7)

~Grab® sin(ry) -3 Csera’bsin(ys ) +
i {580.2 - 59b2 + E C16Cl4 + i C16b4
o)) 16 16

+Gy 1a3 cos(ys)/ b+ +(_310a2b2 +

15 = .

1¢ Cisoaab” cos(ra)} + Groa®bsinfy)

+§_;C15a5 sin(Yz)/bJr%cmas cos(y2)/b ,(15-c)

ob Xo -
——=-Gy; —=cos(yy) - b
25 oT, 21 (r1)—®5¢2

_ 3w ,

~G;a° sin, + 1 cea*b+—2Cyb° +
11 (r2) 6 15 16 C15

G 3,2 (&1 5

12a°b 003(72)+§C15a cos(yz)

- ic15a5 sinfy,) . (15-d)

32

Where, the phases angles 1 =0: 7, — B avdp
=011 - p+3c

These equations are integrated numeri-
cally using Runge-Kutta method (MACSYMA
2.3) for mass ratio x#=0.2, length ratio 1=0.2,
local frequency ratio v=0.5, excitation ratio
X0=0.1 and zero internal detuning parameter.
In the absence of the impact loading, it is
found that, within the defined range of the
external detuning parameter, the second
response is a steady state. However the first
one is always vanishing as shown in fig. 9-a,
9-b. The second amplitude b, which is
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Fig. 6-a, b. Time history - amplitude record for impact case under first mode external excitation with internal resonance
(Xo= 0.1, £=0.2, 1=0.2, o, = 110, & =5=0.1).

important in the absence of first one, reaches
its maximum value at ox = -17.5, and that is
shown in fig. 10. This figure is summarizing
the amplitude response to the change of
external detuning parameter. Similarly to the
scenario of the first mode, any increasing of
the external detuning parameter will drag the
amplitude to take the random looking. For the
impact case, one is consider the terms of the
fiftth order which were dropped in the non

impact case of excitation in the given
equations. These equations are integrated
numerically using Runge-Kutta method

Alexandria Engineering Journal, Vol. 44, No. 4, July 2005

(MACSYMA 2.3) for impact coefficients Cig = -
0.5 and Cie = -0.1. The steady state solutions
are expected in a limited range more wide
than the non-impact one, for certain values of
external detuning parameter, which is similar
to the results of the first mode, and that is
shown in fig. 10. Out of this regime, the
chaotic behavior is repeated as shown in fig.
11-a for the quasi periodic looking. Fig. 11-b
is showing an interesting chaotic phenomenon
which is the hopf-biforcation amplitude
response, where the response grows gradually
to reach its maximum value and then lost the
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Fig.7-a, b. Time history-amplitude record for impact case under first mode external excitation with internal resonance
(Xo= 0.1, =02, 1=0.2, o = 115, & =3=0.1).

gained energy, so that it is dropping to the
minimum value. Figs. 12-a, 12-b show the
hopf-biforcation phenomena related to the
snap through form, where one can find the
oscillations varying about two non-zero mean
values. The random fluctuations are expected
out of these regions. It is clear that impact
loading suppresses amplitudes for the steady
state and leads the system response to
different form of chaotic behaviors.

6. Conclusions

The response of a two degrees of freedom
system with strong non-linearties to an
external excitations in the presence of three —
to-one internal resonance is investigated. The
behavior of an impact system simulating

liquid sloshing subjected to  external
horizontal non-parametric excitations was
examined for two external resonance

conditions in the presence of the internal
resonance. The system response has been
examined in the neighborhood of two external
resonance conditions and for the exact
internal resonance case. When the two modes
are externally excited separately, the response
of the amplitude behaved as linear oscillators
within a certain range of the external detuning
parameters ox, where the amplitudes are
steady state response. For the non-impact
loading, and out of this range, the amplitudes
are taking the random behaviors of the non-
linear systems directly. In the impact case for
the first mode, the two amplitudes are
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Fig. 8-a, b. Time history - amplitude record for non-
impact case under first mode external excitation with
internal resonance (X¢=0.1, #=0.2, 1=0.2,
ox =100, §; = £&=0.1).
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Fig. 9-a, b. Time history —amplitude record for non-
impact case under second mode external excitation with
internal resonance (Xo=0.1, #=0.2, 1=0.2, ox = -

10, & =4=0.1).
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second mode resonance case (£#=0.2, 1=0.2, X,=0.1,
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Fig. 11-a. Time history - amplitude record for impact case
under second mode external excitation with internal
resonance (Xo=0.1, £=0.2, 1=0.2, ox = 100, ¢ =£=0.1).
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Fig.11-b. Time history -amplitude record for impact case
under second mode external excitation with internal
resonance (Xo=0.1, £=0.2, 1=0.2, ox = 105, & =£=0.1).
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Fig. 12-a. Time history phase record for impact case
under second mode external excitation with internal

resonance (Xo=0.1, z=02, 1=0.2, ox =110, {; = &=0.1).
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Fig. 12-b. Time history phase record for impact case
under second_mode external excitation with internal

resonance (Xo= 0.1, £=0.2, 1=0.2, ox = 115, & = £=0.1).

Appendix A
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b2 2(1- p)

o171

>
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= fyle) =

following the chaotic behaviors of the non-
linear oscillators and the observed fluctuation
is accompanied by energy transfer between
the two modes for the second excitation case,
the first amplitude vanishes and there is no
energy shearing between the two modes. The
chaotic behavior for this excitation mode
includes the hopf-biforcation chaotic
response, which is an interesting phenomena
for the non-linear oscillators. It is important to
note that different characteristics for the
amplitude and phase angle were independent
upon the initial conditions. It is also important
to show that impact loading is increasing the
domain of steady state response with effective
increasing in the amplitude values. Out of
these regions, the impact loading leads the
system to the non-linear chaotic behaviors.

Fy(t/ o) F
ngi,nm=iﬁﬁﬂ,w

605 90 éwf@o

2

@) 5 1 1

A] B B
(312 M-wl,) A-wly)/of, Ko

<0 | o
The matrix [P] = s

myy = K2+ 2uA K+ 122, Mog = K3+ 2uA Ko+ 132, kllzﬂﬂerK%VQ' koo = 2%+ K3

Appendix B

Vi = (?’ii)gn +(¥Iii)1mpact +(¥Iii)ex s i= 1,2 .

(#11)gn and (#22)gn contain the terms which represent the geometric nonlinearities
(P11) impact and (¥22)mpact contain the terms which represent impact nonlinearities.
(Pr1)exand (Pa2)ex contain terms which represent the external excitations.

3 3 20 2 A
(¥11)gn =G18XT + G19X5 + G110X5 X0 + G111 X5 Xy + Gy 12X, X1 X0 +

- o - - o ..
G113X5X1 X1 + G 14 X7 Xo + G115X5X5" + Gr16X; Xo™ + G 17 X0 XXy + Gy 18 X1 X0 Xy +
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2 2 2 2~ 2
G119X1 X2 +G120X1 X2 +G121X2X1 +G122X1 Xl +G123X1X1
— 5 S5 4 4 ‘33 S 33
(syll)inpact —C16X1 +C16X2 +5C16X2X1 +5C16X2X2 +4C15X1X1X2 +4C15X1X2X2 +
2+-3 232 3y2 S22 "3
IOCI6X1 X2 +6C15X1X1 X2 +IOCI6X1 X2 +6015X2X1 X2 +4CI5X2X1 X2 +
4C, YL,V + GV Y + CisYo Y +Cy Yo Y5 +CsY'Ys
(¥11)ex =G11fx(t)
— 3 3 2~ 2 R
(P22 )gn = GogX{ +Gog X5 +Go1oX5Xo + G211 X5X1 +Go10 X, X1 Xo +
- 2 9 9 NN NN
G213X2X1X1 +G214X1 X2 +G215X2X2 +G216X1X2 +G217X2X2X1 +G218X1X2X1 +
2 2 2 2+ 2
G219X1X2 +G220X1 X2 +G221X2X1 +G222X1 Xl +G223X1X1
(Y22 )inpact =Ci16X; +Cr6X5 +5C16 XX} +5C16XpX5 +4C 5X1 X, X5 +4C 5 X1 X0 X5 +
2+-3 232 3y-2 S y2 32 "33
10C16X1 X2 + 6C15X1X1 X2 + ].OC16X1 X2 + 6C15X2X1 X2 + 4C15X2X1 X2 +
4C;5 X1 X2 X, +C15 X X, +Cr5X1 Xy +Cr5Xp Xy +Cr5Xp X,
(P22 )ex =Go1fx(t)

Appendix C

2 4
K, K? 1 K1K2 %
G11=—(1+ —L)a ——1——1 . Gz =—(1+ )GISZ_(l__
gt a2 Mg g w?
JK;
Gi11 = (1+Ky)?
2 3 2
KK 0
Gro = -9 (11— 2), G110 = -2 (K, + Ko )(1+ K5)?
19 = ( i ). Gi1o =5 (K1 + K3 )1+ K)
2 2602

L+ Ky + K + K Ks).

o
0
G112 :7(K1 +Ky)(1+ Ky + K1 +K1Kjp), Gyi3 =

% 2 % > 9% 2
G114 :ﬁ(Kl +Ks)(1+ K1), G115 =7(1+K2)(K1 +K5). Giie =7(1+K1)(K1 +K5).
SK, ) 203K, 02  KIK;
Gi17 = (1+K3)*. Giig = (1+ Ky )(K1 +K,) Giig =?(1—7),
03 K3K2 02K, )
G120 =7(1— ).Gi21 =§G118 .G1o2 = (1+Ky)", Gio3 =Groa-
d b 1 K 1 KiK.
Cis =- . Cle=——% 5 Ga1=——(1+—2%).Gpp=—(1-—2),
m“o, ml=w; 0 9% A g s
2 2 3 2 4
Gas :—(1—K—) Gos =6—(1— 152 Gp =012
HA HA 6 HA
’K, ) 03 ) 02K,
Go10 = (1+K3) G211=§(K1+K2)(1+K2) ,Go12 = (1+ Ky + Ky +K1K5),
Goo3 = Goo1
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02 2K,
G213 =70(K1 +Ko)(1+ K1 + Ky + K1Ky), Ggig = (1+K;)?. Ggis =Garo

05K 0~ KiKj
Gai6 = n (1+K1)(1+Ky), Go17 =2Go16. Go13 =2G214. G219 =—(1—7)

6’2 Kz 2 92 92
G220=—(1— 12 G221=—(1+K2)(K +Kj), G222=—(1+K1) (K, +Kj3).
Appendix D

( ?Cfs +25CT5) » CSZZGSC » Ce _G ’

2 S 472 “’12 2 2 2

C6—G 8w1C15§1+16a)10'xC16 C4:a)10'XG3,C2 :a)lc:l +TGX, CO =—G11X0,

_ 5 = 2
=%(@2Q25+25C126)’Cs=§K3C16’ Ce _Ks’

2

— —y @

Ce =K32, 0} C15¢o + 560)10xC16 Cy =woxK3,Co =y C5 + i o%, Co=-G51X5
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