
Alexandria Engineering Journal, Vol. 44 (2005), No. 4, 597-608 597
© Faculty of Engineering Alexandria University, Egypt.

Efficient algorithms for updating Huffman codes

Yasser El-Sonbaty and Nahla Belal
College of Computing and Information Technology, Arab Academy for Science and Technology,

P.O. BOX 1029 Alexandria, Egypt

Given a list W = [w1,…, wn] of n positive integer symbol weights, and a list L = [l1,…,ln] of n

corresponding integer codeword lengths, it is required to find the new list L when a new
value x is inserted in or when an existing value is deleted from the list of weights W. The
presented algorithm uses the given information about the weights and their corresponding
levels in order to perform the required update. No other knowledge about the original
Huffman tree is assumed to be known. Instead of rebuilding the Huffman tree, the new

algorithm redistributes the weights among the levels to obtain the new Huffman code. In
many special cases, the updated Huffman code can be generated with lower complexity than
reconstructing the Huffman tree from scratch by efficiently using the information of weights
and their levels. In this paper, we present an updating algorithm that requires a linear
complexity in many practical cases rather than the O(n log n) needed for reconstructing the
Huffman tree. We also give a practical O(n log n) implementation for our algorithms.

 ,L = [l1, و المقابل لها من أطوال الأكواد الموجبة الصحيحة W = [w1, w2, …, wn]باستخدام قائمة الأوزان الموجبة الصحيحة

l2,…, ln]المقودم يسوتخدم فقوط م, المطلوب إيجاد قائمة أطوال الأكواد الجديدة عند إضافة أو حذف قيمة من أو إلى القائمة. الخووازز

عن الأوزان و أطوال الأكواد لتنفيذ التغييزات المطلوبة. فبودً مون إعوادة بنوار وجزة الهوفموان, يعيود الخوواززم المعلومات الموجودة
المقتزح توزيع الأوزان علوى المسوتويات المختلفوة للحصوول علوى الكوود الجديود الهوفموان. الخوواززم الجديود يحتوات إلو دزجوة تعقيود

 لتعديل أكواد الهوفمان. O(n log n)وفمان, و قدمنا أيضا خواززم بدزجة تعقيد خطية ف حاًت كثيزة لتعديل جزة اله

Keywords: Huffman codes, Updating algorithms, Level consistency, Weight consistency,

 Complexity analysis

1. Introduction

Huffman coding [1] is a well known code

tree problem, which encodes symbols

according to their probabilities in order to

minimize the expected codeword length. Given
a list W = [w1,…, wn] of n positive symbol

weights, Huffman codes are constructed to
determine a list L = [l1,…,ln] of n corresponding

integer codeword lengths, such that

12
1

n

i

li and

n

i iilw
1

 is minimized.

Huffman coding plays an important role in

data compression and other applications [2, 3,
4].

The classical algorithm described by

Huffman [1], constructs the Huffman code in
O(n log n) time. Van Leeuwen has shown that

if elements are sorted according to their

weights, a Huffman code can be constructed
in O(n) time using two queues [5].

Another approximation technique for

Huffman codes is dynamic Huffman coding [6,

7, 8, 9], which saves the first pass taken to

find the frequencies of occurrence of symbols

and constructs a time varying tree at both the

sender and receiver sides. The algorithm

starts by building the Huffman tree for the
first t symbols, and resumes by either

incrementing the weight of an already existing
symbol by one or adding a new symbol of

weight one. The process continues until the

end of the message to be encoded. The first

algorithm in dynamic Huffman coding was

FGK algorithm [6, 7, 8]. Vitter [9] introduced

another one pass algorithm to produce shorter
encodings than those produced by FGK

algorithm.

In this paper, we give an insertion

algorithm and a deletion algorithm for
updating Huffman codes. Given a list W =

[w1,…, wn] of n positive integer symbol
weights, and a list L = [l1,…,ln] of n

corresponding integer codeword lengths, it is
required to find the new list L when a new

value x is inserted in the list of weights W and

when an already existing value is deleted from

the list. The input to our algorithm is just the

Y. El-Sonbaty, N. Belal / Huffman codes

598 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005

weights and their corresponding levels, no

other information about the Huffman tree is

known.
The standard approach for updating

Huffman codes is by rebuilding the tree after

insertion or deletion of a certain weight. This

approach disregards the information already

available about each weight and its

corresponding codeword length, or level,
which in many cases speeds up the update

process, resulting in a linear-time update. For

example, consider the trivial case where the

new weight to be inserted is greater than or

equal to the value of the root of the
corresponding Huffman tree, i.e. the new node

is of a value greater than or equal to the sum
of all n weights given, in this case the update

to be done simply requires incrementing the

codeword length of each weight by 1, with the

new weight getting a codeword of length 1.
And for the case of deletion, if the deleted

node is deleted from the lowest level, the one

closest to the root, the new code is obtained

by simply moving the largest node in this

level, with its sub-trees, one level closer to the

root.
Similar cases to the previously mentioned

ones were a motivation to generalize the

updating algorithms and achieve better
complexity than O(n log n).

This paper is organized as follows. In the

next section we introduce theorems and
definitions that will be needed to prove the

correctness of the given algorithms. In Section

3, the insertion and deletion algorithms are

discussed. Section 4 presents the complexity

analysis of the algorithms given in Section 3.
In Section 5, we illustrate the presented

algorithms by examples. Finally conclusions

are discussed in Section 6.

2. Properties of Huffman codes

In this section, we present some new

definitions and obtain several results that will

help in proving the correctness of the

algorithms presented in Section 3.

We start with the following property
regarding the levels of a Huffman tree.

2.1. Definitions

2.1.1. The exclusion property [10]

In a Huffman code the weights of the nodes
(leaves and internal nodes) at level L are not

smaller than the weights of the nodes at level
L+1.

An implication of this property is that in
any level L of a Huffman tree, the sum of the

smallest two nodes is not less than the largest

node in the level.

In light of the exclusion property, we
present the following definitions and

theorems,

2.1.2. Weight consistency

A level L is weight consistent if the sum of

the smallest two nodes is not less than the
largest node in the same level and the number
of nodes in level L is even, except for the

lowest level containing leaves, the number of

nodes must be a power of two.

2.1.3. Level consistency

A level L is level consistent if no node in

level L-1 has a value less than a node in level

L.

2.1.4. Tree consistency

A tree is consistent if all of its levels are

level consistent and the number of nodes in
each level is even, except for the lowest level

containing leaves which must have a number

of nodes that is a power of two.

It is clear that a Huffman tree is consistent

in that sense.

2.2. Theorems

Theorem 1

Given a consistent tree, and a new node is
added to level L, if no node in level L-1 has a

value less than the sum of the smallest two
nodes in level L, possibly including the new

node, then the smallest two nodes in level L

can be moved to level L+1, and level L and all

higher levels are all now weight and level

consistent.

Proof

First, we need to show that the number of
nodes in levels L and L+1 become even. For

level L, there is an extra node x, and moving

the smallest two nodes to level L+1 results in a

Y. El-Sonbaty, N. Belal / Huffman codes

 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005 599

new internal node in level L which makes it

contain an even number of nodes. As for level
L+1, two nodes will be added to an originally

even number, which results in a new even
number. Second, we need to prove that the

sum of the smallest two nodes in each level
higher than L-1 remains not greater than the

largest node in the same level.
Case 1: If the smallest two nodes in level L are

internal node.(Internal nodes are represented

by circles and leaves are represented by
squares)

Moving the smallest two nodes, a1 and a2,

from level L to level L+1, results in shifting the

sub-trees of both nodes a1 and a2 to the next

higher level. This will not affect the parity of

the number of nodes in any level, since we will

always be adding some even number of nodes

to each level and the total number will thus

remain even.

As for level consistency, it is clear that
since we are always moving the smallest nodes

from one level to the next higher level, these

two levels will remain level consistent. This
applies to level L+1 and all higher levels. The

level consistency of level L is guaranteed since

the largest node in level L is now a1+a2 and no

smaller node in level L-1 exists.

It is clear that level consistency is a

sufficient condition for the first condition of

weight consistency, because if no node in a
level L-1 has a value that is less than the

largest node in level L, then it is guaranteed

that the sum of the smallest two nodes in level
L, which forms an internal node in level L-1, is

not less than the largest node in level L.

Case 2: If the smallest two nodes in level L are

external nodes, possibly including the new

node.

Moving the smallest two nodes, a1 and a2,

from level L to level L+1, makes a1 and a2 the

largest two nodes in level L+1 forming the

largest node in level L. This case is proved

similarly as Case 1, but without propagation
to higher levels, as a1 and a2 do not have sub-

trees.
Case 3: If the smallest two nodes in level L are

one external node, possibly the new node, and

an internal node.

This case is the same as the previous two

cases, with one of the smallest two nodes
having a sub-tree.
Lemma 1.1

If level L, where the insertion is made, is

equal to or lower than the lowest level

containing leaves, then moving the smallest
two nodes in L to level L+1, keeps the tree

consistent.
Proof

The nodes in levels lower than L are all

combinations of nodes in level L, since there

are no leaves in any of these levels. Therefore,

the level consistency propagates to the rest of

the levels, and this implies weight consistency
as well, resulting in a consistent tree.

The next theorem takes care of the case

when the condition in Theorem 1 does not

hold.
Theorem 2

Given a consistent tree, and a new node is
added to level L, if the smallest leaf in level L-1

has a value less than the sum of the smallest

two nodes, possibly including the new node, in
level L, then moving the smallest leaf in level

L-1 to level L keeps the weight and level

consistency properties holding for level L and

all higher levels.
Proof

It is obvious that the number of nodes in
both levels L and L-1 will be even. Level L

Y. El-Sonbaty, N. Belal / Huffman codes

600 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005

contained an odd number of nodes, after the

insertion of x, so moving the smallest leaf from
level L-1 to level L adjusts the number of

nodes in level L to an even number. As for
level L-1, a leaf was removed, but it will

combine with the largest node in level L to

form an internal node in level L-1 resulting in

an even number of nodes. The second weight

consistency condition, which states that the

sum of the smallest two nodes in any level

must not be less than the largest node in the
same level, is guaranteed because it is known
that the smallest leaf moved from level L-1, a1,

to level L has a value less than the sum of the

smallest two nodes in level L, b1+b2. In Level L-
1, the leaf that was moved to level L is a1. We

know that a1+a2≥aq, and also a2+a3≥aq.

However, a new node is now added to level L-1

resulting from the combination of a1 with the

largest node in level L, bp, but all nodes in
level L-1 are not less than a1 or bp, hence,

a2≥a1, a2≥bq, a3≥a1, and a3≥bp, therefore,

a2+a3≥a1+bp. Therefore, level L-1 remains

weight consistent.

The following theorems address the case of

deleting a node.

Theorem 3

Given a consistent tree, and a weight is
removed from a certain level L, if the sum of

the largest node in level L and the smallest

node in level L-1 is not less than the largest

node in level L-1, then moving the largest

node in level L to level L-1 keeps the tree

consistent.

Proof
Case 1: If the largest node in level L is an

internal node.

 Concerning the number of nodes in each

level, all the levels that will be affected by
moving the largest node, bp, from level L to

level L-1, will still have an even number of
nodes, as the sub-tree of the node bp in any

level contains an even number of nodes. As for
level L, removing the node bp will adjust the

number of nodes. And level L-1 as well will

have one node instead of the internal node

that was formed before the deletion of a node
from level L.

Before moving the node bp to level L-1, we

make sure that the sum of a1 and bp is not

less than the largest node in level L-1, aq.

Therefore, level L-1 is weight consistent. Level

L was weight consistent before the deletion of

a node, this implies that b1+b2≥bp, therefore,

b1+b2≥bp-1, since bp-1≤bp.

The effects in levels higher than L, will be

the same as levels L and L-1. As for levels

lower than L-1, closer to the root, a key

observation is that moving a node from level L
to level L-1, i.e. from a certain level to the next

lower level, does not result in having a node in
level L-1 with a larger value than a node that

was already there. This means that the node
that was moved to level L-1 is definitely

smaller than the internal node that was
formed in level L-1 before the deletion
(knowing that all nodes in level L are of a

value smaller than all nodes in level L-1).

Case 2: If the largest node in level L is an

external node.

Similar to the previous case, but no other
levels will be affected as the node bp does not

have a sub-tree.

When the condition in theorem 3 does not
hold, we apply the following.

Theorem 4

Given a consistent tree, and a weight is
removed from a certain level L, if the sum of

the largest node in level L and the smallest

Y. El-Sonbaty, N. Belal / Huffman codes

 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005 601

node in level L-1 is less than the largest node

in level L-1, then moving the smallest leaf in

level L-1 to level L keeps level L and higher

levels weight and level consistent.

Proof

Moving a node form level L-1 to level L will

adjust the number of nodes in both levels L

and L-1. The new node that was moved from

level L-1 to level L, a1, will be the largest node

in level L, so the sum of the smallest two

nodes in level L must not be less than this

node, but the sum of the smallest two nodes
in level L, b1 and b2, forms an internal node in

level L-1, a2, and we are sure that this internal

node is of a value greater than the leaf that
was moved to level L, or else, we would have

not needed to move the smallest leaf in level L-

1 to level L. Therefore, level L is weight

consistent. We also need to show that level L-1

will be weight consistent. The largest node in
level L-1 will either be aq or the new internal

node formed by a1+bp. If it is aq, then it is clear

that since a1+a2≥aq, then a2+a3≥aq since a2
and a3 are both not less than a1. But if it is

a1+bp, then since a2≥a1, a2≥bp, a3≥a1, and

a3≥bp, therefore, a2+a3≥a1+bp.

3. Insertion and deletion algorithms

In this section we present the insertion and
deletion algorithms for updating a Huffman

code.

3.1. Insertion algorithm

Assuming a Huffman tree of Q levels and

given a number of leaves distributed among K

levels, we have a new weight x to be inserted.

We first need to find the level where x can be

inserted. We use an implication of the

exclusion property, that the sum of the

smallest two nodes in any level must not be

less than the largest node in the same level.

We start from the highest level, furthest from
the root by comparing x to the sum of the

smallest two nodes, amongst all nodes, in the
level, if x is greater than or equal to their sum

then we move to the next lower level and
repeat the process until x is less than the sum

of the smallest two nodes in a certain level L,

where L: 0..Q-1, and no node in level L-1 is of a

value less than x.
Inserting x in level L will certainly result in

some other changes in the distribution of the
rest of the weights among the levels, to keep

the weight consistency and level consistency

properties in each level.
When we claim that x will be inserted in a

certain level L, this means that level L will be

weight inconsistent as the number of nodes in
level L now becomes odd, so some other node

must be moved to another level. According to
the level where x will be inserted, we perform

some changes to the distribution of the nodes

among the levels so that all levels are both

weight consistent and level consistent.
Case 1: If level L is a low level, lower than or

equal to the lowest level containing leaves,

then just move the smallest two nodes, with

their sub-trees, possibly including the new
node x, from level L to level L+1.

Proof of correctness

Using Theorem 1 and Lemma 1.1, it is
shown that moving the smallest two nodes
from level L to level L+1 keeps the tree both

weight and level consistent.
Case 2: The other case is that L is in a higher

level than the lowest level containing leaves. In

that case we will need to perform an extra

check before we shift the smallest two nodes
with their sub-trees to the next higher level.

We must make sure that there is no leaf in
level L-1 smaller than the sum of the smallest

two nodes in level L, because if we move the

smallest two nodes to level L+1 they will

combine and their sum will be an internal
node in level L. This creates a node in level L
with a larger value than a node in level L-1,

leaving level L level-inconsistent. In this case

level L is left as it is and the smallest leaf in

level L-1 is moved to level L, otherwise, it is

treated similarly as the Case 1, where the
smallest two nodes in level L are moved to

level L+1.

Y. El-Sonbaty, N. Belal / Huffman codes

602 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005

Proof of correctness

In this case we have one of two resulting

trees. First, if we move the smallest two sub-
trees to level L+1, the correctness follows from

Theorem 1 .The second case, moving the
smallest leaf from level L-1 to level L, is

handled in Theorem 2.

After completion of the mentioned steps
among levels L-1, L, and L+1, we still need to

check the level consistency among all levels
smaller than L, since it could have possibly

been violated in performing the previous steps.

This is done by checking that the smallest leaf
in each level P, where P ranges from level L-2

to 1, is greater than or equal to the largest
node in the next higher level P+1, if this

condition is not satisfied then all leaves in
level P that have a value less than the largest

node in level P+1 are moved to level P+1. This

might result in weight inconsistency for any of
the two levels P or P+1 which are also

adjusted. The simple procedure of Section 3.3

adjusts the level and weight consistencies

when needed in linear time.
Before performing all the previous steps, we

need to perform one easy step, if x is greater

than or equal to the sum of all weights given,
then x will combine with the root of the tree

and it will be in level 1 and all the other levels

will just be increased by 1.
Proof of correctness

Since x will combine with the root of the

tree, this will result in the same old tree but

with one extra level, leaving all nodes in the

other levels as they were both weight and level

consistent.
In fig. 1, we present the pseudo-code for

the insertion algorithm.

3.2. Deletion algorithm

We are given a node x to be deleted from

level L.

Nodes in levels higher than L, are nodes

with smaller values than x, will be combined

in the same manner as the original tree, and

their levels will be weight consistent, however,
level L will be weight consistent except for the

number of nodes which will be an odd

number. To adjust the number of nodes in

level L and lower levels we perform a number

of steps.
Case 1: Starting at level L, if the sum of the

largest node in level L and the smallest node

in level L-1 is greater than or equal the largest
node in level L-1, then moving the largest node

in level L to level L-1 will not affect the weight

consistency of level L-1, and definitely not of

level L as well, and it will adjust the number of

nodes in both levels, resulting in a new

distribution of nodes keeping both weight and

level consistencies.
Proof of correctness

By using Theorem 3, we can prove the

consistency of the resulting tree.
Case 2: The other case occurs when the sum

of the largest node in level L and the smallest

node in level L-1 is less than the largest node

in level L-1. In this case we move the smallest
leaf in level L-1 to level L to adjust the number

of nodes in level L.

Proof of correctness

It is shown in Theorem 4 that level L and

higher levels remain level consistent. However,

lower levels are handled by performing the
level adjustment module after adjusting the

number of nodes in each level.
This will leave level L-1 having an odd

number of nodes, so the process is repeated
for all levels lower than L until the lowest level

containing leaves.

The deletion algorithm is shown in fig. 2.

3.3. Consistency adjust

Adjusting the consistency of the tree

requires adjusting both level and weight
consistencies. It is proven in the previous

theorems that the weight consistency of all

levels is not violated by performing the

mentioned modifications, however, level

consistency can be violated in case of

increasing the value of nodes in any level. It is
obvious that any node in a certain level having

a value smaller than another node in the next

higher level must be a leaf, this is because all

internal nodes are combinations of nodes in

the next higher level. The level consistency is

Y. El-Sonbaty, N. Belal / Huffman codes

 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005 603

Fig. 1. Insertion algorithm.

adjusted by moving all leaves in a certain level

having a value smaller than the largest node

in the next higher level to the next higher

level. This can result in having an odd number

of nodes in any of the updated levels, so this is
handled by theorems 1 and 2, by either

moving the smallest two nodes in the current

level one level up, further from the root, or the

smallest leaf from the next lower level is

moved to the current level, this is proven to be
correct in theorems 1 and 2.

Proof of correctness

Let the current level be L. Moving the leaves

from level L-1 to level L implies that these

leaves are of value smaller than the sum of the
smallest two nodes in level L, the smallest

internal node in level L-1. This assures the

weight consistency in level L and higher levels.

Level L-1 now contains new internal nodes,

however, all these new nodes are
combinations of nodes smaller than the two
smallest nodes in level L-1, this guarantees

that the sum of the smallest two nodes in L-1

remains greater than or equal to the largest

node in the level.

Fig. 3 shows the algorithm for adjusting
tree consistency.

Insert(x)

Begin

Given: n weights distributed among K levels, each weight is given with its level, a weight x to be

inserted.

1. root = sum of all n weights

If x ≥ root

Then

x will be inserted in level 1 and all other levels will be increased by 1.

2. Else

 Lmax=highest level containing leaves

 Lmin=lowest level containing leaves

3. For L=Lmax downto 1 //find the level in which x will be inserted

S1=smallest node in level L amongst internal and external nodes

S2=second smallest node in level L amongst internal and external nodes

If x≥S1+S2 Then go to next L

Else exit loop

End If
End For //L=level where x will be inserted

S1'=smallest leaf in level L-1

If S1'<x Then L=L-1 End If

If L≤Lmin //Case 1

Then S1 and S2 go to level L+1

//levels of the weights contributing in S1 and S2 are increased by 1

Else //Case 2

If S1+S2 ≤ smallest leaf in level L-1

Then S1 and S2 go to level L+1

Else the smallest leaf in level L-1 goes to level L

End If

 End If

4. Adjust LevelandWeightConsistency(L, Lmin)

End If

End

Y. El-Sonbaty, N. Belal / Huffman codes

604 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005

Fig. 2. Deletion algorithm.

Fig. 3. Adjusting level and weight consistencies algorithm.

Delete(x, L)

Begin

Given a node x to be deleted from a certain level L

Let Smaxi be the maximum node in level i

Let Smini be the minimum node in level i

Let Lmin be the lowest level containing leaves

1. If SmaxL+SminL-1 ≥ maxL-1

Then SmaxL goes to level L-1

Else

2. SminL-1 goes to level L //this leaves level L-1 having an odd number of nodes

3. For i = 1 to L-Lmin

 If SmaxL-i + SminL-i-1 ≥ SmaxL-i-1

 Then SmaxL-i goes to level L-i-1

 Else SminL-i-1 goes to level L-i

 End If

 End For

4. Adjust LevelandWeightConsistency(L, Lmin)

End If

End

Adjust_Level_Weight_Consistency(L, Lmin)

For i = 1 to L-Lmin

 If smallest leaf in level L-i-1< largest node in level L-i

 Then Move all leaves in level L-i-1 that are less than largest node in L-i to level L-i

 End If
 //adjust the number of nodes in levels L-i and L-i-1

 If L-i has an odd number of nodes

 Then

 S1 = smallest node in L-i

 S2 = second smallest node in L-i

 If S1+S2 ≤ smallest leaf in level L-i-1

 Then Move S1 and S2 to level L-i+1

 Else Move smallest leaf in level L-i-1 to level L-I

 End If

 End If

 If L-i-1 has an odd number of nodes

 Then

 S1 = smallest node in L-i-1

 S2 = second smallest node in L-i-1

 If S1+S2 ≤ smallest leaf in level L-i-2

 Then Move S1 and S2 to level L-i

 Else Move smallest leaf in level L-i-2 to level L-i-1

 End If

 End If

End For

End

Y. El-Sonbaty, N. Belal / Huffman codes

 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005 605

4. Complexity analysis

The complexity of the given algorithms
results from the need to find the minimum

and maximum elements in each level. To do

this, we need to sort each level in order to

obtain the internal nodes in the next lower

level. Instead we keep the internal nodes

unknown, and by avoiding sorting give an
O(nK) implementation, where n is the total

number of weights given, and K is the number

of levels containing leaves. We also present
another practical O(n log n) implementation.

4.1. An O(nK) implementation

The idea behind this implementation is to

avoid sorting the weights in order to obtain a

linear complexity, at least in some cases of

practical use. In order to do that, a linear

amount of work in each level is done. In each

level, we divide the nodes into two halves, by
finding the middle element and partitioning

the nodes around it. This process is repeated

for each level until the smallest two nodes in

that level are found, and also the middle two

elements in that level are found, which will
form the middle element in the next level. This

process is continued until the lowest level

containing leaves is reached. As for lower

levels, no extra work will be needed, because

all the nodes in lower levels can be obtained

from the last level containing leaves as a sum
of its smallest half, quarter, eighth, and so on.

Here are some of the details. Assume a level
L having some internal and external nodes. In

order to divide the nodes in this level into two

halves it is required to find its middle element,

but the problem is that we do not know the
internal nodes. However, the sum of the two

middle elements in the next higher level forms

the middle element in the current level. As for

the external nodes, the middle element can be

found by a selection algorithm in linear time
[11]. At this point, we have two elements, the

median of the leaves and the median of the

internal nodes, by comparing these two

elements, we can exclude some nodes that are

definitely not going to contribute in the

smaller half of the nodes in that level. The
nodes to be excluded are those nodes that are

of a value greater than the larger median.

Recursively, the rest of the needed information

can be obtained.

Knowing that finding the median of a list of
elements takes linear time using a selection
algorithm, this process takes O(nL-I + nL-i+1+
nL-i+2 +…+ nL) for a certain level L, where nj is

the number of leaves in the jth highest level.

Therefore, the mentioned steps take a

linear time in the number of nodes of the sub-

tree below the current level.
In total the time taken will be:
(K)n1+ (K-1)n2 + (K-2)n3 +…+ nK

Therefore, this algorithm takes linear time
if the number of levels, K, is constant, or if the

number of nodes in each level is constant, i.e.
not a function of n. And it takes O(n log n) if K

is O(log n). We can use this algorithm as long
as Kn is less than n log n.

Next we give a practical O(n log n)

implementation.

4.2. A practical O(n log n) implementation

We can simply implement the given
algorithms in O(n log n) time by actually

finding all the internal nodes in each level,

just sort the weights given in each level and

combine each two nodes then merge with the

sorted leaves in the next lower level.

Given the sequence of nodes distributed
among the levels, we have n1 weights in the

highest level, n2 weights in the second highest

level, and so on until nK weights in the Kth

highest level.

Starting from the highest level, we first sort
the n1 weights in O(n1 log n1) time, and then

we combine each two nodes to obtain n1/2

nodes in the next level which are merged with
the sorted n2 weights of that level. We repeat

for the next level. The time taken to complete

this process can be expressed as follows:

...
4

2

2

2
2

2

1
...

4

1

2

1
(

1

))(...)
3

(
33

2

2

4

1
)

2
(

222

1
)

1
(

1
(

1

nn
n

k

nnn
C

k
T

k
nLog

k
n

k
nnLognn

nn
nLognn

n
nLognC

k
T

Y. El-Sonbaty, N. Belal / Huffman codes

606 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005

))(2(3

))(

...)2(2)1(12...322212(2

))(

...)3(3)2(2)1(1....
2

2

3

...
4

3

2

3
31

2

2

nnLognCkT

knLogkn

nLognnLognknnnnCkT

knLogkn

nLognnLognnLognkn
k

n

nn
n

k

n

Where C1, C2, C3 are constants.

Therefore, the above steps take O(n log n)

time.

When the given algorithm is applied, it will not
take any extra time more than O(n) time in

order to perform the consistency checks.
For the insertion algorithm, shown in fig. 1,

the time taken for each step is as follows:
Step 1: Already done and takes O(n) time to

scan the n weights and sum them.

Step 2: Scans the levels once in O(n) time to

obtain
Lmax and Lmin.

Step 3: For each level, the smallest two nodes
are obtained and their sum is compared to x.

Scanning the levels requires O(n) time, and the

smallest nodes in each level are already

available so it takes constant time to find their

sum.
Step 4: Takes O(n) time as will be discussed in

Section 4.3.

As for the deletion algorithm, Shown in fig.

2, the maximum and minimum elements of all

the levels are now ready to use without any

extra time, all we need to do is just shifting

nodes from one level to another.
Therefore, the total time taken is O(n log

n)+O(n). Hence, the computational complexity

of the algorithm is O(n log n).

In many cases, this algorithm takes less
time than O(n log n), because in both the

insertion and deletion algorithms, it is not

always needed to sort and merge until the last
level. In fig. 1, consider all the cases that are

solved in Step 3, Case 1, the sorting and

merging is needed only up to the insertion

level. Also Step 1 in the deletion algorithm in

fig. 2, this needs sorting and merging until

one level lower than the deletion level.

4.3.Complexity analysis of adjusting level and
 weight consistencies algorithm

Given that the smallest and largest nodes

in each level are already obtained as explained

in Sections 4.1 and 4.2, the time taken by this

algorithm is described as follows:

Step 1: This step is linear in the number of

leaves in the current level.
Step 2: Takes constant time as we already

know the required nodes.

Therefore, the time taken to adjust the tree

consistency is linear.

5. Illustrative examples

The following examples are illustrations for

the different cases mentioned in the insertion

and deletion algorithms.

Given the distribution of weights in fig. 4,
and a weight x to be inserted or deleted.

Fig. 4. Given distribution of weights.

Example 1: insert x = 65

Starting at level 8 by comparing the sum of

the smallest two nodes in each level to the
value of x, we find that the new weight x can

be inserted in level 3, where the sum of the

smallest two nodes is formed by summing the

weights 60, 11, 15, 6, 7, 9, 3, 2, and 2, and
results in a sum of 115.

Shifting the nodes that form the smallest

two nodes in level 3 one level, we obtain the

following distribution, shown in fig. 5.

5 4 3

2 2

Level 7

Level 8

9 7 6 Level 6 10

18 15 11 Level 5 20 22

70 67 60 Level 3 78 88 100

Y. El-Sonbaty, N. Belal / Huffman codes

 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005 607

5 4 3

2 2

Level 7

Level 8

9 7 6 Level 6 10

18 15 11 Level 5

70 67 60 Level 3 78 88 100

20 Level 4

Fig. 5. Example 1 – new distribution of weights.

Fig. 6. Example 2 – new distribution of weights.

Fig. 7. Example 3 – new distribution of weights.

Example 2: insert x = 8
In this case, shifting the smallest two nodes

one level will cause weight inconsistency, and

therefore, we follow case 2 of the insertion

algorithm and obtain the distribution shown

in fig. 6.

Example 3: delete x = 22

Following the deletion algorithm, when we

remove the weight 22 from level 5, it is seen

that moving the largest node, of value 20, to
level 4 will keep level 4 weight consistent,

resulting in the distribution in fig. 7.

6. Conclusions

In this paper we presented two algorithms

for the update of a Huffman code knowing
only the list W = [w1,…, wn] of n positive

symbol weights, and a list L= [l1,…,ln] of n

corresponding integer codeword lengths, with
the n weights being distributed among K

levels, and no other information is know
about the tree. The first algorithm handled the

insertion of a new weight, and the second was

for the deletion of an already existing weight.

As for the update of a weight, this can be done

by simply deleting the old value and

reinserting the new one.
The algorithms presented treat many

practical cases in linear time. The insertion
algorithm takes O(nK) time, so it needs linear

complexity if the weights given are distributed

among a constant number of levels, i.e. the
number of levels is not a function of n, it also

takes linear time if the number of weights in

each level is constant, and this makes the

time needed to sort the weights linear.
Another practical O(n log n) implementation

is given. It is obvious that in many cases, the

time taken by the algorithm is faster than
rebuilding the Huffman tree, because it is not

always required to sort and merge all levels, so

this results in a faster algorithm.

Similarly, the deletion algorithm takes

linear time in many cases, in all cases where it

is possible to make the update by just moving
the largest node one level closer to the root,

the algorithm takes linear time if the number

of the level from which the node was deleted is
not a function of n.

References

[1] D. Huffman, “A Method for the

Construction of Minimum-Redundancy
Codes”, Proc. IRE 40, pp. 1098-1101

(1952).

5 4 3

2 2

Level 8

Level 9

7 6 Level 7

18

15 11 Level 6

20 22

60 Level 4

9 10

Level 5

65 67 70 78 88 10
0

Level 3

5 4 3

2 2

Level 7

Level 8

9 7 6 Level 6 10

18 15

11

Level 5 20 22

70 67 60 Level 3 78 88 100

8

Y. El-Sonbaty, N. Belal / Huffman codes

608 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005

[2] J. Zobel and A. Moffat, “Adding

Compression to a Full-Text Retrieval
System”, Software Practice and

Experience Vol. 25 (8), pp. 891-903
(1995).

[3] J. Ziv and A. Lempel, “A universal

algorithm for sequential data
compression”, IEEE Transactions on

Information Theory, Vol. 23, pp. 337-

349 (1977).
[4] A. Bookstein and S.T. Klein, “Models of

Bitmap Generation: A Systemayic

Approach to Bitmap Compression”,

Information Processing and

Management, Vol. 28, pp. 735-748
(1992).

[5] J. Van Leeuwen, “On the construction of

Huffman trees”, 3rd International

Colloquium for Automata, Languages

and Programming (ICALP) pp. 382-410

(1976).
[6] N. Faller, “An Adaptive System for Data

Compression”, In Proceedings of the 7th

Asilomar Conference on Circuits,

Systems, and Computers, pp. 593-597

(1973).

[7] R. G. Gallager, “Variations on a Theme
by Huffman”, IEEE Transactions on

Information Theory, Vol. 24 (6), pp. 668-

674 (1978).
[8] D. E. Knuth, “Dynamic Huffman Coding”,

Journal of Algorithms, Vol. 6 (2), pp.

163-180 (1985).

[9] J. S. Vitter, “Design and Analysis of

Dynamic Huffman Codes”, Journal of the

ACM, Vol. 34 (4), pp. 825-845 (1987).
[10] A. Belal and A. Elmasry, “Verification of

Minimum-Redundancy Prefix Codes”,

DIMACS Technical Report (29) (2004).

[11] T. Cormen, C. Leiserson and R. Rivest.

Introduction to Algorithms. The MIT
Press (1990).

Received March 28, 2005

Accepted July 3, 2005

