

Alexandria Engineering Journal, Vol. 44 (2005), No. 4, 585-595 585
© Faculty of Engineering Alexandria University, Egypt.

BSPC: a novel bitmap-based scalable parallel classifier

Ghada H. Drahem a, Mohamed S. Abougabal a, Hesham Sueyllam a
and Khaled M. Mahar b

a Computer Science and Automatic Control Dept., Faculty of Eng., Alexandria University, Alexandria, Egypt
b College of Computing and information Technology, ASST, Alexandria, Egypt

Decision trees have been found very effective for classification especially in data mining.
Although classification is a well studied problem, most of the current classification
algorithms need an in-memory data structure to achieve efficiency. This limits their
suitability for mining over large databases. In this paper, a novel Bitmap-based Scalable

Parallel Classifier (BSPC) is presented. It removes all the memory requirements needed by
existing algorithms. Also, since scalability is a key requirement for any data mining
algorithm, it is considered and achieved in the design of BSPC. Additionally, the suggested
algorithm has been designed to be easily parallelized, allowing many processors to work
together to build a single consistent model. Performance analysis demonstrates that the
BSPC outperforms other state of the art algorithms. The superiority of the novel algorithm is
demonstrated through the classification of Wisconsin breast cancer dataset.

لقد وجد أن استخدام شجرة القرار فعال جدا فى التصنيف وخاصة فى التنقيب عن البيانات. وعلى الرغم منن أن التصننيف نو مسن لة
تم دراستها جيدا من قبل، فإن معظم خوارزميات التصنيف الحالية تحتاج إلنى بنناب بياننات بنةادرة داخلينة لتحقينع ال.اعلينة. و نةا يحند

متندرج منح حجنم ةو مقينا خلال قواعد البيانات الضخمة. فى ةا البحث نقدم خنوارزم تصننيف متنوازد جديندمن ملائمتها للتنقيب
البيانات ومبنى على خريطة البت .و ةه الخريطة تزيل دل متطلبات الةادرة التى تحتاجهنا الخوارزمينات القائمنة . ودنةلب، فبمنا أن

تنقيب عن البيانات، فقد أخنةت فنى اتعتبنار وتحققنت فنى تصنميم الخنوارزم الجديند إمدانية التدرج ى متطلب أساسى لأد خوارزم لل
ليدون من السهل جعله متوازد، منح السنمالأ لأد نر منن معنالا منن العمنل معنا لبنناب نمنوةج متجنان واحند. ويظهنر تحلينل الأداب أن

ةلنب منن خنلال تصنني.ه لبياننات مردنز وسدونسنن الخوارزم الجديد ي.وع غيره من أحدث الخوارزميات الموجودة حاليا ، وقد ظهنر
 لسرطان ال دد.

Keywords: Data mining, Classification, Decision tree, Bitmap index, Parallel algorithms,

Algorithm complexity analysis

1. Introduction

Data mining refers to the mining or discov-

ery of new information and knowledge in
terms of patterns or rules from large amounts

of data [1]. Data mining techniques can be

classified according to the kinds of knowledge

to be discovered. In general, the knowledge

can be described as association rules, cluster-
ing, or classification. Association rules corre-

late the presence of a set of items with each

other [1]. Clustering is the process of grouping

objects into classes, based on their features,

by using clustering criteria. The criteria are to

maximize (minimize) intraclass (interclass)
similarity [2]. Unlike clustering, classification

uses class-labeled training data to develop a

description or a model for each class. Classifi-

cation is an important problem in the rapidly

emerging field of image mining since a

significant part of our knowledge is in the

form of images. For example, a large amount

of geophysical and environmental data comes

from satellite photos and a large amount of
the information stored on the Web is in the

form of images.

Classification problem can be stated as
follows. Given a training dataset consisting of

records where each record is identified by a
unique record id and consists of a set of at-
tributes. One of the attributes is the classify-
ing attribute or class and the values in its do-

main are called class labels. Classification is

the process of discovering a model for the

class in terms of the remaining attributes.

This model is used to classify future test data

for which the class labels are unknown.
Algorithms for classification can be catego-

rized as non-decision tree based methods and

decision tree based methods. Non-decision

G.H. Drahem et al. / A novel bitmap-based classifier

 586 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005

tree based methods include neural networks

[3, 4], genetic algorithms [5], and classification

by association rules [3, 6]. Although the neu-
ral network model is less sensitive to the

training database imbalance, it needs high

training time to converge to a satisfied solu-

tion. Still another disadvantage is the inability

to backtrack the decision making process be-

cause the decision is dependent on the ini-
tialization of the network and the training set.

Genetic algorithms may find a global optimum

solution of an optimization problem by means

of imitating the type of genetic adaptation that

occurs in natural evolution. But, they require
a good selection for the statistical parameters

which guide the search to fast convergence.

The disadvantage of the classification by asso-

ciation rules is the building of the best classi-

fier out of the whole set of rules. It would in-

volve evaluating the possible subsets with the
rule consequence that gives the least classifi-

cation errors. Thus, for m rules there are 2m

subsets which are clearly infeasible for

large m.

The decision tree models are found to be
most useful in the domain of data mining be-

cause they have a number of advantages over

other classification methods. First, they yield

comparable or better accuracy as compared to

other classification models [7]. Second, they

can be constructed relatively fast compared to
other methods. Finally, tree models are simple

and easy to understand [8] and they can be

easily converted into SQL statements that can

be used to access databases efficiently [9].

A drawback of most existing decision tree
classifiers is that they scan the database more

than once to build the tree. Another drawback

is that they require the entire dataset or spe-

cial data structure to be memory-resident [10].

In this paper, a novel algorithm is suggested

to overcome these drawbacks by creating bit-
map indices for all attributes in one pass, and

then it uses these bitmap indices in creating

the decision tree.

The remainder of this paper is organized as

follows. In section 2 a survey of the existing
decision tree algorithms is presented. The se-

rial and parallel versions of the proposed algo-

rithm are outlined in section 3. Comparison

between the performance analysis of the novel

algorithm and the state of the art algorithms

is presented in section 4. Experimental results

of testing and comparing the classification ac-

curacy of the novel algorithm and some recent
algorithms are reported in section 5. Finally

conclusions and direction for future work is

the subject of section 6.

2. Existing decision tree classifiers

A decision tree is a representation of clas-

sification knowledge where each non-leaf (in-

ternal) node tests an attribute, its branches

correspond to attribute values, and each leaf

node assigns a classification flag. The con-
struction of a decision tree requires two steps:

tree induction and tree pruning. In the induc-

tion step, there are two major issues which

differ from an algorithm to another. First, how

to find the split points that define node tests.

Second, how to use the best split point to par-
tition the data. The tree built in the first

phase, tree induction, completely classifies the

training data set. This implies that branches

are created in the tree even for spurious ‘noise’

data and statistical fluctuations. These
branches can lead to errors when classifying

test data. Tree pruning is aimed at removing

these branches from the decision tree by se-

lecting the subtree with the least estimated

error rate [11].

CART [7], ID3 [8], C4.5 [12] and J4.8(used
in Weka) [13] need sorting the continuous at-

tributes at each node, and they require the

entire data to fit in the memory. Therefore,

they are computationally complex and not

suitable for large databases. Thus, will not be
compared to Bitmap-based Scalable Parallel

Classifier (BSPC).

One idea of modifying tree classifiers, to

enable them to classify large datasets, is

based on sampling of data at each tree node

[8][9]. This method decreases classification
time significantly but reduces the classifica-

tion accuracy. Other idea is the partitioning of

the input data and then building a classifier

for each partition [14, 15]. The outputs of the

multiple classifiers are then combined to get
the final classification. The results show that

the classification using multiple classifiers

never achieves the accuracy of a single classi-

fier that can classify all of the data.

G.H. Drahem et al. / A novel bitmap-based classifier

 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005 587

SLIQ [11] does not need sorting the con-

tinuous attributes at each node but it sorts

them only once at the beginning. In this
method, the classification tree is grown in a

breadth-first manner and the dataset is not

physically split among nodes. Instead, it cre-

ates a class list for the class labels attached to

all training examples. SLIQ assumes that

there is enough memory to keep the class list
memory-resident and this limits the size of

largest training set.

A Scalable Parallel Classifier for Data

Mining (SPRINT) [16] improves the perform-

ance of the SLIQ by avoiding the problem of
keeping the class list in the memory. But it, in

turn, needs a hash table to do the partition.

The hash table is repeatedly queried by ran-

dom access to determine how the entries

should be partitioned. If the hash table does

not fit in memory (mostly true for large data-
sets), it will be built in parts so that each part
fits and multiple expensive I/O passes over

the entire dataset may be needed resulting in

highly nonlinear performance. SPRINT’s de-

sign allows it to parallelize the first phase

which determines the splitting point effec-
tively. The parallel formulation proposed for

the second phase which splits the data is in-

herently unscalable in both memory require-

ments and run time [17].

MINing in Databases classifier (MIND), [10]
rephrases classification as a classic database

problem of summarization and analysis

thereof. It leverages SQL (Structured Query

Language) by reducing the solution to ma-

nipulations of SQL statements embedded in a

small program written in C. MIND is similar to
SLIQ during the tree induction phase, where it

is grown in a breadth-first fashion and the

dataset is not physically split among nodes.

But instead of using class list, it uses a com-

puted variable and a static array when the
tree grows. The value of the variable changes

to indicate that the record is moved to a new

node by applying a split. Since most modern

database servers have strong parallel query

processing capabilities, MIND runs in parallel

at no extra cost. But since the SQL has not
the ability to form multiple inserts into differ-

ent tables concurrently, the algorithm uses

user defined function which is written by C to
reduce the I/O complexity.

A Scalable and Efficient Parallel Classifi-

cation Algorithm for Mining Large Datasets,

ScalParC, [17] is truly scalable in both run-
time and memory requirements. Like SPRINT,

ScalParC sorts the continuous attributes only

once in the beginning. The key difference is

that it employs distributed hash table to im-

plement the splitting phase. The communica-

tion structure used to construct and access
this hash table introduces a new parallel

hashing paradigm. The paradigm gives

mechanisms to construct and search a dis-

tributed hash table, when many values need

to be hashed at the same time. The detailed
analysis of applying this paradigm shows that

the overall communication overhead does not
exceed O(N), and the memory required does

not exceed O(N/p) per processor, where N is

the number of records and p is the number of

processors [17].

Elegant Decision Tree Algorithm (EDTA)
[18] aims at improving the performance of the

SLIQ algorithm. The improvement has been

proposed to reduce the computational com-

plexity associated with the computation of the

used splitting criterion (gini index). In EDTA,

the gini index is computed not for every suc-
cessive pair of values of an attribute but over

different ranges of attribute values.

3. The novel algorithm

In this paper, a tree induction phase is fo-

cused on because it is computationally more

expensive than pruning. The induction phase

needs the data to be scanned multiple times.

But pruning requires one access to the fully-

grown decision tree. Therefore, for pruning
phase, the algorithm used by SLIQ [11] can be

employed.

As mentioned before, a drawback of most

existing algorithms is that they scan the data-

base more than once to build the decision
tree. Another drawback is that they require all

the entire dataset or special data structure to

be memory-resident. The proposed BSPC

avoids these problems by creating bitmap in-

dices [19] for all attributes in one pass, and

then it uses these bitmap indices in creating
the decision tree. The use of bitmap indices

eliminates the need for the presorting phase,

as will be described later in this paper. More-

G.H. Drahem et al. / A novel bitmap-based classifier

 588 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005

over, bitmap indices are not required to re-

main in memory during processing. BSPC

uses gini index as splitting criterion to choose
the best split for each node because it is ar-

gued that the accuracy is sufficient [18]. The

proposed algorithm can handle both continu-

ous and categorical attributes. For a continu-

ous attribute, it computes the gini index not

every successive pair of values of the attribute
but over different ranges of attribute values as

in EDTA algorithm. To partition the bitmap

indices, it is straightforward to do the process

in one pass without building any additional

data structure.
For C classes, the value of gini index at

node t is calculated as [11, 16, 18]:

C

j

tjptGINI
1

2))/((1)(, (1)

where, p(j/t) is the relative frequency of class j

at node t.
Usually, when the gini index is used, the

splitting criterion is to minimize the gini index
of the split. When a node e is split into k par-

titions, the quality of the split is computed as:

k

i

i
split iGINI

r

r
GINI

1

)(, (2)

where, r is the number of records at node e,

and ri is the number of records at node (parti-
tion) i.

In the next subsections, the used data

structures and the two major issues (how to

find the best split point and how to partition

the data) of the proposed algorithm will be de-

scribed in more details. Also, the required
analysis to parallelize the algorithm will be

explained.

3.1. Bitmap index

A bitmap index on an attribute consists of
one vector of bits (i.e., bitmap) per attribute

value. The bitmaps are encoded such that the
(i,j)th location is set to 1 if the ith record con-

tains the jth value of the indexed attribute,

and the other locations are set to 0. This is

called a Value-List index (see fig. 1). Unlike
the SLIQ and SPRINT algorithms, which sort

the data before processing, BSPC eliminates

the sorting step because the bit vector main-

tains this information implicitly.

As shown in fig. 1, the value-list index is a
set of bitmaps, one per attribute value (note

that the continuous attribute (age) is parti-

tioned into ranges). In other words, if one

views this set as a two-dimensional bit matrix,

the focus is on the columns. If the focus

moves on the rows, however, then the value-
list index can be seen as the list of attribute

values or as the list encoded in some particu-
lar way. Thus, b bits are needed to represent

the distinct actual values of each discrete at-

tribute or the number of ranges of a continu-
ous attribute. In addition, c bits are needed to

encode the class labels. Consequently,

n

i

i cb

1

bits are needed to encode a complete

record, where n is the number of attributes.

To reduce the total number of bits for every
record, the algorithm encodes a new value V

from vi’s (the encoded value of the bits of the

attribute number i) and bi’s as follow:

V = v1 + v2b1+ v3 (b1b2)+…+vn+1 (b1b2b3…bn), (3)

n

i

i

j

ji bvvV
1 1

11
. (4)

Fig. 2 shows an example of encoded list in-
dex. It considers the class number ci as the

first attribute, i.e. v1. If the number of attrib-

utes is large and can not be encoded as one

integer, more than one encoded list is gener-
ated; one for each part of the attributes. Dur-

ing the creation of the encoded-list index, the

number of records belong to each class and

the number of records belong to each class for

each value of each attribute are counted.
These counts will be used to find the split

point of a node.

3.2. Count matrices

With each decision-tree node, that is under

consideration for splitting, there is a count

matrix for each attribute. Its dimensions rep-

resent the class labels and the attribute val-

ues. The use of these count matrices is to
capture the class distribution of the records

G.H. Drahem et al. / A novel bitmap-based classifier

 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005 589

Age Car type Insurance risk B65-57 B-49 B-41 B-33 B-25 B-17 Btruck Bsports Bfamily

 (a) (b) (c)

Fig. 1. Example of a value-list index. (a) Training set. (b) Value-list index of age continuous attribute. (c) Value-list

index of car type categorical attribute.

Age Car type Class Encoded-list index

 (a) (b)

Fig. 2. Example of an encoded-list index. (a) Training set. (b) Encoded–list index.

for each attribute value. These matrices are

calculated during the splitting process.

3.3. Tree induction

While growing the tree, the goal at each

node is to determine the split point that best
divides the training records belonging to that

leaf. As stated above, BSPC uses the gini in-

dex. The advantage of using this index is that

its calculation requires only the distribution of

the class labels in each node, which is the

content of the count matrices. From all attrib-
utes, it selects the attribute-value that gives

the lowest gini index.

Once the best split point has been found

for a node, the split is executed by creating

child nodes and dividing encoded-list index
between them. The algorithm scans the en-

coded list index of the node and decodes each
row by using eqs. (5) and (6) to find ci and v’s

(the class labels and the attribute values of

each attribute, respectively), then applies the

split test to determine which rows will be
moved to the new encoded-list indices that

correspond to the new child nodes .

ci = V modulo b1, (5)

where, V is the row value of the bitmap index,

b1 is the number of classes, and

vi = i

i

j

j bbV /)/((remainder

1

1

). (6)

During the splits it also builds the count

matrices for each new leaf, as stated above.

These matrices are used to evaluate the split-

points in the next pass.
Figs. 3 and 4 show an example for decoding

and finding the count matrix for the continu-

ous and the discrete attributes of fig. 2.

3.4. Parallelization of the algorithm

In the literature, three techniques for using

multiple processors have been considered [20,

21]. These techniques are the shared memory,

the distributed memory and the combined

architecture. Also, the types of parallelism
were defined as data parallelism and task

parallelism. In data parallelism, the database
is partitioned among P processors where each

processor works on its local partition of the

database but performs the same computation.

23 family 1

17 sports 1

43 sports 1

68 family 0

32 truck 0

20 family 1

 1

 13

 19

 10

 26

 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

23 family 1

17 sports 1

43 sports 1

65 family 0

32 truck 0

20 family 1

 0 0 1

 0 1 0

 0 1 0

 0 0 1

 1 0 0

 0 0 1

G.H. Drahem et al. / A novel bitmap-based classifier

 590 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005

 Encoded-list index Class label vthe age attribute C (class label, attribute value)

Fig. 3. Decoding and finding the count matrix for the continuous attribute age.

Encoded-list Class label vthe car type attribute C(class label, attribute value)

Fig. 4. Decoding and finding the count matrix for the discrete attribute car type.

Task parallelism corresponds to the case

where the processors perform different com-

putations independently but have or need ac-
cess to the entire database.

In shared memory architecture, processors

have access to the entire data. But in distrib-

uted memory architecture, each processor has

its own local memory which only that proces-

sor can access directly. However, the process
of accessing the database of other processor

can involve selective replication or explicit

communication of the local portion of that

processor.

The design of the BSPC algorithm assumes
a shared-nothing parallel environment, a dis-

tributed memory architecture. The partition is

achieved by first distributing the training-set

examples horizontal and equally among all

processors and each processor then generates

its own encoded-list index.
Finding split points in the parallel algo-

rithm is very similar to that of the serial algo-

rithm. In serial version, the processor scans

the encoded list to compute the count matri-

ces. This is not changed in the parallel algo-
rithm. But with getting the full advantage of
having N processors, each processor processes

independently and simultaneously 1/N of the

total data. The difference between the serial

and parallel versions arises now. Since the

count matrices that are built by each proces-

sor are based on “local” information only. They

must be exchanged to get the “global“ counts.
This is done by choosing a coordinator to col-

lect the count matrices from all processors

and then sums the local matrices to get the

global count matrix. As in the serial algorithm,

the global matrix is used to find the best split

by using the gini index.
Having determined the winning split point,

splitting the encoded list index for each leaf is

identical to the serial algorithm with each

processor responsible for splitting its own en-

coded list index into two partitions.

4. Performance analysis

There are two important metrics to evalu-

ate the quality of a classifier: classification ac-

curacy and classification time. Regarding the
classification accuracy, BSPC has the same

accuracy as EDTA, which is better than the

other algorithms, because it uses the gini in-

dex over different ranges of attribute values

and chooses the best split as EDTA does. But
for the classification time analysis, the fol-

lowing subsections will cover, in some details,
the computations of the I/O complexity and

time complexity for both the serial and the

parallel versions of BSPC.

 1

 13

 19

 10

 26

 1

 1

 1

 1

 0

 0

 1

 0

 0

 4

 5

 1

 0

 1

 13

 19

 10

 26

 1

 1

 1

 1

 0

 0

 1

 0

 1

 1

 0

 2

 0

 0 1 0 0 0 1

 3 0 0 0 1 0

 1 0 1

 2 2 0

Attribute value

C
la

ss
 l

ab
el

C
la

ss
 l

ab
el

Attribute value

G.H. Drahem et al. / A novel bitmap-based classifier

 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005 591

4.1. Complexity analysis of the serial version

The BSPC algorithm scans the database
once to create the encoded-list index and at

each node, it will perform the following opera-

tions:

1. scan the encoded list index one by one to

find the best split for each leaf node, and

2. partition the encoded list index for each
leaf node.

4.1.1. I/O complexity

By using the parameters listed in table 1,

and noting that all sizes are measured in
bytes, the analysis proceeds as follows. Each
row in the encoded-list rv=(n log V + log C)/8

and hence Dk=N/8(n log V + log C). Since B is

the size of the buffer, the algorithm will need
to read Dk/B times from disk at each level and

this leads to the fact that the I/O complexity is

O(LN/B).

4.1.2. Computational time complexity

BSPC can be regarded as a two parts algo-

rithm. The first part is the initialization which

builds the encoded list and finds the count

matrix at the same time. This part consists of

a loop which contains some simple operations
repeated N time. This means that the initiali-

zation needs O(N) units of time. The second

part is the recursion part where there are the

time to find the split point and the time to do

the splitting of the input encoded list. Here

the count matrix contains all information to
compute the gini index and therefore, it does

not need to pass on the encoded list. Thus, it

only needs one loop to pass on the encoded

list in order to separate it into two encoded

lists and to find the count matrix. This loop

contains some of simple operations and it

Table 1
Parameters used in analysis

B Size of the disk block
N # of records in database
n # of attributes
M Size of internal memory
C # of distinct class labels
Dk The total size of all encoded-list index at depth k
V # of distinct values for all attributes
ra Size of each attribute in database
R Size of each record in database
rv Size of each row in encoded-list index
L Depth of the final classifier

needs O (the number of the rows in the input

encoded list, which is N) in each depth of the

tree. Hence, the algorithm needs O(LN) unit

time.

4.1.3. Comparison to other serial algorithms
4.1.3.1. Comparing the I/O complexity. EDTA

and SLIQ are not considered in this

comparison because they have the disadvan-

tage of using a class list which is required to

be in-memory all the time during processing
for efficient performance and this limits the

size of largest training set. SPRINT starts by

sorting all attribute lists, and then at each

node it performs the following operations:

1. scan the attribute lists one by one to find
the best split for each leaf node,

2. according to the best split found for each

leaf node, form the hash tables and write them

to disk,

3. partition the attribute list of the splitting

attribute for each leaf node, and
4. partition the attribute lists for the n-1

non-splitting attributes for each leaf node.

Among these operations, the last one in-
curs the most I/O cost. Thus, there are two

major parts in SPRINT: the pre-sorting of all

attribute lists and the constructing/searching
of the corresponding hash tables during parti-
tion. It is unrealistic to assume that N is small

enough to allow hash tables to be stored in

memory. Actually, hash tables need to be

stored on disk and brought into memory dur-

ing the partition phase. It is true that hash
tables will become smaller at deeper levels and

thus fit in memory, but at the upper levels

they are very large. A careful analysis shows
that the estimation for the I/O complexity of

SPRINT is O (nN2log N / BM) [10].

MIND needs to read the data set once at
each level. Each record in the DETAIL table

(the working data structure of MIND) has n
attribute values of size ra, plus class label that

may take one byte. Thus, the record size R is
equal to nra +1. Hence, R = O(N) and the I/O

complexity of MIND is O(LnN/B)[10].

4.1.3.2. Comparing the computational time. In

the initialization phase SPRINT needs to create

the attribute lists and sort them. This means
that it needs O(nN log N) as a minimum time

to sort all of them. In the recursion part, in

G.H. Drahem et al. / A novel bitmap-based classifier

 592 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005

order to decide which attribute is to be split at

each node, the gini indices have to be

computed for each successive pair of values
for all attributes which have not been classi-
fied yet. This needs O(nN) times at the first

depth and O((n-1)N) times in the second depth

and so on. As a result, this sums to O

(n/(n+1)N/2) O(n2N) unit time . Also, the time

for splitting is more than that of BSPC be-

cause SPRINT must split each attribute list.

The winning attribute in the SPRINT needs
O(N) unit time to be determined, but the other

attributes need search on the hash table for

each value of the attribute and this needs

O((n-1)NlogN) O(nNlogN) unit time. Conse-
quently, SPRINT needs O(nNlogN) plus O(n2N)

unit time.

For the computational time of MIND, if we

ignore the implicit sorting embedded in some

of the used SQL statements used in its imple-
mentation, it has almost the same time com-

plexity as the novel algorithm.

4.2. Complexity analysis of the parallel version

The parallel runtime consists of computa-

tional time and the parallelization overhead. If
Ts is the serial runtime of the algorithm and Tp

is the parallel runtime on a p processor, the

parallelization overhead is given by To =pTp –
Ts. For runtime scalability, the overhead, To
should not exceed O(Ts) [22]; i.e. the

parallelization overhead per processor should
not exceed O(Ts/p). For the classification

problem at hand the serial runtime is Ts =O(N)

for the majority of tree levels. BSPC is de-

signed such that none of the components of

the overall communication overhead of the
classification process exceeds O(N) at any

level; i.e. the processor communication over-
head does not exceed O(N/p) per level so it is

scalable.

It is easy to show that the total work of
BSPC algorithm W= 2*pO(N)+O(N) and the

efficiency is O(N)/(2p*O(N)+O(N)) =1/(2p+1).

4.2.1. Comparison with SPRINT and ScalParC

In the parallel formulation of SPRINT, the

hash table is required for each processor to

split its local copies of all the attribute lists as

in the sequential algorithm. Since each proc-

essor has to receive the entire hash table, the

amount of communication overhead per proc-

essor is proportional to the size of the hash
table, which is O(N). Hence, this approach is

not scalable in runtime. Also, it is not scalable
in terms of memory requirements, because the
hash table size in each processor is O(N) for

top node as well as for nodes at the upper lev-

els of the tree.

ScalParC treats these problems by using

the scalable parallel hashing paradigm. Thus,
it is scalable but the parallel hashing para-

digm adds a computation overhead to the al-

gorithm. Also, ScalParC still presorts the at-

tribute lists and calculates the gini index for

every continuous attribute value like SPRINT.
Thus, the above analysis demonstrates that
BSPC is the fastest algorithm.

5. Experimental results

The classification accuracy of BSPC algo-
rithm was test using Wisconsin breast cancer

dataset and compared with the accuracy of

SLIQ algorithm, EDTA algorithm and the Neu-

ral Network technique. 250 patterns with 9
attributes were considered for training as in

[18] to compare between the algorithms. Note

that the number of patterns is small because

EDTA and SLIQ algorithms require that the

class list be in-memory all the time for effi-

cient performance. This limits the size of larg-
est training set, and hence the induced deci-

sion tree. The attributes are as follows:

Attribute Domain

1. Clump thickness 1-10
2. Uniformity of cell size 1-10

3. Uniformity of cell shape 1-10

4. Marginal adhesion 1-10

5. Single epithelial cell size 1-10

6. Bare nuclei 1-10

7. Bland chromatin 1-10
8. Normal nucleoli 1-10

9. Mitoses 1-10

There are two classes namely Benign and

Malignant denoted by 0 and 1. The induced
decision tree by BSPC algorithm is shown in

fig. 5. The first value in the elliptical boxes de-

notes the attribute number and the second

value denotes the splitting value of the attrib-

G.H. Drahem et al. / A novel bitmap-based classifier

 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005 593

120

A2≤2

1

A3≤3

A6≤5

A1≤6

A1≤8

A4≤2 A4≤5

A3≤1
A1≤8 A7≤3

A5≤1
A1≤5

A6≤7

1

0

0

1 0

1

1 1

1 0

1 0

A7≤2
A5≤4

A8≤3

A9≤1

1

0

1 0

0 1

133 117

130

127

 18 99

41

133

25 6 3 6 2 1

1

33 1

1 2
5

3

58

A4≤2

0

3

7

2

1

4

5

14

33 3

8

3

A7≤3

0

8

ute. For a 20 patterns test data, the classifi-

cation accuracy using BSPC algorithm is as

follows:

Target classes: 00000000001111111111

Output classes: 00000000001111111111

which is 100% classification accuracy, while

the classification accuracies of original SLIQ
algorithm, EDTA algorithm, and the Back

propagation algorithm are 75%, 100%, and

90% respectively [18].

6. Conclusions and future extension

The proposed algorithm solves the problem

of classification by using bitmap indices and
reduces the I/O complexity significantly. The

performance measurements show that the al-

gorithm demonstrates scalability with respect

to the number of examples in training sets
and the number of parallel processors. The

algorithm is fast because it scans the data-

base once to build the decision tree and for

continuous attribute we compute the gini in-

dex not every successive pair of values of the

attribute but over different ranges of attribute
values. BSPC algorithm reduces the I/O com-

plexity because it does not do the presort

phase required by most existing algorithms

and bitmap indices are not required to be in

memory during processing. In other words,

BSPC does not require all the entire dataset or
special data structure to be memory-resident.

It uses gini index as splitting criterion to

choose the best split for each node where it is

Fig. 5. Decision tree using BSPC algorithm (breast cancer data).

G.H. Drahem et al. / A novel bitmap-based classifier

 594 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005

argued that the accuracy is sufficient. The al-

gorithm has also been designed to be easily

parallelized, allowing many processors to work
together to build a single consistent model.

As for future work, there are two possible

extensions. The first is the addition of a com-

puted column to the bitmap index to show the

node that each record belongs to. This idea

was implemented in SLIQ[11] and MIND [10],
but here the purpose is to study the runtime

behavior with this change. The second possi-

ble extension is to include a pruning phase,

which is expected to remove small disjuncts

(rules covering small number of examples,
noise). This is due to the belief that it is better

to capture generalizations than specializations

in the training set. Genetic programming shall

be applied during that pruning phase in order

to derive new rules from the set of removed

small disjuncts.

Acknowledgments

We would like to express our gratitude for the

referees patience and care in reviewing the
paper. We very much appreciate their valuable

and helpful comments.

References

[1] R. Elmasri and S. Navathe, Fundamental

of Database Systems, Addison-Wesley

(2000).

[2] J. Han, Data Mining Techniques,

Conference Tutorial,
http://db.cs.sfu.ca/DBminer (1996).

[3] M. Antonie, O.R. Zaiane “Application of

Data Mining Techniques for Medical

Image,” Proceedings of ACM SIGKDD

Conference, San Francisco, USA, pp. 95-
101, Aug (2001).

[4] D. Michie, D.J. Spiegelhalter and C.C.

Taylor, Machine Learning, Neural and

Statistical Classification, Ellis Horwood

(1994).

[5] B.D. Turney, "Cost-sensitive
Classification: Empirical Evaluation of a

Hybrid Genetic Decision Tree Induction

Algorithm," Journal of Artificial

Intelligence Research, Vol. 2, pp. 369-409

(1995).

[6] B. Liu, W. Hsu, Y. Ma, “Integrating

Classification and Association Rule

Mining,” Proceedings of 4th International
Conference KD. and DM. New York, USA,

pp. 80-86 (1998).

[7] L. Breiman, J.H. Friedman, R.A. Olshen,

and C.J. Stone, Classification and

Regression Trees, Wadsworth, Belmont

(1984).
[8] J.R. Quuinlan, “Induction of Decision

Trees,” Machine Learning, Vol. 1, pp. 81-

106 (1986).

[9] J. Wirth and J. Catlett, "Experiments on

the Costs and Benefits of Windowing in
ID3,” Proceedings of 5th International

Conference on Machine Learning, Ann

Arbor, Michigan, USA, pp. 87-99 (1988).

[10] M. Wang, Approximation and Learning

Techniques in Database Systems, Ph.D.

Thesis, Duke University (1999).
[11] M. Mehta, R. Agarwal and J. Rissanen,

“SLIQ: A Fast Scalable Classifier for Data

Mining,” In Proceedings of 5th

International Conference on Extending

Database Technology (EDBT), Avignon,
France, pp. 18-32, March (1996).

[12] J.R. Quinlan, C4.5: Programs for

Machine Learning, Morgan Kaufmann,

San Mateo, CA, (1993).

[13] The university of Waikato, New Zealand,

http://www.cs.waikato.ac.nz/~ml/index.
html

[14] P.K. Chan and S.J. Stolfo. “Meta-

Learning for Multistrategy and Parallel

Learning,” In Proceedings of 2nd

International Workshop on Multistrategy
Learning, Center of AI, George Mason

University, USA, pp. 150-165 (1993).

[15] P.K. Chan and S.J. Stolfo. “Experiments

on Multistrategy Learning by Meta-

Learning,” In Proceedings of 2nd

International Conference on Information
and Knowledge Management, Washington

DC, USA, pp. 314-323 (1993).

[16] J. Shafer, R. Agarwal and M. Mehta,

“SPRINT: A Scalable Parallel Classifier for

Data Mining,” In Proceedings of 22th
International Conference on Very Large

Databases, Mumbai, India, pp. 544-555

(1996).

[17] M.V. Joshi, G. Karypis, and V. Kumar.

“ScalParC: A New Scalable and efficient

http://db.cs.sfu.ca/DBminer

G.H. Drahem et al. / A novel bitmap-based classifier

 Alexandria Engineering Journal, Vol. 44, No. 4, July 2005 595

parallel Classification Algorithm for

Mining Large Datasets,” 11th

international Parallel Processing
Symposium, Orlando, USA, pp. 573-579

(1998).

[18] B. Chandra, S. Mazumder, N. Parimi,

“Elegant Decision Tree Algorithm for

Classification in Data Mining," 3rd

International Conference on Web
Information Systems Engineering, pp.

160-165 (2002)

[19] C.C. Yannis, E. Ioannidis, “Bitmap Index

Design and Evaluation,” In Proceedings of

ACMSIGMOD International Conference
on Management of Data, Seattle, WA., pp.

355-366 (1998).

[20] A. Freitas and S. Lavington, Mining Very

Large Databases with Parallel Processing,

Kluwer Academic Publishers (1998).
[21] M. Joshi, G. Karypis and V. Kumar,

“Parallel Algorithms for Sequential

Associations: Issues and Challenges,”

Symposium Talk at 9th SIAM

International Conference on Parallel

Processing, San Antonio, pp. 99-103
(1999).

[22] V. Kumar, A. Grama, A. Gupta and

G.Karypis, Introduction to Parallel

Computing: Algorithm Design and

Analysis, Addison Wesley, Redwood City,
CA (1994).

Received October 30, 2004

Accepted July 13, 2005

