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Given a list W = [w1,…, wn] of n positive integer symbol weights, and a list  L = [l1,…,ln] of n 

corresponding integer codeword lengths, it is required to find the new list L when a new 
value x is inserted in or when an existing value is deleted from the list of weights W. The 
presented algorithm uses the given information about the weights and their corresponding 
levels in order to perform the required update. No other knowledge about the original 
Huffman tree is assumed to be known. Instead of rebuilding the Huffman tree, the new 

algorithm redistributes the weights among the levels to obtain the new Huffman code. In 
many special cases, the updated Huffman code can be generated with lower complexity than 
reconstructing the Huffman tree from scratch by efficiently using the information of weights 
and their levels. In this paper, we present an updating algorithm that requires a linear 
complexity in many practical cases rather than   the O(n log n) needed for reconstructing the 
Huffman tree. We also give a practical O(n log n) implementation for our algorithms. 

 ,L = [l1, و المقابل لها من أطوال الأكواد الموجبة الصحيحة W = [w1, w2, …, wn]باستخدام قائمة الأوزان الموجبة الصحيحة 

l2,…, ln]المقودم يسوتخدم فقوط  م, المطلوب إيجاد قائمة  أطوال الأكواد الجديدة عند إضافة أو حذف قيمة من أو إلى القائمة. الخووازز

عن الأوزان و أطوال الأكواد لتنفيذ التغييزات المطلوبة. فبودً  مون إعوادة بنوار  وجزة الهوفموان, يعيود الخوواززم  المعلومات الموجودة
المقتزح توزيع الأوزان علوى المسوتويات المختلفوة للحصوول علوى الكوود الجديود الهوفموان. الخوواززم الجديود يحتوات إلو  دزجوة تعقيود 

 لتعديل أكواد الهوفمان. O(n log n)وفمان, و قدمنا أيضا  خواززم بدزجة تعقيد خطية ف  حاًت كثيزة لتعديل  جزة اله
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1. Introduction 

 

Huffman coding [1] is a well known code 

tree problem, which encodes symbols 

according to their probabilities in order to 

minimize the expected codeword length. Given 
a list W = [w1,…, wn] of n positive symbol 

weights, Huffman codes are constructed to 
determine a list L = [l1,…,ln] of n corresponding 

integer codeword lengths, such that 
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 is minimized.  

Huffman coding plays an important role in 

data compression and other applications [2, 3, 
4]. 

The classical algorithm described by 

Huffman [1], constructs the Huffman code in 
O(n log n) time. Van Leeuwen has shown that 

if elements are sorted according to their 

weights, a Huffman code can be constructed 
in O(n) time using two queues [5]. 

Another approximation technique for  

Huffman codes is dynamic Huffman coding [6, 

7, 8, 9], which saves the first pass taken to 

find the frequencies of occurrence of symbols 

and constructs a time varying tree at both the 

sender and receiver sides. The algorithm 

starts by building the Huffman tree for the 
first t symbols, and resumes by either 

incrementing the weight of an already existing 
symbol by one or adding a new symbol of 

weight one. The process continues until the 

end of the message to be encoded. The first 

algorithm in dynamic Huffman coding was 

FGK algorithm [6, 7, 8]. Vitter [9] introduced 

another one pass algorithm to produce shorter 
encodings than those produced by FGK 

algorithm. 

In this paper, we give an insertion 

algorithm and a deletion algorithm for 
updating Huffman codes. Given a list W = 

[w1,…, wn] of n positive integer symbol 
weights, and a list  L = [l1,…,ln] of n 

corresponding integer codeword lengths, it is 
required to find the new list L when a new 

value x is inserted in the list of weights W and 

when an already existing value is deleted from 

the list. The input to our algorithm is just the 
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weights and their corresponding levels, no 

other information about the Huffman tree is 

known. 
The standard approach for updating 

Huffman codes is by rebuilding the tree after 

insertion or deletion of a certain weight. This 

approach disregards the information already 

available about each weight and its 

corresponding codeword length, or level, 
which in many cases speeds up the update 

process, resulting in a linear-time update. For 

example, consider the trivial case where the 

new weight to be inserted is greater than or 

equal to the value of the root of the 
corresponding Huffman tree, i.e. the new node 

is of a value greater than or equal to the sum 
of all n weights given, in this case the update 

to be done simply requires incrementing the 

codeword length of each weight by 1, with the 

new weight getting a codeword of length 1. 
And for the case of deletion, if the deleted 

node is deleted from the lowest level, the one 

closest to the root, the new code is obtained 

by simply moving the largest node in this 

level, with its sub-trees, one level closer to the 

root. 
Similar cases to the previously mentioned 

ones were a motivation to generalize the 

updating algorithms and achieve better 
complexity than O(n log n). 

This paper is organized as follows. In the 

next section we introduce theorems and 
definitions that will be needed to prove the 

correctness of the given algorithms. In Section 

3, the insertion and deletion algorithms are 

discussed. Section 4 presents the complexity 

analysis of the algorithms given in Section 3. 
In Section 5, we illustrate the presented 

algorithms by examples. Finally conclusions 

are discussed in Section 6. 

 

2. Properties of Huffman codes 

 
In this section, we present some new 

definitions and obtain several results that will 

help in proving the correctness of the 

algorithms presented in Section 3. 

We start with the following property 
regarding the levels of a Huffman tree.  

 
2.1. Definitions 

 

2.1.1. The exclusion property [10] 

In a Huffman code the weights of the nodes 
(leaves and internal nodes) at level L are not 

smaller than the weights of the nodes at level 
L+1. 

An implication of this property is that in 
any level L of a Huffman tree, the sum of the 

smallest two nodes is not less than the largest 

node in the level. 

In light of the exclusion property, we 
present the following definitions and 

theorems, 

 
2.1.2. Weight consistency 

A level L is weight consistent if the sum of 

the smallest two nodes is not less than the 
largest node in the same level and the number 
of nodes in level L is even, except for the 

lowest level containing leaves, the number of 

nodes must be a power of two. 

 
2.1.3. Level consistency 

A level L is level consistent if no node in 

level L-1 has a value less than a node in level 

L. 

 
2.1.4. Tree consistency 

A tree is consistent if all of its levels are 

level consistent and the number of nodes in 
each level is even, except for the lowest level 

containing leaves which must have a number 

of nodes that is a power of two. 

It is clear that a Huffman tree is consistent 

in that sense. 
 
2.2. Theorems 

 
Theorem 1 

Given a consistent tree, and a new node is 
added to level L, if no node in level L-1 has a 

value less than the sum of the smallest two 
nodes in level L, possibly including the new 

node, then the smallest two nodes in level L 

can be moved to level L+1, and level L and all 

higher levels are all now weight and level 

consistent. 

 
Proof 

First, we need to show that the number of 
nodes in levels L and L+1 become even. For 

level L, there is an extra node x, and moving 

the smallest two nodes to level L+1 results in a 
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new internal node in level L which makes it 

contain an even number of nodes. As for level 
L+1, two nodes will be added to an originally 

even number, which results in a new even 
number. Second, we need to prove that the 

sum of the smallest two nodes in each level 
higher than L-1 remains not greater than the 

largest node in the same level. 
Case 1: If the smallest two nodes in level L are 

internal node.(Internal nodes  are represented 

by   circles  and leaves are represented  by 
squares) 
 

 

 

 

 
 

 

 

 
Moving the smallest two nodes, a1 and a2, 

from level L to level L+1, results in shifting the 

sub-trees of both nodes a1 and a2 to the next 

higher level. This will not affect the parity of 

the number of nodes in any level, since we will 

always be adding some even number of nodes 

to each level and the total number will thus 

remain even. 

As for level consistency, it is clear that 
since we are always moving the smallest nodes 

from one level to the next higher level, these 

two levels will remain level consistent. This 
applies to level L+1 and all higher levels. The 

level consistency of level L is guaranteed since 

the largest node in level L is now a1+a2 and no 

smaller node in level L-1 exists. 

It is clear that level consistency is a 

sufficient condition for the first condition of 

weight consistency, because if no node in a 
level L-1 has a value that is less than the 

largest node in level L, then it is guaranteed 

that the sum of the smallest two nodes in level 
L, which forms an internal node in level L-1, is 

not less than the largest node in level L. 

Case 2: If the smallest two nodes in level L are 

external nodes, possibly including the new 

node. 

 

 
 

 

 

 

 
 

 
Moving the smallest two nodes, a1 and a2, 

from level L to level L+1, makes a1 and a2 the 

largest two nodes in level L+1 forming the 

largest node in level L. This case is proved 

similarly as Case 1, but without propagation 
to higher levels, as a1 and a2 do not have sub-

trees. 
Case 3: If the smallest two nodes in level L are 

one external node, possibly the new node, and 

an internal node. 

This case is the same as the previous two 

cases, with one of the smallest two nodes 
having a sub-tree. 
Lemma 1.1 

If level L, where the insertion is made, is 

equal to or lower than the lowest level 

containing leaves, then moving the smallest 
two nodes in L to level L+1, keeps the tree 

consistent. 
Proof 

The nodes in levels lower than L are all 

combinations of nodes in level L, since there 

are no leaves in any of these levels. Therefore, 

the level consistency propagates to the rest of 

the levels, and this implies weight consistency 
as well, resulting in a consistent tree. 

The next theorem takes care of the case 

when the condition in Theorem 1 does not 

hold. 
Theorem 2 

Given a consistent tree, and a new node is 
added to level L, if the smallest leaf in level L-1 

has a value less than the sum of the smallest 

two nodes, possibly including the new node, in 
level L, then moving the smallest leaf in level 

L-1 to level L keeps the weight and level 

consistency properties holding for level L and 

all higher levels. 
Proof 

 

 

 

 
 

 

It is obvious that the number of nodes in 
both levels L and L-1 will be even. Level L 
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contained an odd number of nodes, after the 

insertion of x, so moving the smallest leaf from 
level L-1 to level L adjusts the number of 

nodes in level L to an even number. As for 
level L-1, a leaf was removed, but it will 

combine with the largest node in level L to 

form an internal node in level L-1 resulting in 

an even number of nodes. The second weight 

consistency condition, which states that the 

sum of the smallest two nodes in any level 

must not be less than the largest node in the 
same level, is guaranteed because it is known 
that the smallest leaf moved from level L-1, a1, 

to level L has a value less than the sum of the 

smallest two nodes in level L, b1+b2. In Level L-
1, the leaf that was moved to level L is a1. We 

know that a1+a2≥aq, and also a2+a3≥aq. 

However, a new node is now added to level L-1 

resulting from the combination of a1 with the 

largest node in level L, bp, but all nodes in 
level L-1 are not less than a1 or bp, hence, 

a2≥a1, a2≥bq, a3≥a1, and a3≥bp, therefore, 

a2+a3≥a1+bp. Therefore, level L-1 remains 

weight consistent. 

The following theorems address the case of 

deleting a node. 

 
Theorem 3 

Given a consistent tree, and a weight is 
removed from a certain level L, if the sum of 

the largest node in level L and the smallest 

node in level L-1 is not less than the largest 

node in level L-1,  then moving the largest 

node in level L to level L-1 keeps the tree  

consistent. 
 

Proof 
Case 1: If the largest node in level L is an 

internal node. 

     Concerning the number of nodes in each 

level, all the levels that will be affected by 
moving the largest node, bp, from level L to 

level L-1, will still have an even number of 
nodes, as the sub-tree of the node bp in any 

level contains an even number of nodes. As for 
level L, removing the node bp will adjust the 

number of nodes. And level L-1 as well will 

have one node instead of the internal node 

that was formed before the deletion of a node 
from level L. 

Before moving the node bp to level L-1, we 

make sure that the sum of a1 and bp is not 

less than the largest node in level L-1, aq. 

Therefore, level L-1 is weight consistent. Level 

L was weight consistent before the deletion of 

a node, this implies that b1+b2≥bp, therefore, 

b1+b2≥bp-1, since bp-1≤bp. 

The effects in levels higher than L, will be 

the same as levels L and L-1. As for levels 

lower than L-1, closer to the root, a key 

observation is that moving a node from level L 
to level L-1, i.e. from a certain level to the next 

lower level, does not result in having a node in 
level L-1 with a larger value than a node that 

was already there. This means that the node 
that was moved to level L-1 is definitely 

smaller than the internal node that was 
formed in level L-1 before the deletion 
(knowing that all nodes in level L are of a 

value smaller than all nodes in level L-1).   

Case 2: If the largest node in level L is an 

external node. 

Similar to the previous case, but no other 
levels will be affected as the node bp does not 

have a sub-tree. 

When the condition in theorem 3 does not 
hold, we apply the following. 

 

 

 

 

 
 

 

 

 
 
Theorem 4 

Given a consistent tree, and a weight is 
removed from a certain level L, if the sum of 

the largest node in level L and the smallest 
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node in level L-1 is less than the largest node 

in level L-1, then moving the smallest leaf in 

level L-1 to level L keeps level L and higher 

levels weight and level consistent. 
 
Proof 
 

 

 

 
 

 

 

 

 
Moving a node form level L-1 to level L will 

adjust the number of nodes in both levels L 

and L-1. The new node that was moved from 

level L-1 to level L, a1, will be the largest node 

in level L, so the sum of the smallest two 

nodes in level L must not be less than this 

node, but the sum of the smallest two nodes 
in level L, b1 and b2, forms an internal node in 

level L-1, a2, and we are sure that this internal 

node is of a value greater than the leaf that 
was moved to level L, or else, we would have 

not needed to move the smallest leaf in level L-

1 to level L. Therefore, level L is weight 

consistent. We also need to show that level L-1 

will be weight consistent. The largest node in 
level L-1 will either be aq or the new internal 

node formed by a1+bp. If it is aq, then it is clear 

that since a1+a2≥aq, then a2+a3≥aq since a2 
and a3 are both not less than a1. But if it is 

a1+bp, then since a2≥a1, a2≥bp, a3≥a1, and 

a3≥bp, therefore, a2+a3≥a1+bp. 

 

3. Insertion and deletion algorithms 

 

In this section we present the insertion and 
deletion algorithms for updating a Huffman 

code. 

 
3.1. Insertion algorithm 

 
Assuming a Huffman tree of Q levels and 

given a number of leaves distributed among K 

levels, we have a new weight x to be inserted. 

We first need to find the level where x can be 

inserted. We use an implication of the 

exclusion property, that the sum of the 

smallest two nodes in any level must not be 

less than the largest node in the same level. 

We start from the highest level, furthest from 
the root by comparing x to the sum of the 

smallest two nodes, amongst all nodes, in the 
level, if x is greater than or equal to their sum 

then we move to the next lower level and 
repeat the process until x is less than the sum 

of the smallest two nodes in a certain level L, 

where L: 0..Q-1, and no node in level L-1 is of a 

value less than x. 
Inserting x in level L will certainly result in 

some other changes in the distribution of the 
rest of the weights among the levels, to keep 

the weight consistency and level consistency 

properties in each level.  
When we claim that x will be inserted in a 

certain level L, this means that level L will be 

weight inconsistent as the number of nodes in 
level L now becomes odd, so some other node 

must be moved to another level. According to 
the level where x will be inserted, we perform 

some changes to the distribution of the nodes 

among the levels so that all levels are both 

weight consistent and level consistent.  
Case 1: If level L is a low level, lower than or 

equal to the lowest level containing leaves, 

then just move the smallest two nodes, with 

their sub-trees, possibly including the new 
node x, from level L to level L+1. 

Proof of correctness 

Using Theorem 1 and Lemma 1.1, it is 
shown that moving the smallest two nodes 
from level L to level L+1 keeps the tree both 

weight and level consistent. 
Case 2: The other case is that L is in a higher 

level than the lowest level containing leaves. In 

that case we will need to perform an extra 

check before we shift the smallest two nodes 
with their sub-trees to the next higher level. 

We must make sure that there is no leaf in 
level L-1 smaller than the sum of the smallest 

two nodes in level L, because if we move the 

smallest two nodes to level L+1 they will 

combine and their sum will be an internal 
node in level L. This creates a node in level L 
with a larger value than a node in level L-1, 

leaving level L level-inconsistent. In this case 

level L is left as it is and the smallest leaf in 

level L-1 is moved to level L, otherwise, it is 

treated similarly as the Case 1, where the 
smallest two nodes in level L are moved to 

level L+1. 
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Proof of correctness 

In this case we have one of two resulting 

trees. First, if we move the smallest two sub-
trees to level L+1, the correctness follows from 

Theorem 1 .The second case, moving the 
smallest leaf from level L-1 to level L, is 

handled in Theorem 2.  

After completion of the mentioned steps 
among levels L-1, L, and L+1, we still need to 

check the level consistency among all levels 
smaller than L, since it could have possibly 

been violated in performing the previous steps. 

This is done by checking that the smallest leaf 
in each level P, where P ranges from level L-2 

to 1, is greater than or equal to the largest 
node in the next higher level P+1, if this 

condition is not satisfied then all leaves in 
level P that have a value less than the largest 

node in level P+1 are moved to level P+1. This 

might result in weight inconsistency for any of 
the two levels P or P+1 which are also 

adjusted. The simple procedure of Section 3.3 

adjusts the level and weight consistencies 

when needed in linear time. 
Before performing all the previous steps, we 

need to perform one easy step, if x is greater 

than or equal to the sum of all weights given, 
then x will combine with the root of the tree 

and it will be in level 1 and all the other levels 

will just be increased by 1. 
Proof of correctness 

Since x will combine with the root of the 

tree, this will result in the same old tree but 

with one extra level, leaving all nodes in the 

other levels as they were both weight and level 

consistent. 
In fig. 1, we present the pseudo-code for 

the insertion algorithm. 

 
3.2. Deletion algorithm 

 
We are given a node x to be deleted from 

level L. 

Nodes in levels higher than L, are nodes 

with smaller values than x, will be combined 

in the same manner as the original tree, and 

their levels will be weight consistent, however, 
level L will be weight consistent except for the 

number of nodes which will be an odd 

number. To  adjust  the  number  of  nodes  in  

level L and lower levels we perform a number 

of steps. 
Case 1: Starting at level L, if the sum of the 

largest node in level L and the smallest node 

in level L-1 is greater than or equal the largest 
node in level L-1, then moving the largest node 

in level L to level L-1 will not affect the weight 

consistency of level L-1, and definitely not of 

level L as well, and it will adjust the number of 

nodes in both levels, resulting in a new 

distribution of nodes keeping both weight and 

level consistencies. 
Proof of correctness 

By using Theorem 3, we can prove the 

consistency of the resulting tree. 
Case 2: The other case occurs when the sum 

of the largest node in level L and the smallest 

node in level L-1 is less than the largest node 

in level L-1. In this case we move the smallest 
leaf in level L-1 to level L to adjust the number 

of nodes in level L. 

 
Proof of correctness 

It is shown in Theorem 4 that level L and 

higher levels remain level consistent. However, 

lower levels are handled by performing the 
level adjustment module after adjusting the 

number of nodes in each level.  
This will leave level L-1 having an odd 

number of nodes, so the process is repeated 
for all levels lower than L until the lowest level 

containing leaves. 

The deletion algorithm is shown in fig. 2. 
 
3.3. Consistency adjust 

 

Adjusting the consistency of the tree 

requires adjusting both level and weight 
consistencies. It is proven in the previous 

theorems that the weight consistency of all 

levels is not violated by performing the 

mentioned modifications, however, level 

consistency can be violated in case of 

increasing the value of nodes in any level. It is 
obvious that any node in a certain level having 

a value smaller than another node in the next 

higher level must be a leaf, this is because all 

internal nodes are combinations of nodes in 

the next  higher level.  The level consistency is  
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Fig. 1. Insertion algorithm. 

 

adjusted by moving all leaves in a certain level 

having a value smaller than the largest node 

in the next higher level to the next higher 

level. This can result in having an odd number 

of nodes in any of the updated levels, so this is 
handled by theorems 1 and 2, by either 

moving the smallest two nodes in the current 

level one level up, further from the root, or the 

smallest leaf from the next lower level is 

moved to the current level, this is proven to be 
correct in theorems 1 and 2.  
 
Proof of correctness 

Let the current level be L. Moving the leaves  

from level L-1 to level L  implies that these 

leaves are of value smaller than the sum of the 
smallest two nodes in level L, the smallest 

internal node in level L-1. This assures the 

weight consistency in level L and higher levels. 

Level L-1 now contains new internal nodes, 

however, all these new nodes are 
combinations of nodes smaller than the two 
smallest nodes in level L-1, this guarantees 

that the sum of the smallest two nodes in L-1 

remains greater than or equal to the largest 

node in the level. 

Fig. 3 shows the algorithm for adjusting 
tree consistency.  

 

Insert(x) 

Begin 

Given: n weights distributed among K levels, each weight is given with its level, a weight x to be 

inserted. 

1. root = sum of all n weights 

If x ≥ root 

Then 

x will be inserted in level 1 and all other levels will be increased by 1.  

2. Else 

     Lmax=highest level containing leaves 

     Lmin=lowest level containing leaves 

 

3.      For L=Lmax downto 1   //find the level in which x will be inserted 

S1=smallest node in level L amongst internal and external nodes 

S2=second smallest node in level L amongst internal and external nodes 

If x≥S1+S2 Then go to next L 

Else exit loop 

End If 
End For     //L=level where x will be inserted 

S1'=smallest leaf in level L-1 

If S1'<x Then L=L-1 End If 

If L≤Lmin    //Case 1 

Then  S1 and S2 go to level L+1 

//levels of the weights contributing in S1 and S2 are increased by 1 

Else     //Case 2 

If S1+S2 ≤ smallest leaf in level L-1 

Then S1 and S2 go to level L+1 

Else the smallest leaf in level L-1 goes to level L 

End If 

 End If 

4.                      Adjust LevelandWeightConsistency(L, Lmin) 

 

End If 

End 
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Fig. 2. Deletion algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Adjusting level and weight consistencies algorithm. 

Delete(x, L) 

Begin 

Given a node x to be deleted from a certain level L 

Let Smaxi be the maximum node in level i 

Let Smini be the minimum node in level i 

Let Lmin be the lowest level containing leaves 

 

1. If  SmaxL+SminL-1 ≥ maxL-1 

Then SmaxL goes to level L-1 

Else 

2.       SminL-1 goes to level L    //this leaves level L-1 having an odd number of nodes 

3.       For i = 1 to L-Lmin 

      If SmaxL-i + SminL-i-1 ≥ SmaxL-i-1 

      Then SmaxL-i goes to level L-i-1 

      Else SminL-i-1 goes to level L-i 

      End If 

 End For 

4.        Adjust LevelandWeightConsistency(L, Lmin) 

End If 

End 

Adjust_Level_Weight_Consistency(L, Lmin) 

For i = 1 to L-Lmin     

    If smallest leaf in level L-i-1< largest node in level L-i 

    Then Move all leaves in level L-i-1 that are less than largest node in L-i to level L-i 

    End If 
    //adjust the number of nodes in levels L-i and L-i-1 

    If L-i has an odd number of nodes 

    Then 

    S1 = smallest node in L-i 

     S2 = second smallest node in L-i 

            If  S1+S2 ≤ smallest leaf in level L-i-1 

             Then Move S1 and S2 to level L-i+1 

            Else Move smallest leaf in level L-i-1 to level L-I 

            End If 

     End If 
 

      If L-i-1 has an odd number of nodes  

                  Then 

       S1 = smallest node in L-i-1 

 S2 = second smallest node in L-i-1 

                     If  S1+S2 ≤ smallest leaf in level L-i-2 

                        Then Move S1 and S2 to level L-i 

                        Else Move smallest leaf in level L-i-2 to level L-i-1 

 End If 

                   End If 

End For 

End 
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4. Complexity analysis 

 

The complexity of the given algorithms 
results from the need to find the minimum 

and maximum elements in each level. To do 

this, we need to sort each level in order to 

obtain the internal nodes in the next lower 

level. Instead we keep the internal nodes 

unknown, and by avoiding sorting give an 
O(nK) implementation, where n is the total 

number of weights given, and K is the number 

of levels containing leaves. We also present 
another practical O(n log n) implementation. 

 
4.1. An O(nK) implementation 

 
The idea behind this implementation is to 

avoid sorting the weights in order to obtain a 

linear complexity, at least in some cases of 

practical use. In order to do that, a linear 

amount of work in each level is done. In each 

level, we divide the nodes into two halves, by 
finding the middle element and partitioning 

the nodes around it. This process is repeated 

for each level until the smallest two nodes in 

that level are found, and also the middle two 

elements in that level are found, which will 
form the middle element in the next level. This 

process is continued until the lowest level 

containing leaves is reached. As for lower 

levels, no extra work will be needed, because 

all the nodes in lower levels can be obtained 

from the last level containing leaves as a sum 
of its smallest half, quarter, eighth, and so on. 

Here are some of the details. Assume a level 
L having some internal and external nodes. In 

order to divide the nodes in this level into two 

halves it is required to find its middle element, 

but the problem is that we do not know the 
internal nodes. However, the sum of the two 

middle elements in the next higher level forms 

the middle element in the current level. As for 

the external nodes, the middle element can be 

found by a selection algorithm in linear time 
[11]. At this point, we have two elements, the 

median of the leaves and the median of the 

internal nodes, by comparing these two 

elements, we can exclude some nodes that are 

definitely not going to contribute in the 

smaller half of the nodes in that level. The 
nodes to be excluded are those nodes that are 

of a value greater than the larger median. 

Recursively, the rest of the needed information 

can be obtained. 

Knowing that finding the median of a list of 
elements takes linear time using a selection 
algorithm, this process takes O(nL-I + nL-i+1+    
nL-i+2 +…+ nL) for a certain level L, where nj is 

the number of leaves in the jth highest level. 

Therefore, the mentioned steps take a 

linear time in the number of nodes of the sub-

tree below the current level.  
In total the time taken will be: 
(K)n1+ (K-1)n2 + (K-2)n3 +…+ nK    

Therefore, this algorithm takes linear time 
if the number of levels, K, is constant, or if the 

number of nodes in each level is constant, i.e. 
not a function of n. And it takes O(n log n) if K 

is O(log n). We can use this algorithm as long 
as Kn is less than n log n.  

Next we give a practical O(n log n) 

implementation. 

 
4.2. A practical O(n log n) implementation 

 

We can simply implement the given 
algorithms in O(n log n) time by actually 

finding all the internal nodes in each level, 

just sort the weights given in each level and 

combine each two nodes then merge with the 

sorted leaves in the next lower level. 

Given the sequence of nodes distributed 
among the levels, we have n1 weights in the 

highest level, n2 weights in the second highest 

level, and so on until nK weights in the Kth 

highest level.  

Starting from the highest level, we first sort 
the n1 weights in O(n1 log n1) time, and then 

we combine each two nodes to obtain n1/2 

nodes in the next level which are merged with 
the sorted n2 weights of that level. We repeat 

for the next level. The time taken to complete 

this process can be expressed as follows: 
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Where C1, C2, C3 are constants. 

Therefore, the above steps take O(n log  n) 

time. 

When the given algorithm is applied, it will not 
take any extra time more than O(n) time in 

order to perform the consistency checks. 
For the insertion algorithm, shown in fig. 1, 

the time taken for each step is as follows: 
Step 1: Already done and takes O(n) time to 

scan the n weights and sum them. 

Step 2: Scans the levels once in O(n) time to 

obtain      
Lmax and Lmin. 

Step 3: For each level, the smallest two nodes 
are obtained and their sum is compared to x. 

Scanning the levels requires O(n) time, and the 

smallest nodes in each level are already 

available so it takes constant time to find their 

sum. 
Step 4: Takes O(n) time as will be discussed in 

Section 4.3.  

As for the deletion algorithm, Shown in fig. 

2, the maximum and minimum elements of all 

the levels are now ready to use without any 

extra time, all we need to do is just shifting 

nodes from one level to another. 
Therefore, the total time taken is O(n log 

n)+O(n). Hence, the computational complexity 

of the algorithm is O(n log n). 

In many cases, this algorithm takes less 
time than O(n log n), because in both the 

insertion and deletion algorithms, it is not 

always needed to sort and merge until the last 
level. In fig. 1, consider all the cases that are 

solved in Step 3, Case 1, the sorting and 

merging is needed only up to the insertion 

level. Also Step 1 in the deletion algorithm in 

fig. 2, this needs sorting and merging until 

one level lower than the deletion level. 
 

4.3.Complexity analysis of adjusting level and 
 weight consistencies algorithm 

 
Given that the smallest and largest nodes 

in each level are already obtained as explained 

in Sections 4.1 and 4.2, the time taken by this 

algorithm is described as follows: 

Step 1: This step is linear in the number of 

leaves in the current level. 
Step 2: Takes constant time as we already 

know the required nodes. 

Therefore, the time taken to adjust the tree 

consistency is linear. 

 
5. Illustrative examples 

 

The following examples are illustrations for 

the different cases mentioned in the insertion 

and deletion algorithms. 

Given the distribution of weights in fig. 4, 
and a weight x to be inserted or deleted.  

 

 

 

 

 
 

 

 

 

 
 

 

 

 
 
 
 

Fig. 4. Given distribution of weights. 

 
Example 1: insert x = 65 

Starting at level 8 by comparing the sum of 

the smallest two nodes in each level to the 
value of x, we find that the new weight x can 

be inserted in level 3, where the sum of the 

smallest two nodes is formed by summing the 

weights 60, 11, 15, 6, 7, 9, 3, 2, and 2, and 
results in a sum of 115. 

Shifting the nodes that form the smallest 

two nodes in level 3 one level, we obtain the 

following distribution, shown in fig. 5. 

5 4 3 

2 2 

Level 7 

Level 8 

9 7 6 Level 6 10 

18 15 11 Level 5 20 22 

70 67 60 Level 3 78 88 100 
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Fig. 5. Example 1 – new distribution of weights. 

 

 

 

 

 
 

 

 

 

 

 
 
 

Fig. 6. Example 2 – new distribution of weights. 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

Fig. 7. Example 3 – new distribution of weights. 
 

Example 2: insert x = 8 
In this case, shifting the smallest two nodes 

one level will cause weight inconsistency, and 

therefore, we follow case 2 of the insertion 

algorithm and obtain the distribution shown 

in fig. 6. 
 

Example 3: delete x = 22 

Following the deletion algorithm, when we 

remove the weight 22 from level 5, it is seen 

that moving the largest node, of value 20, to 
level 4 will keep level 4 weight consistent, 

resulting in the distribution in fig. 7. 

 

6. Conclusions 

 
In this paper we presented two algorithms 

for the update of a Huffman code knowing 
only the list W = [w1,…, wn] of n positive 

symbol weights, and a list L= [l1,…,ln] of n 

corresponding integer codeword lengths, with 
the n weights being distributed among K 

levels,  and no other information is know 
about the tree. The first algorithm handled the 

insertion of a new weight, and the second was 

for the deletion of an already existing weight. 

As for the update of a weight, this can be done 

by simply deleting the old value and 

reinserting the new one.  
The algorithms presented treat many 

practical cases in linear time. The insertion 
algorithm takes O(nK) time, so it needs linear 

complexity if the weights given are distributed 

among a constant number of levels, i.e. the 
number of levels is not a function of n, it also 

takes linear time if the number of weights in 

each level is constant, and this makes the 

time needed to sort the weights linear. 
Another practical O(n log n) implementation 

is given. It is obvious that in many cases, the 

time taken by the algorithm is faster than 
rebuilding the Huffman tree, because it is not 

always required to sort and merge all levels, so 

this results in a faster algorithm. 

Similarly, the deletion algorithm takes 

linear time in many cases, in all cases where it 

is possible to make the update by just moving 
the largest node one level closer to the root, 

the algorithm takes linear time if the number 

of the level from which the node was deleted is 
not a function of n. 
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