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This paper addresses the trajectory-tracking problem of a 3-Degrees Of Freedom (3 DOF) 
under actuated mariner class vessel. Feed-forward artificial neural networks were designed 
to enable the ship to track parabolic and S-shaped trajectories. A closed-feedback control 
system was developed using additional feed-forward neural gain compensators to minimize 
the path deviation and to obtain the required control input rudder angle. The results show 
that the path deviation is 6% when the main neural network is used without the gain 
compensator. The path deviation is limited to a maximum of 3% when the gain compensator 
is used alongside the main network. 

تتناول هذه الورقة مشكلة اتباع المسارات الملاحية لسفينة بحرية ناقصة المشغلات ذات ثلاث درجات من الحرية، ومن أجل ذلك تم 
تصميم شبكات خلايا عصبية اصطناعية أمامية التغذية لكي يتسنى للسفينة اتباع المسارات المتعرجة والمسارات ذات شكل حرف 

Sغلق ذي تغذية راجعة وذلك باستخدام معوضات كسب ذات شبكات عصبية لتقليل الانحراف عن . كما تم تصميم نظام تحكم م
المسار إلى أقل نسبة ممكنة، وهذه المعوضات تعمل جنباً إلى جنب مع الشبكات العصبية الأساسية حتى يتم الحصول على متجه 

% في حالة استخدام الشبكات 6حراف عن المسار بلغ زاوية الدفة المطلوب ادخاله إلى نظام التحكم، وتوضح النتائج أن الان
% عندما يستخدم معوض الكسب إلى جانب الشبكة 3العصبية الأساسية بدون معوضات الكسب، بينما ينحصر الانحراف عند 

 العصبية الأساسية.
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1. Introduction 
 

The last decade has witnessed an in-
creased research effort in the area of trajectory 
tracking control for underactuated marine 
vessels. The study of these systems is 
motivated by the fact that it is usually costly 
and often impractical (due to weight, reliabil-
ity, complexity and efficiency considerations) 
to fully actuate autonomous vehicles [1]. The 
tracking problem for underactuated vehicles is 
especially challenging because most of these 
systems are not fully feedback linearizable and 
exhibit nonholonomic constraints.  

The path following problem of 3 DOF (de-
grees of freedom) vessel, as defined by Skjetne 
et al. [2], involves two tasks. The first task, 
which is the geometric assignment, is to force 
the ship to track a set of way-points which 
define the path. The second task, which is the 
speed assignment, is to satisfy a desired speed 
along the path. For an underactuated ship to 
accomplish these two tasks, a single rudder 
and a propeller are at least required for the 
geometric and speed assignments, respec-
tively. Previous techniques for solving the tra-
jectory tracking problem of underactuated ma-

rine vessels are based upon nonlinear 
Lyapunov designs, and applying averaging and 
backstepping techniques [1-9].  

An Artificial Neural Network (ANN) is an 
information processing paradigm that is in-
spired by the way biological nervous systems 
process information. Very few attempts have 
been made to solve the trajectory tracking 
problem by utilizing artificial neural networks. 
Im and Hasegawa [10] addressed the problem 
of automatic ship berthing using a parallel 
neural controller, which proved to be of good 
control ability. This controller has a separate 
hidden layer, each control an engine, and a 
rudder respectively. The authors of this paper 
previously dealt with the underactuated ship 
trajectory tracking problem using artificial 
neural networks for circular and zigzag ma-
neuvers [11]. The results obtained, from the 
several two-layer feed-forward neural net-
works, that were designed to fulfill the pro-
posed objectives, were sufficiently accurate. 
The circular and zigzag trajectories are stan-
dard sea-trial test maneuvers. Since ship 
navigation involves direction change and 
avoidance of sea obstacles such as coral reefs, 
shallow waters, icebergs, etc., therefore track-
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ing parabolic and S-shaped trajectories is very 
important. The work of [11] is extended in this 
paper to include two types of arbitrary trajec-
tories: parabolic and S-shaped. The trajectory 
tracking problem in this paper is dealt with 
the geometric assignment point of view. The 
mariner class vessel model considered in this 
paper is a 3 DOF model with only one control 
input, which is the rudder angle vector. 
 
2. Ship model 
 

The mathematical modeling of the ship is 
based upon that formulated by Fossen [12]. 
The modeling considers both the 3 DOF kine-
matics and dynamics. Kinematics require the 
definition of two main coordinate frames fig. 1, 
the first is an inertial Earth-fixed coordinate 
system (North-East Down), and the second is 
body-fixed. The dynamic equation of motion 
for the mariner class vessel is given by: 
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τ = [X,Y,N]T .         (5) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Inertial and body-fixed frames. 

The parameters defined in eqs. (3-5) can 
be found in [13]. The mariner class vessel has 
an overall length of 160.93 meters and its 
nominal speed is 15 knots. The maximum 
rudder angle is 300, and the maximum rudder 
turning rate is 5 deg/s [13]. 
 

3. Parabolic and S-shaped trajectories 
 

In order to avoid sea obstacles, the ship 
should track parabolic or S-shaped trajecto-
ries. The duration of these types of maneuvers 
are usually around 180 to 600 seconds. Para-
bolic trajectories are generated by either ap-
plying a half-sinusoidal rudder angle input or 
by applying a ramp input starting from zero 
till a peak value δc, followed by a step input, 
followed by a ramp input to bring back the 
rudder angle value to zero. On the other hand, 
S-shaped trajectories are generated by a sinu-
soidal input rudder angle vector over a time 
domain ranging from 400 to 500 seconds.  
 

4. Artificial neural networks design 
 

For both types of maneuvers, the ANN will 
be trained using a series of trajectories as 
input, and specifying the associated rudder 
angle vector as target output, which will 
enable the ship to track these trajectories. 
Trajectory data, which is an implicit function 
of time, includes the position coordinates (x,y) 
and the ship's heading angle ψ.  All ANNs are 
feed-forward networks, and were trained using 
the conjugate gradient method ('traincgp'). 
This method achieves the least mean square 
error in the least number of epochs. 

After the ANN has been trained, it must be 
tested by a trajectory that was not included in 
the training process, in order to evaluate its 
capabilities. An input vector of the rudder an-
gle is fed to the mathematical model of the 
mariner type vessel to generate a specified 
trajectory. The trained ANN is used to obtain 
the output vector representing the rudder an-
gle for the trajectory not included in the 
training process, which is then compared with 
the original rudder angle vector. For a properly 
trained ANN, the error between the original 
rudder angle values and those simulated by 
the ANN should be a minimum. The output 
rudder angle vector of the ANN is fed to the 
mathematical model to yield a trajectory, 
which is compared to that originally specified 
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to calculate the path deviation. If the two tra-
jectories coincide, the ANN is perfectly trained. 

The deviation of the path generated by the 
rudder angle vector output of the ANN from 
the original trajectory is calculated as a per-
centage using the following equation: 
 

   
100*

22

22

yx

yyxx
Pdev

simsim




 ,   (6) 

 
where Pdev  is the percentage path deviation, 
(x,y) and (xsim, ysim) are the Northing and 
Easting Coordinates of the original and ANN 
generated path, respectively. 
 

5. Neural gain compensators 
 

The need to design gain compensators 
arises from the fact that the mariner class 
vessel must track arbitrary paths to a 
sufficiently-accurate extent, especially when 
there exists increasingly external disturbances 
such as high winds, rough seas and strong 
sea currents. The compensator can also be 
used to adapt the output of the main ANN to 
accurately track trajectories not considered in 
the original training of the network. The neu-
ral gain compensator is fed with the error 
values of the Northing and Easting coordi-
nates, in addition to the error values of the 
ship's heading angle. The output of the 
compensator is a gain vector which is added to 
the simulation output rudder angle output of 
the main ANN, to yield the final input rudder 
angle vector required to steer the ship to the 
desired path. Hence, a closed-loop feedback 
control process is applied. This process is 
illustrated in fig. 2. 

6. Results 
 
6.1. Parabolic trajectories 
 

Two feed-forward ANNs were designed, the 
first for positive (port) rudder angle values, 
and the second for negative (starboard) rudder 
angle values. 

Network #1 was designed for positive 
rudder angle values. Training was done using 
13 different trajectories fig. 3, on a time 
domain of 400 seconds with a time increment 
of 10 seconds. The neural network #1 has 
1066 tan-sigmoid neurons in the input layer, 
533 tan-sigmoid neurons in the hidden layer, 
and a single pure-linear neuron in the output 
layer. The mean square error reached a final 
value of 0.3826 after 10,600 seconds (2.94 
hours). A neural net gain compensator for 
network #1 was designed in order to minimize 
the path deviation. The gain compensator was 
trained twice, first by using the error values of 
the Northing coordinates, Easting coordinates, 
and the heading angle of the trajectories used 
in training network #1, and the second time 
by the error values of 13 other trajectories. 

The neural net gain compensator has 1066 
tan-sigmoid neurons in the input layer, 533 
tan-sigmoid in the hidden layer, and a single 
pure-linear neuron in the output layer.  

At the first time of training, the mean 
square error reached a minimum value of 
0.1266 after 256 epochs in a time of 4300 
seconds. As for training for the second time, 
the process elapsed 5270 seconds, and the 
mean square error reached a minimum value 
of 0.083 after 319 epochs. The results 
obtained  when  simulating  both  networks #1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Closed-loop feedback control using neural gain compensation. 
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Fig. 3. Trajectories used in training network #1. 

 
and its gain compensator with trajectories 
that were not used in the training processes 
are very good as can be seen in fig. 4. It can be 
clearly seen that the neural-net gain compen-
sator is very effective and the maximum path 
deviation is limited to about 3%. Therefore, it 
is recommended to use the gain compensator 
along with the main neural network #1 when 
the ship is tracking parabolic trajectories for 
positive rudder angles. 

In a similar fashion, another artificial 
neural network (network #2) and a neural gain 
compensator were designed to enable the ship 
to track parabolic trajectories for negative rud-
der angle values. Both networks comprise 
1000 tan-sigmoid neurons in the input layer, 
500 tan-sigmoid neurons in the hidden layer, 
and a single pure-linear neuron in the output 
layer. 

Network #2 was trained using 17 different 
trajectories fig. 5. The training process elapsed 
12,670 seconds (3.52 hours), and the mean 
square error reached a minimum value of 
0.3689 after 500 epochs. 

The neural gain compensator was trained 
twice, the first time using the error values of 
the 17 trajectories that were used in training 
network #2, and the second time using the 
error values of 11 other trajectories. The first 
training time elapsed 3860 seconds, where the 
mean square error reached a minimum value 
of 0.132 after 198 epochs. As for the second 
training process, the mean square error 
reached a minimum value of 0.1078 after 410 
epochs, during a time of 5234 seconds. 

The results obtained from networks #2 
and its gain compensator are very good as can 
be clearly seen in fig. 6. The maximum path 

deviation is limited to about 3 %. Therefore, it 
is recommended to use the neural gain 
compensator alongside with the main network 
#2, when the mariner class vessel is following 
a parabolic path, for negative rudder angle 
values. 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Positive trapezoidal rudder angle input and 
corresponding ship trajectory, and path deviation 

(network #1 and its gain compensator). 
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Fig. 5. Trajectories used in training network #2 for 
negative rudder angle. 

 
6.2. S-shaped trajectories 
 

In order for the ship to follow S-shaped 
paths, two artificial neural networks were 
designed, the first for positive rudder angle 
values, and the second for negative values. In 
addition, two neural gain compensators were 
designed for each of the two main networks 
previously mentioned. 

Network #3 was designed in order for the 
vessel to track S-shaped trajectories for 
positive rudder angle values. The neural 
network comprises 1000 tan-sigmoid neurons, 
500 tan-sigmoid neurons, a single pure-linear 
neuron, in the input, hidden, and output 
layers, respectively. Sixteen different trajecto-
ries, illustrated in fig. 7 were used in the 
training process. The mean square error 
reached a minimum value of 0.07184 after 
500 epochs in duration of 12,755 seconds 
(3.54 hours). 

The neural gain compensator has 1000 
tan-sigmoid neurons in the input layer, 500 
tan-sigmoid neurons in the hidden layer, and 
a single pure-linear neuron in the output 
layer. The training process was carried out 
twice, the first time by using the error values 
of the trajectories used to train network #3, 
and the second time by using the error values 
of 14 other trajectories. The first training 
process elapsed 25,870 seconds (7.2 hours), 
where the mean square error reached a 
minimum value of 0.0302 after 1117 epochs. 
The second training process elapsed 5530 
seconds, where the mean square error reached 
a minimum value of 0.091 after 320 epochs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Negative half-sinusoidal rudder angle input and 
corresponding ship trajectory, and path deviation 

(networks #2 and its gain compensator). 
 

It can be seen in fig. 8 that by using the 
network #3, along with its neural gain 
compensator, very good results are obtained 
since the maximum path deviations are 
limited to 1%. Hence, it is recommended to 
use the gain compensator along with the main  
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Fig. 7. Trajectories used in training network #3  
(S-shaped trajectories). 

 
neural network #3 when the mariner class 
vessel is tracking S-shaped trajectories, for 
positive rudder angle input values. 

Similarly, another neural network #4 was 
constructed in addition to a neural gain 
compensator in order for the ship to track S-
shaped trajectories, for negative rudder angle 
input values. Both the main network and the 
gain compensator have 1000 tan-sigmoid 
neurons in the input layer, 500 tan-sigmoid 
neurons in the hidden layer, and a single 
pure-linear neuron in the output layer.  

The main network #4 was trained using 16 
different paths fig. 9. The training process 
elapsed 13,370 seconds (3.71 hours), and the 
mean square error reached a minimum value 
of 0.0916 after 500 epochs. 

The neural gain compensator was trained 
twice; the first time using the error values of 
the trajectories used in training the main net-
work #4, and the second time using the error 
values of 14 other trajectories. The first train-
ing stage elapsed 6,500 seconds, and the 
mean square error reached a minimum value 
of 0.0532 after 292 epochs.  

On the other hand, the second training 
stage took 13,272 seconds (3.69 hours) in 
which the mean square error reached a 
minimum value of 0.0685 after 755 epochs. 
The performance test of network #4 together 
with the neural gain compensator is 
illustrated in fig. 10. It can be clearly observed 
that the maximum path deviation is limited, 
especially when using the neural gain 
compensator along with the main neural 

network. Hence, it is recommended to use the 
neural gain compensator along with the main 
network #4 when the ship is following S-
shaped trajectories. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Positive sinusoidal rudder angle input and 
corresponding ship trajectory, and path deviation 

(networks #3 and its gain compensator). 
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Fig. 9. Trajectories used in training network #4. 

 

7. Conclusions 
 

Four main artificial neural networks were 
designed in order for the mariner type vessel 
to follow parabolic and S-shaped trajectories. 
A neural net gain compensator was designed 
alongside each main neural network in order 
to minimize the path deviation. The results 
indicate that by using each main neural net-
work along with its neural net gain compen-
sator, the maximum path deviation from the 
original trajectory is limited to 3% and some-
times there is virtually no deviation at all. 
Therefore it is recommended to use each neu-
ral net gain compensator along with its main 
neural network when the ship is tracking 
parabolic and S-shaped trajectories. 
 

Nomenclature 
 
C is the coriolis damping matrix, 
M is the mass matrix, 
N is the yaw moment, 
r is the yaw rate, 
u is the surge velocity, 
v is the sway velocity, 
X is the surge force, 
Y is the sway force, 

 is the velocity vector, and 

 is the force vector. 
 

Abbreviations 
 
ANN is the artificial neural network, and 
DOF  is the degrees of freedom. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Negative sinusoidal rudder angle input and 
corresponding ship trajectory, and path deviation 

(networks #4 and its gain compensator). 
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