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A modified-windowed Local Polynomial Approximation LPA beamformer is developed for 
nonparametric high-resolution tracking of rapidly accelerated moving targets. Exploiting 
the acceleration of the source is used to distinguish between many nonstationary sources 
that have the same position and velocity. In addition, it decreases the Mean Square Error 
(MSE). Applying a cubic array geometry with this quadratic LPA beamformer enhances its 
performance and allows it to scan the main beam toward any point in space.  In this article, 
quadratic LPA-beamformer performance expressions and the problem of the optimal 

window choice are studied. A comparison to the conventional beamformer response is also 
introduced.  

تم تتومم وست ةمموكلتالمعات للممريبتلكتحسومملت لا كمتت لارمملاتلاتةكةممكلت لحمم تت تالمبترتي مملت لتتلمميت للألميساتستت ممي  ت لتاومم تل  ممل  ت
 لات سعلتارجكلت لةسعل.ت البتانتخلأات ةتغلأاتعجكلتةسعلت لاصلستلكتاووم تلمونت لرلوملتامنت لاصميلست لات سعملت لاتلميل لت م ت

 لل م تأنت ماات ل ةموكلتتحكماتامنتات ةموتاسلميت لخومط.ت تم تتولوم تفام ا ت لاصم   لتتتتت ت لةسعل.تتليرضي لتإلتتالب,تتأثلمت لا قي
عمم  تقمملسحتاةممات للممريبتتي لاعرلمملت مم ت يلمملتالممعات للممريبت لتسلورممتتلكتحسومملت لا كممتت لارمملاتلاتةكةممكلت لحمم تت  ةممنتأل  مم ,تتعامم

انت ما ت لل م تلس ةملتاحمل ستأل كتالمعات للمريبت لتسلورمتتليرضمي لتإلمتت مختوميست  اثمات تضمت لس وة تتجياتأيتفحولت م ت ل مس  .
ت ت تعالبتلس ةلتاحيسفلتلونت اات ل ةوكلت لاو سحت لونتالعات للريبت لتحكولي.تلو ات لفي اح.
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1. Introduction 

 

Smart antennas are urgently needed in the 
expanding field of communications. Thus, the 

problem of beamforming is primarily consid-

ered. Recently, there has been considerable 

interest in developing efficient algorithms for 

tracking the Direction-Of-Arrival (DOA) of 
multiple moving targets. As well, the DOAs at 

any time can be estimated by the method of 

nonlinear least squares [1, 2]. Aiming to 

improve the tracking performance, Rao et al. 

[2] introduce the dynamic model governing the 

motion of different objects. This enables to 
predict the state (position, velocity, and 

acceleration) of each object in any time 

interval using the estimated state in the 

previous interval. With the assumption that 

the DOA change is negligible within each 
interval. 

Since the source motion may severely vary 

with time within the  observation interval as in 

many source tracking applications, this ass-

umption appears to be nonoptimal because it 

may lead to a very poor tracking performance. 

To relax this situation, Elkamchouchi et al. [3] 

and Ashour et al. [4] track the motion of the 
accelerated targets within a sliding window 

using quadratic Local Polynomial Approxima-

tion (LPA) beamformer. This beamformer is a 

modification of the linear LPA beamformer 

presented by Katkovnik and Gershman [5,6]. 
The quadratic LPA beamformer exploits the 

third term in source motion expansion using 

Taylor series. This term expresses the sources 

acceleration which decreases the MSE of the 

angle estimation. 

Since the quadratic LPA beamformer is 
quite efficient for beamforming and DOA 

estimation of accelerated sources, applying it 

to cubic array geometry becomes vital require-

ment as a generalization. The cubic array is 

used to scan the main beam toward any point 
in space. Indeed, it produces high LPA 

function value which improves the beam-

former performance. 

A model for the output signal of the receiv-

ing sensor array will be derived. Additionally, 
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asymptotic expressions for the bias and vari-

ance of the LPA beamformer are also achieved.   

 
2. Problem formulation 

 

Consider a cubic array of n = MM  NN  
MN sensors with equidistant interelement 

spacing dx =dy = dz = d. This cubic array 

represent an example of 3D array applied to 

track an incoming signal which is character-

ized by the vector of DOA parameters  = 

[,]T, where  and  are azimuth and eleva-

tion, respectively. The pth sensor is located at 
(xp, yp, zp) for p= 0,1,2,…,n-1. The time delay 

can be defined as: 
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Without loss of generality, let the center of 

the coordinate system be located at the phase 

center, i.e. at the axes origin (0,0,0).    
Assume that q narrowband signal sources, 

s1(t),…, sq(t), located in the far-field of the 

array, impinge on the cubic array from 

distinct unknown directions, (i(t), i(t)), i = 

1,2,…,q where ,i    . i 20    The 

array observation vector at the output of the 

array will have the following form: 
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where, 
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is the qn   time-varying direction matrix, )(ts  
is the   1q vector of the source waveforms 

and  )t(e is the 1n vector of sensor noise. 

Using the assumption that the noise is  white 

zero-mean Gaussian random process with a 

variance of 
2 , it could be shown that the  

1n steering vector may be written as:  
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The main goal is to apply the LPA 

beamformer for estimating the DOAs of the 

sources and to locate them correctly.  

To exploit the sources acceleration, expand 

the source motion within the observation 
interval using Taylor series as follows: 
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Here, T is the sampling interval and 

,N,...,,k 110   where N  is the number of 

snapshots. Assuming that the observation 

window is sufficiently short, therefore, the 

fourth and the later terms in the previous two 

equations are negligible. So, the source motion 

can be expressed in the form [3, 4]:   
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where )l,(z 00 , )l,(z 11 and )l,(z 22 are the ins-

tantaneous source DOA, angular velocity and 

acceleration, respectively. Therefore, the prob-

lem is to estimate )(c lz  from the nonsta-

tionary array observation vector )t(r . Where, 

 
T

210
TT )c,c,c( ,)l,l,l(  ,)z,z,z(  clz 210210 .

             (9) 

 

According to eqs. (5) and (6), the source 
trajectories are assumed to be arbitrary 

functions of time which belong to the nonpar-

ametric class of piecewise continuous  -diffe-

rentiable functions: 
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The 'piecewise' assumes that a small 

number of discontinuities in the functions 

))t(),t(( )()(    or their derivatives can exist 

on observation interval. In fact, the local 

expansion is applied in order to calculate the 

estimate for a single time-instant  t  only. For 

the next time-instant the calculations should 

be repeated. 

 

3. LPA beamformer 

 
Use the weighted least squares approach 

to formulate the LPA beamformer for a single 

source  which can be extended to the multiple 

sources case. Minimize the following LPA 

function [5,6]: 
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where  .  stands for the norm. The 

summation interval in (11) is determined by 

the window function )kT(h  and the 

dependence of ),( a  is expressed via the 

vector c  and the timekT . The window func-

tion is given [7]. 
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where )v( is a real symmetric function 

 )v()v(     satisfying the conventional 

properties; 
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and the scaling parameter  h  determines the 

window length. 
Minimize (11) with respect to the unknown 

deterministic waveform )kTt(s  . Thus, 
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The estimate of the waveform )kTt(s  is 

obtained as: 
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where the property n)kT,()kT,(H caca  is 

exploited. Inserting (15) into (11), the following 
function is obtained. 
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Eq. (16) should be minimized over the 

vector parameter c . This is equivalent to the 

maximization of, 
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where  . stands for the absolute value. Let us 

refer to the function (17) as the quadratic LPA 

beamformer. Here, the maximization of the 

LPA function requires 6D search instead of 3D 

search  as in [3] or 2D search as in [5] ,or 1D 

search as in conventional beamformer using 

beamforming function in [6]. As in conven-
tional beamformer, the response to multiple 

sources represent a direct superposition of 

particular responses to each source. Therefore, 

the LPA beamformer (17) can be applied to the 

scenarios with multiple well-separated sources 
as well.  

 

4. Asymptotic LPA beamforming 

 

The asymptotic analysis of the LPA 

beamformer for single accelerated moving 
source  is also valid for multiple sources that 

can have  two identical  values of parameters 

(i.e., angle, angular velocity, or acceleration). 

The following formulas are utilized in order to 

demonstrate that the window width selection 
is  important for  accurate estimation. 

Let the estimation error vector be, 

 
T)z,z,z( 210z     

       ,ˆ)l,l,l( , ˆ T lllzz 210        (18) 

 

where 


z and 


l  represent the estimate of eq. 
(9) obtained via the maximization of the LPA-

beamforming function. Using the source 

waveform remain constant within the observa-

tion interval, short-time asymptotic, and the 

superposition principle to solve   and   

separately. Thereby, 
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Consequently, the biases and variances of 

the source motion parameters estimation are: 
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and the signal-to-noise ratio (SNR) is defined 

as: 
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This proposition role out the following 

facts: firstly, they clarify an explicit 
dependence of the achieved accuracy on the 

array geometry and source parameters. 

Secondly, the biases of the DOA and 

acceleration estimate are proportional to the 

fourth derivatives  )t(),t( )()( 44   in both the 

azimuth and elevation directions, and 

therefore, it depends on the source motion 
parameters. Thirdly, the variances of the 

angular velocity and acceleration estimates in 

both directions do not depend on the 

derivatives of )t( or )t( at all, but on their 

angles only. Fourthly, the variances of the LPA 

beamformer are not affected by a possible 
source nonstationarity, while its bias is 

affected.   

 

4. Optimal window size 

 

Considering the conventional case with the 
rectangular window, therefore 
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and 
T

h
N    is the number of snapshots. 

To determine the optimal parameterh , the 

MSE of the estimates should be minimized. 

Therefore, the optimal parameter h  of the 

angle estimate is found to be 0,0 opth which  

has the advantage over opt,h0  obtained in [5]. 

When h  tends to zero, the MSE decreases but 

requires to increase the number of samples. 

The optimal window length of the angular 

velocity estimate which minimizes the MSE is 

expressed as: 
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Indeed, the results presented in eq. (30) 

clearly deduce that the optimal window size 

depends on the third derivative of both 
azimuth and elevation directions. The bias-to-

variance tradeoff is: 
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It follows from eq. (31) that the optimal 

bias-to-variance tradeoff for the angular 
velocity estimate is independent of the source 

parameters, irrespective of the array geometry 

or the source motion model. Also, it 

corresponds to the situation where the bias 

squared and the variance have the same order. 
Additionally, it has the same value obtained 

when linear LPA beamformers used as has 

been introduced by Elkamchouchi et al. [8] 

and quadratic LPA by Elkamchouchi et al. [3] 

and Ashour et al. [4]. Furthermore, the 

parameter 1  is independent of the azimuth-

elevation directions or their derivatives. 
The optimal window length of the accelera-

tion estimate is expressed as: 
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It is clear that the optimal window size 

opth ,2  depends on the fourth derivative of both 

the azimuth and elevation directions. The 

bias-to-variance tradeoff for the acceleration 
estimate is presented as: 
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It follows that the optimal bias-to-variance 

tradeoffs   for  both  the  angular  velocity  and  
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 (a)                      (b)                                          (c) 

 

 
 (d)          (e)              (f) 

 
     (g)                              (h)                                           (i) 

       
      (j)                                              (k)                        (l) 

  
Fig. 1. The output of  the quadratic LPA beamformer for the well separated sources (case 1) in pairs as surface and 

contour plots, (a-f),  for azimuth direction, (g-l), for elevation direction. 

 
 



H.M. Elkamchouchi et al. / Accelerated moving sources 

                                                Alexandria Engineering Journal, Vol. 44, No. 3, May 2005                                              407 

 
(a) 

 

 
(b) 

 
 

Fig. 2. Comparison between the 1D output of the LPA beamformer (solid curve) and the  conventional beamformer   
(dotted curve) for the well separated sources  (case 1), (a),  for azimuth direction, (b)  for elevation direction. 
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     (a)                              (b)            (c) 

 
      (d)                             (e)           (f) 

 
         (g)           (h)                                (i) 

   
                        (j)                               (k)                                                         (l) 

 
Fig. 3. The output of  the quadratic LPA beamformer for  three sources have the same angle and velocity (case 2) in pairs 

as surface and contour plots, (a-f),  for azimuth direction, (g-l), for elevation direction. 
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(a) 

 
(b) 

 
Fig. 4. Comparison between the 1D output of the LPA beamformer (solid curve) and the  conventional beamformer   

(dotted curve) for three sources have the same angle and velocity (case 2), (a), for azimuth direction, (b),  for 
elevation direction. 
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acceleration  estimates are independent of the 

source parameters. They correspond to the 

situation where the bias squared and the 
variance have the same order, but in the 

acceleration case the bias-to-variance tradeoff 

depends on the window parameters.  

 

5. Simulation results 

 

Assume a cubic array of n = 3 3  3 = 27 

sensors spaced half-wavelength apart, and 

uncorrelated moving sources with 

dBSNR 10  in a single sensor. The 

rectangular window with 20N  snapshots is 

considered in the following cases. 
Case 1: 

Consider two sources located at the 
following directions: 

,kk)k( (k)1
2

1 124   and 

2
22 2116 kk)k()k(    .  

 

The two sources are well separated where the 

separation between their angles are sufficient. 

Accordingly, the LPA beamformer can 

distinguish and localize the correct sources 
location as illustrated in fig. 1. Whereas the 

conventional beamformer cannot distinguish 

or localize them, indicating that the LPA 

superimpose the conventional beamformer as 

shown in fig. 2. 
Case 2: 

Consider three sources that have the same 

angle and angular velocity as (0o, 1o /sample) 

in both directions and their accelerations, 

respectively, are: [(-2o, 0o, 2o)/ (sample)2]. Note 

that, the abbreviation (sample)2 is used in the 
figures to refer to (sample)2. Fig. 3  shows that 

the LPA beamformer can distinguish between 

through their different accelerations; a 

phenomenon that is completely abolished in 

both the linear LPA and the conventional 
beamformers where they cannot resolve this 

case.  Consequently, the source acceleration 

isexploited to improve the source localization 

in nonstationary situations. And to resolve 

sources that have the same angle and angular 

velocity, where the uniform velocity LPA 
cannot resolve it. At the same time, the 

conventional beamformer is neither able  to 

exploit the source motion nor to resolve closely 

spaced sources. In addition, the 1D repre-

sentation of the quadratic LPA versus the 

angles does not resolve the sources where they 

have the same angles but indicates the correct 
angles location as clear in fig. 4. 

 

6. Conclusions 
 

This article propose a modified nonpara-

metric approach based on quadratic LPA 
beamformer of time-varying DOA for angle, 

angular velocity, and acceleration estimations. 

By exploiting the acceleration of the moving 

source, the MSE of the angle estimation is 

decreased with small window size which 
improve the LPA beamformer performance. 

Also, the values of the LPA function is very 

high using cubic arrays compared to the 

corresponding values when using planar array 

[4] or ULA as in [3]. The variance and the bias 

of the beamformer estimates are derived for 

short-time (h= cost, T  0) asymptotic behav-

ior. The related velocity part of these expres-

sions has a relationship with that of the 

uniform velocity LPA. The simulations show 

that the nonparametric technique can resolve 

closely spaced sources. Taking into considera-

tions that their accelerations are sufficiently 
different even if they have the same velocity 

and angle of arrival.  
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