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Decision trees have been found very effective for classification especially in data mining. 
Although classification is a well studied problem, most of the current classification 
algorithms need an in-memory data structure to achieve efficiency.  This limits their 
suitability for mining over large databases. In this paper, a novel Bitmap-based Scalable 

Parallel Classifier (BSPC) is presented. It removes all the memory requirements needed by 
existing algorithms. Also, since scalability is a key requirement for any data mining 
algorithm, it is considered and achieved in the design of BSPC. Additionally, the suggested 
algorithm has been designed to be easily parallelized, allowing many processors to work 
together to build a single consistent model. Performance analysis demonstrates that the 
BSPC outperforms other state of the art algorithms. The superiority of the novel algorithm is 
demonstrated through the classification of Wisconsin breast cancer dataset. 

لقد وجد أن استخدام شجرة القرار فعال جدا فى التصنيف وخاصة فى التنقيب عن البيانات. وعلى الرغم منن أن التصننيف  نو مسن لة 
تم دراستها جيدا من قبل، فإن معظم خوارزميات التصنيف الحالية تحتاج إلنى بنناب بياننات بنةادرة داخلينة لتحقينع ال.اعلينة. و نةا يحند 

متندرج منح حجنم  ةو مقينا  خلال قواعد البيانات الضخمة. فى  ةا البحث نقدم خنوارزم تصننيف متنوازد جديندمن ملائمتها للتنقيب 
البيانات ومبنى على خريطة البت  .و ةه الخريطة  تزيل دل متطلبات الةادرة التى تحتاجهنا الخوارزمينات القائمنة . ودنةلب، فبمنا أن 

تنقيب عن البيانات، فقد أخنةت فنى اتعتبنار وتحققنت فنى تصنميم الخنوارزم الجديند إمدانية التدرج  ى متطلب أساسى لأد خوارزم لل
ليدون من السهل جعله متوازد، منح السنمالأ لأد نر منن معنالا منن العمنل معنا لبنناب نمنوةج متجنان  واحند. ويظهنر تحلينل الأداب أن 

ةلنب منن خنلال تصنني.ه لبياننات مردنز وسدونسنن  الخوارزم الجديد  ي.وع غيره من أحدث الخوارزميات الموجودة حاليا ، وقد ظهنر
 لسرطان ال دد.
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1. Introduction 

 

Data mining refers to the mining or discov-

ery of new information and knowledge in 
terms of patterns or rules from large amounts 

of data [1]. Data mining techniques can be 

classified according to the kinds of knowledge 

to be discovered. In general, the knowledge 

can be described as association rules, cluster-
ing, or classification. Association rules corre-

late the presence of a set of items with each 

other [1]. Clustering is the process of grouping 

objects into classes, based on their features, 

by using clustering criteria. The criteria are to 

maximize (minimize) intraclass (interclass) 
similarity [2]. Unlike clustering, classification 

uses class-labeled training data to develop a 

description or a model for each class. Classifi-

cation is an important problem in the rapidly 

emerging field of image mining since a 

significant part of our knowledge is in the 

form of images. For example, a large amount 

of geophysical and environmental data comes 

from satellite photos and a large amount of 
the information stored on the Web is in the 

form of images.  

Classification problem can be stated as 
follows. Given a training dataset consisting of 

records where each record is identified by a 
unique record id and consists of a set of at-
tributes. One of the attributes is the classify-
ing attribute or class and the values in its do-

main are called class labels. Classification is 

the process of discovering a model for the 

class in terms of the remaining attributes. 

This model is used to classify future test data 

for which the class labels are unknown.  
Algorithms for classification can be catego-

rized as non-decision tree based methods and 

decision tree based methods. Non-decision 
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tree based methods include neural networks 

[3, 4], genetic algorithms [5], and classification 

by association rules [3, 6]. Although the neu-
ral network model is less sensitive to the 

training database imbalance, it needs high 

training time to converge to a satisfied solu-

tion. Still another disadvantage is the inability 

to backtrack the decision making process be-

cause the decision is dependent on the ini-
tialization of the network and the training set. 

Genetic algorithms may find a global optimum 

solution of an optimization problem by means 

of imitating the type of genetic adaptation that 

occurs in natural evolution. But, they require 
a good selection for the statistical parameters 

which guide the search to fast convergence. 

The disadvantage of the classification by asso-

ciation rules is the building of the best classi-

fier out of the whole set of rules. It would in-

volve evaluating the possible subsets with the 
rule consequence that gives the least classifi-

cation errors. Thus, for m rules there are 2m 

subsets which are clearly infeasible for     

large m. 

The decision tree models are found to be 
most useful in the domain of data mining be-

cause they have a number of advantages over 

other classification methods. First, they yield 

comparable or better accuracy as compared to 

other classification models [7]. Second, they 

can be constructed relatively fast compared to 
other methods. Finally, tree models are simple 

and easy to understand [8] and they can be 

easily converted into SQL statements that can 

be used to access databases efficiently [9]. 

A drawback of most existing decision tree 
classifiers is that they scan the database more 

than once to build the tree. Another drawback 

is that they require the entire dataset or spe-

cial data structure to be memory-resident [10].  

In this paper, a novel algorithm is suggested 

to overcome these drawbacks by creating bit-
map indices for all attributes in one pass, and 

then it uses these bitmap indices in creating 

the decision tree.  

The remainder of this paper is organized as 

follows. In section 2 a survey of the existing 
decision tree algorithms is presented. The se-

rial and parallel versions of the proposed algo-

rithm are outlined in section 3. Comparison 

between the performance analysis of the novel 

algorithm and the state of the art algorithms 

is presented in section 4. Experimental results 

of testing and comparing the classification ac-

curacy of the novel algorithm and some recent 
algorithms are reported in section 5. Finally 

conclusions and direction for future work is 

the subject of section 6.  

 

2. Existing decision tree classifiers 

 
A decision tree is a representation of clas-

sification knowledge where each non-leaf (in-

ternal) node tests an attribute, its branches 

correspond to attribute values, and each leaf 

node assigns a classification flag.  The con-
struction of a decision tree requires two steps: 

tree induction and tree pruning. In the induc-

tion step, there are two major issues which 

differ from an algorithm to another. First, how 

to find the split points that define node tests. 

Second, how to use the best split point to par-
tition the data. The tree built in the first 

phase, tree induction, completely classifies the 

training data set. This implies that branches 

are created in the tree even for spurious ‘noise’ 

data and statistical fluctuations. These 
branches can lead to errors when classifying 

test data. Tree pruning is aimed at removing 

these branches from the decision tree by se-

lecting the subtree with the least estimated 

error rate [11]. 

CART [7], ID3 [8], C4.5 [12] and J4.8(used 
in Weka) [13] need sorting the continuous at-

tributes at each node, and they require the 

entire data to fit in the memory. Therefore, 

they are computationally complex and not 

suitable for large databases. Thus, will not be 
compared to Bitmap-based Scalable Parallel 

Classifier (BSPC). 

One idea of modifying tree classifiers, to 

enable them to classify large datasets, is 

based on sampling of data at each tree node 

[8][9]. This method decreases classification 
time significantly but reduces the classifica-

tion accuracy. Other idea is the partitioning of 

the input data and then building a classifier 

for each partition [14, 15]. The outputs of the 

multiple classifiers are then combined to get 
the final classification. The results show that 

the classification using multiple classifiers 

never achieves the accuracy of a single classi-

fier that can classify all of the data.  
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SLIQ [11] does not need sorting the con-

tinuous attributes at each node but it sorts 

them only once at the beginning. In this 
method, the classification tree is grown in a 

breadth-first manner and the dataset is not 

physically split among nodes. Instead, it cre-

ates a class list for the class labels attached to 

all training examples. SLIQ assumes that 

there is enough memory to keep the class list 
memory-resident and this limits the size of 

largest training set.  

A Scalable Parallel Classifier for Data 

Mining (SPRINT) [16] improves the perform-

ance of the SLIQ by avoiding the problem of 
keeping the class list in the memory. But it, in 

turn, needs a hash table to do the partition. 

The hash table is repeatedly queried by ran-

dom access to determine how the entries 

should be partitioned. If the hash table does 

not fit in memory (mostly true for large data-
sets), it will be built in parts so that each part 
fits and multiple expensive I/O passes over 

the entire dataset may be needed resulting in 

highly nonlinear performance. SPRINT’s de-

sign allows it to parallelize the first phase 

which determines the splitting point effec-
tively. The parallel formulation proposed for 

the second phase which splits the data is in-

herently unscalable in both memory require-

ments and run time [17]. 

MINing in Databases classifier (MIND), [10] 
rephrases classification as a classic database 

problem of summarization and analysis 

thereof. It leverages SQL (Structured Query 

Language) by reducing the solution to ma-

nipulations of SQL statements embedded in a 

small program written in C. MIND is similar to 
SLIQ during the tree induction phase, where it 

is grown in a breadth-first fashion and the 

dataset is not physically split among nodes. 

But instead of using class list, it uses a com-

puted variable and a static array when the 
tree grows. The value of the variable changes 

to indicate that the record is moved to a new 

node by applying a split. Since most modern 

database servers have strong parallel query 

processing capabilities, MIND runs in parallel 

at no extra cost. But since the SQL has not 
the ability to form multiple inserts into differ-

ent tables concurrently, the algorithm uses 

user defined function which is written by C to 
reduce the I/O complexity.    

A Scalable and Efficient Parallel Classifi-

cation Algorithm for Mining Large Datasets, 

ScalParC, [17] is truly scalable in both run-
time and memory requirements. Like SPRINT, 

ScalParC sorts the continuous attributes only 

once in the beginning. The key difference is 

that it employs distributed hash table to im-

plement the splitting phase. The communica-

tion structure used to construct and access 
this hash table introduces a new parallel 

hashing paradigm. The paradigm gives 

mechanisms to construct and search a dis-

tributed hash table, when many values need 

to be hashed at the same time. The detailed 
analysis of applying this paradigm shows that 

the overall communication overhead does not 
exceed O(N), and the memory required does 

not exceed O(N/p) per processor, where N is 

the number of records and p is the number of 

processors [17]. 

Elegant Decision Tree Algorithm (EDTA) 
[18] aims at improving the performance of the 

SLIQ algorithm. The improvement has been 

proposed to reduce the computational com-

plexity associated with the computation of the 

used splitting criterion (gini index). In EDTA, 

the gini index is computed not for every suc-
cessive pair of values of an attribute but over 

different ranges of attribute values.   

 

3. The novel algorithm  

 
In this paper, a tree induction phase is fo-

cused on because it is computationally more 

expensive than pruning. The induction phase 

needs the data to be scanned multiple times. 

But pruning requires one access to the fully-

grown decision tree. Therefore, for pruning 
phase, the algorithm used by SLIQ [11] can be 

employed. 

As mentioned before, a drawback of most 

existing algorithms is that they scan the data-

base more than once to build the decision 
tree. Another drawback is that they require all 

the entire dataset or special data structure to 

be memory-resident. The proposed BSPC 

avoids these problems by creating bitmap in-

dices [19] for all attributes in one pass, and 

then it uses these bitmap indices in creating 
the decision tree. The use of bitmap indices 

eliminates the need for the presorting phase, 

as will be described later in this paper. More-
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over, bitmap indices are not required to re-

main in memory during processing. BSPC 

uses gini index as splitting criterion to choose 
the best split for each node because it is ar-

gued that the accuracy is sufficient [18]. The 

proposed algorithm can handle both continu-

ous and categorical attributes. For a continu-

ous attribute, it computes the gini index not 

every successive pair of values of the attribute 
but over different ranges of attribute values as 

in EDTA algorithm. To partition the bitmap 

indices, it is straightforward to do the process 

in one pass without building any additional 

data structure.  
For C classes, the value of gini index at 

node t is calculated as [11, 16, 18]: 
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where, p(j/t) is the relative frequency of class j 

at node t. 
Usually, when the gini index is used, the 

splitting criterion is to minimize the gini index 
of the split. When a node e is split into k par-

titions, the quality of the split is computed as: 
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where, r is the number of records at node e, 

and ri is the number of records at node (parti-
tion) i. 

In the next subsections, the used data 

structures and the two major issues (how to 

find the best split point and how to partition 

the data) of the proposed algorithm will be de-

scribed in more details. Also, the required 
analysis to parallelize the algorithm will be 

explained.     

 
3.1. Bitmap index 

 

A bitmap index on an attribute consists of 
one vector of bits (i.e., bitmap) per attribute 

value. The bitmaps are encoded such that the 
(i,j)th  location is set to 1 if the ith  record con-

tains the jth  value of the indexed attribute, 

and the other locations are set to 0. This is 

called a Value-List index (see fig. 1). Unlike 
the SLIQ and SPRINT algorithms, which sort 

the data before processing, BSPC eliminates 

the sorting step because the bit vector main-

tains this information implicitly. 

As shown in fig. 1, the value-list index is a 
set of bitmaps, one per attribute value (note 

that the continuous attribute (age) is parti-

tioned into ranges). In other words, if one 

views this set as a two-dimensional bit matrix, 

the focus is on the columns. If the focus 

moves on the rows, however, then the value-
list index can be seen as the list of attribute 

values or as the list encoded in some particu-
lar way. Thus, b bits are needed to represent 

the distinct actual values of each discrete at-

tribute or the number of ranges of a continu-
ous attribute. In addition, c bits are needed to 

encode the class labels. Consequently, 






n

i
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1

bits are needed to encode a complete 

record, where n is the number of attributes. 

To reduce the total number of bits for every 
record, the algorithm encodes a new value V 

from vi’s (the encoded value of the bits of the 

attribute number i) and bi’s as follow: 

 
V = v1 + v2b1+ v3 (b1b2)+…+vn+1 (b1b2b3…bn), (3) 
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Fig. 2 shows an example of encoded list in-
dex. It considers the class number ci as the 

first attribute, i.e. v1. If the number of attrib-

utes is large and can not be encoded as one 

integer, more than one encoded list is gener-
ated; one for each part of the attributes. Dur-

ing the creation of the encoded-list index, the 

number of records belong to each class and 

the number of records belong to each class for 

each value of each attribute are counted. 
These counts will be used to find the split 

point of a node. 

3.2. Count matrices 

With each decision-tree node, that is under 

consideration for splitting, there is a count 

matrix for each attribute. Its dimensions rep-

resent the class labels and the attribute val-

ues. The use of these count matrices is to 
capture the  class  distribution of  the  records  
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Age    Car type Insurance risk    B65-57  B-49  B-41  B-33  B-25  B-17    Btruck   Bsports  Bfamily 

 

 

 

             (a)         (b)               (c) 
 

Fig. 1. Example of a value-list index. (a) Training set. (b) Value-list index of age continuous attribute. (c) Value-list 

index of car type categorical attribute. 
 

Age     Car type    Class                  Encoded-list index 
 

 

 

 
             (a)          (b)    

 
Fig. 2. Example of an encoded-list index. (a) Training set.  (b) Encoded–list index. 

 

for each attribute value. These matrices are 

calculated during the splitting process. 
 

3.3. Tree induction 

 

While growing the tree, the goal at each 

node is to determine the split point that best 
divides the training records belonging to that 

leaf. As stated above, BSPC uses the gini in-

dex. The advantage of using this index is that 

its calculation requires only the distribution of 

the class labels in each node, which is the 

content of the count matrices. From all attrib-
utes, it selects the attribute-value that gives 

the lowest gini index. 

Once the best split point has been found 

for a node, the split is executed by creating 

child nodes and dividing encoded-list index 
between them. The algorithm scans the en-

coded list index of the node and decodes each 
row by using eqs. (5) and (6) to find ci and v’s  

(the class labels and  the  attribute values of 

each attribute, respectively), then applies the 

split test to determine which rows will be 
moved to the new encoded-list indices that 

correspond to the new child nodes . 

  
ci = V modulo b1,          (5) 

where, V is the row value of the bitmap index, 

b1 is the number of classes, and 

 

vi = i

i

j

j bbV /)/((remainder

1

1






).     (6) 

 

During the splits it also builds the count 

matrices for each new leaf, as stated above. 

These matrices are used to evaluate the split-

points in the next pass. 
Figs. 3 and 4 show an example for decoding 

and finding the count matrix for the continu-

ous and the discrete attributes of fig. 2. 

 
3.4. Parallelization of the algorithm 

 
In the literature, three techniques for using 

multiple processors have been considered [20,  

21]. These techniques are the shared memory, 

the distributed memory and the combined 

architecture. Also, the types of parallelism 
were defined as data parallelism and task 

parallelism. In data parallelism, the database 
is partitioned among P processors where each 

processor works on its local partition of the 

database but performs the same computation.  
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    Encoded-list index   Class label    vthe age attribute                   C (class label, attribute value) 

                                                                                     

 
 

 

 

 

                                                                                                   

 
Fig. 3. Decoding and finding the count matrix for the continuous attribute age. 

 
Encoded-list    Class label   vthe car type attribute      C(class label, attribute value) 

                                                                                    

   
 

 

  

 

 

     
Fig. 4.  Decoding and finding the count matrix for the discrete attribute car type. 

 
Task parallelism corresponds to the case 

where the processors perform different com-

putations independently but have or need ac-
cess to the entire database.  

In shared memory architecture, processors 

have access to the entire data. But in distrib-

uted memory architecture, each processor has 

its own local memory which only that proces-

sor can access directly. However, the process 
of accessing the database of other processor 

can involve selective replication or explicit 

communication of the local portion of that 

processor. 

The design of the BSPC algorithm assumes 
a shared-nothing parallel environment, a dis-

tributed memory architecture. The partition is 

achieved by first distributing the training-set 

examples horizontal and equally among all 

processors and each processor then generates 

its own encoded-list index. 
Finding split points in the parallel algo-

rithm is very similar to that of the serial algo-

rithm. In serial version, the processor scans 

the encoded list to compute the count matri-

ces. This is not changed in the parallel algo-
rithm. But with getting the full advantage of 
having N processors, each processor processes 

independently and simultaneously 1/N of the 

total data. The difference between the serial 

and parallel versions arises now. Since the 

count matrices that are built by each proces-

sor are based on “local” information only. They 

must be exchanged to get the “global“ counts. 
This is done by choosing a coordinator to col-

lect the count matrices from all processors 

and then sums the local matrices to get the 

global count matrix. As in the serial algorithm, 

the global matrix is used to find the best split 

by using the gini index.   
Having determined the winning split point, 

splitting the encoded list index for each leaf is 

identical to the serial algorithm with each 

processor responsible for splitting its own en-

coded list index into two partitions.  
 

4. Performance analysis 

 

There are two important metrics to evalu-

ate the quality of a classifier: classification ac-

curacy and classification time. Regarding the 
classification accuracy, BSPC has the same 

accuracy as EDTA, which is better than the 

other algorithms, because it uses the gini in-

dex over different ranges of attribute values 

and chooses the best split as EDTA does. But 
for the classification time analysis, the fol-

lowing subsections will cover, in some details, 
the computations of the I/O complexity and 

time complexity for both the serial and the 

parallel versions of BSPC. 
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4.1. Complexity analysis of the serial version 

 

The BSPC algorithm scans the database 
once to create the encoded-list index and at 

each node, it will perform the following opera-

tions: 

1. scan the encoded list index one by one to 

find the best split for each leaf node, and 

2. partition the encoded list index for each 
leaf node. 

 
4.1.1. I/O complexity 

By using the parameters listed in table 1, 

and noting that all sizes are measured in 
bytes, the analysis proceeds as follows. Each 
row in the encoded-list rv=(n log V + log C)/8 

and hence Dk=N/8( n log V + log C). Since B is 

the size of the buffer, the algorithm will need 
to read Dk/B times from disk at each level and 

this leads to the fact that the I/O complexity is 

O(LN/B). 

 
4.1.2. Computational time complexity 

BSPC can be regarded as a two parts algo-

rithm. The first part is the initialization which 

builds the encoded list and finds the count 

matrix at the same time. This part consists of 

a loop which contains some simple operations 
repeated N time. This means that the initiali-

zation needs O(N) units of time. The second 

part is the recursion part where there are the 

time to find the split point and the time to do 

the splitting of the input encoded list.  Here 

the count matrix contains all information to 
compute the gini index and therefore, it does 

not need to pass on the encoded list. Thus, it 

only needs one loop to pass on the encoded 

list in order to separate it into two encoded 

lists and to find the count matrix. This loop 

contains   some  of  simple  operations  and  it  
 

Table 1 
Parameters used in analysis 

B Size of the disk block 
N # of records in database 
n # of attributes 
M  Size of internal memory 
C # of distinct class labels 
Dk The total size of all encoded-list index at depth k 
V # of distinct values for all attributes  
ra Size of each attribute in database 
R Size of each record in database  
rv Size of each row in encoded-list index 
L Depth of the final classifier 

needs O (the number of the rows in the input 

encoded list, which is N) in each depth of the 

tree. Hence, the algorithm needs O(LN) unit 

time. 
 

4.1.3. Comparison to other serial algorithms 
4.1.3.1. Comparing the I/O complexity. EDTA 

and SLIQ are not considered in this 

comparison because they have the disadvan-

tage of using a class list which is required to 

be in-memory all the time during processing 
for efficient performance and this limits the 

size of largest training set. SPRINT starts by 

sorting all attribute lists, and then at each 

node it performs the following operations: 

1. scan the attribute lists one by one to find 
the best split for each leaf node, 

2. according to the best split found for each 

leaf node, form the hash tables and write them 

to disk, 

3. partition the attribute list of the splitting 

attribute for each leaf node, and 
4. partition the attribute lists for the n-1 

non-splitting attributes for each leaf node. 

Among these operations, the last one in-
curs the most I/O cost. Thus, there are two 

major parts in SPRINT: the pre-sorting of all 

attribute lists and the constructing/searching 
of the corresponding hash tables during parti-
tion. It is unrealistic to assume that N is small 

enough to allow hash tables to be stored in 

memory. Actually, hash tables need to be 

stored on disk and brought into memory dur-

ing the partition phase. It is true that hash 
tables will become smaller at deeper levels and 

thus fit in memory, but at the upper levels 

they are very large. A careful analysis shows 
that the estimation for the I/O complexity of 

SPRINT is O (nN2log N / BM) [10]. 

MIND needs to read the data set once at 
each level. Each record in the DETAIL table 

(the working data structure of MIND) has n 
attribute values of size ra, plus class label that 

may take one byte. Thus, the record size R is 
equal to nra +1. Hence, R = O(N)  and the I/O 

complexity of MIND is O(LnN/B)[10]. 

 
4.1.3.2. Comparing the computational time. In 

the initialization phase SPRINT needs to create 

the attribute lists and sort them. This means 
that it needs O( nN log N ) as a minimum time 

to sort all of them.  In the recursion part, in 
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order to decide which attribute is to be split at 

each node, the gini indices have to be 

computed for each successive pair of values 
for all attributes which have not been classi-
fied yet. This needs O(nN) times at the first 

depth and O((n-1)N ) times in the second depth 

and so on.  As a result, this sums to O 

(n/(n+1)N/2)  O(n2N) unit time . Also, the time 

for splitting is more than that of BSPC be-

cause SPRINT must split each attribute list. 

The winning attribute in the SPRINT needs 
O(N) unit time to be determined, but the other 

attributes need search on the hash table for 

each value of the attribute and this needs 

O((n-1)NlogN) O(nNlogN) unit time. Conse-
quently, SPRINT needs O(nNlogN) plus O(n2N) 

unit time.  

For the computational time of MIND, if we 

ignore the implicit sorting embedded in some 

of the used SQL statements used in its imple-
mentation, it has almost the same time com-

plexity as the novel algorithm. 

 
4.2. Complexity analysis of the parallel version 

 
The parallel runtime consists of computa-

tional time and the parallelization overhead. If 
Ts is the serial runtime of the algorithm and Tp 

is the parallel runtime on a p processor, the 

parallelization overhead is given by To =pTp – 
Ts. For runtime scalability, the overhead, To 
should not exceed O(Ts) [22]; i.e. the 

parallelization overhead per processor should 
not exceed O(Ts/p). For the classification 

problem at hand the serial runtime is Ts =O(N) 

for  the majority of tree levels. BSPC is de-

signed such that none of the components of 

the overall communication overhead of the 
classification process exceeds O(N) at any 

level; i.e. the processor communication over-
head does not exceed O(N/p) per level so it is 

scalable. 

It is easy to show that the total work of  
BSPC algorithm W= 2*pO(N)+O(N) and  the 

efficiency is O(N)/( 2p*O(N)+O(N)) =1/(2p+1). 

  
4.2.1. Comparison with SPRINT and ScalParC   

In the parallel formulation of SPRINT, the 

hash table is required for each processor to 

split its local copies of all the attribute lists as 

in the sequential algorithm.  Since each proc-

essor has to receive the entire hash table, the 

amount of communication overhead per proc-

essor is proportional to the size of the hash 
table, which is O(N). Hence, this approach is 

not scalable in runtime. Also, it is not scalable 
in terms of memory requirements, because the 
hash table size in each processor is O(N) for 

top node as well as for nodes at the upper lev-

els of the tree. 

ScalParC treats these problems by using 

the scalable parallel hashing paradigm. Thus, 
it is scalable but the parallel hashing para-

digm adds a computation overhead to the al-

gorithm. Also, ScalParC still presorts the at-

tribute lists and calculates the gini index for 

every continuous attribute value like SPRINT. 
Thus, the above analysis demonstrates that 
BSPC is the fastest algorithm. 

 

5. Experimental results 

The classification accuracy of BSPC algo-
rithm was test using Wisconsin breast cancer 

dataset and compared with the accuracy of 

SLIQ algorithm, EDTA algorithm and the Neu-

ral Network technique. 250 patterns with 9 
attributes were considered for training as in 

[18] to compare between the algorithms. Note 

that the number of patterns is small because 

EDTA and SLIQ algorithms require that the 

class list be in-memory all the time for effi-

cient performance. This limits the size of larg-
est training set, and hence the induced deci-

sion tree. The attributes are as follows: 

# Attribute      Domain 

1. Clump thickness       1-10 
2. Uniformity of cell size     1-10 

3. Uniformity of cell shape   1-10 

4. Marginal adhesion       1-10 

5. Single epithelial cell size   1-10 

6. Bare nuclei        1-10 

7. Bland chromatin       1-10 
8. Normal nucleoli          1-10 

9. Mitoses          1-10 

 

There are two classes namely Benign and 

Malignant denoted by 0 and 1. The induced 
decision tree by BSPC algorithm is shown in 

fig. 5. The first value in the elliptical boxes de-

notes the attribute number and the second 

value denotes the splitting value of the attrib-
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ute. For a 20 patterns test data, the classifi-

cation accuracy using BSPC algorithm is as 

follows: 
 

Target classes: 00000000001111111111 

Output classes: 00000000001111111111 

 

which is 100% classification accuracy, while 

the classification accuracies of original SLIQ 
algorithm, EDTA algorithm, and the Back 

propagation algorithm are 75%, 100%, and 

90% respectively [18]. 

 

6. Conclusions and future extension 
 

The proposed algorithm solves the problem 

of classification by using bitmap indices and 
reduces the I/O complexity significantly. The 

performance measurements show that the al-

gorithm demonstrates scalability with respect 

to the number of examples in training sets 
and the number of parallel processors. The 

algorithm is fast because it scans the data-

base once to build the decision tree and for 

continuous attribute we compute the gini in-

dex not every successive pair of values of the 

attribute but over different ranges of attribute 
values.  BSPC algorithm reduces the I/O com-

plexity because it does not do the presort 

phase required by most existing algorithms 

and bitmap indices are not required to be in 

memory during processing. In other words, 

BSPC does not require all the entire dataset or 
special data structure to be memory-resident. 

It uses gini index as splitting criterion to 

choose the best split for each node where it is

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig.  5. Decision tree using BSPC algorithm (breast cancer data).
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argued that the accuracy is sufficient. The al-

gorithm has also been designed to be easily 

parallelized, allowing many processors to work 
together to build a single consistent model. 

As for future work, there are two possible 

extensions. The first is the addition of a com-

puted column to the bitmap index to show the 

node that each record belongs to. This idea 

was implemented in SLIQ[11] and MIND [10], 
but here the purpose is to study the runtime 

behavior with this change. The second possi-

ble extension is to include a pruning phase, 

which is expected to remove small disjuncts 

(rules covering small number of examples, 
noise). This is due to the belief that it is better 

to capture generalizations than specializations 

in the training set. Genetic programming shall 

be applied during that pruning phase in order 

to derive new rules from the set of removed 

small disjuncts. 
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