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In this article, a new hybrid adaptive fuzzy controller is derived for robotic systems. The 
sliding mode control concept is combined with fuzzy control strategy to design a model-free 
adaptive fuzzy sliding mode control. The equivalent controller has been substituted for by 
adaptive fuzzy system and the uncertainties are estimated on-line. The approach has the 
learning ability to generate the fuzzy control actions and adaptively compensates for the 
uncertainties. Simulations have been carried out on a two link planar robot. Despite the 

high nonlinearity and coupling effects, the control input has been decoupled leading to a 
simplified adaptive mechanism for robotic systems. Results show the effectiveness of the 
proposed control system.  

يهدد البحث ددىلبحددتلج ددحلحل لظح  يددمللنددل لح قدد لللددللاتلاحدده.  لح الددلظقتلب حيدددملبحلنددل لبحا حددتعلي ددح   لا هددظ لبحددح ق لثه ددح المل
  لحد لـح ح ق لاحه.  لظلقي حاد لل دتلا ت ددلا دث دلثدلحلاظر لبحتيل دتمل دلج ي بلبحا حظيلتلبحالزح دلاعلبلألنادلبحهلاايدلحيقظنللنلال

ظلياقدنلح  يد لا لحاهادللظحه. اهادللجللدل للادملبحالدلظملج د اللالاايددلظبحللليددل يدتلالاايددلتلبحدح ق لثده ت لاتقثدلللأ ح ل دللنب
لب حتملظثحطثيقلاربلبحلنل لل تلاللظملآحتلللللاتلبلأزتعلجنهتتلبحلحللاجل. تبتلااحلزهلحلنل لبحح ق لبحا حتعمل
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1. Introduction 
 

Performance of many tracking control 

systems is limited by variation of parameters 

and disturbances. This specially applies for 

direct drive robots with highly nonlinear 
dynamics and model uncertainties. Payload 

changes and/or its exact position in the end 

effector are examples of uncertainties. The 

control methodologies that can be used are 

ranging from classical adaptive control and 

robust control to the new methods that 
usually combine good properties of the 

classical control schemes to fuzzy [1], genetic 

[2] and neural network [3,4] based ap-

proaches. Classical adaptive control of 

manipulators requires a precise mathematical 
model of the system’s dynamics and the 

property of linear parameterization of the 

system’s uncertain physical parameters [5]. 

The study of output tracking problems has 

a long-standing history. Sliding Mode Control 

(SMC) is often favored basic control approach, 
because the insensitivity to parametric uncer-

tainties and external disturbances [6-8]. The 

theory is based on the concept of changing the 

structure of the controller to achieve a desired 

response of the system. By using a variable 
high speed switching feedback gain, the tra-

jectory of the system can be forced on a 

chosen manifold, which is called sliding 

surfaces or switching surfaces, and remains 

thereafter. The design of proper switching 
surfaces to obtain the desired performance of 

the system is very important and has been the 

topic of many previous works [9-11]. With the 

desired switching surface, we need to design a 

SMC such that any state out side the 

switching surface can be driven to the switch-
ing surface in finite time. Generally, in the 

SMC design, the uncertainties are assumed to 

be bounded. This assumption may be 

reasonable for external disturbance, but it is 

rather restrictive as far as unmodelled dynam-
ics are concerned. 

Nowadays, Fuzzy Logic Control (FLC) 

systems have been proved to be a promising 

approach to solve complex nonlinear control 

problems. They provide an effective means to 

capture the approximate nature of real world. 
Examples are numerous; see [12] for instance. 

While non-adaptive fuzzy control has proven 

its value in some applications [13], it is 

sometimes difficult to specify the rule base for 
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some plants, or the need could arise to tune 

the rule-base parameters if the plant changes. 

This provides the motivation for adaptive fuzzy 
control, where the focus is on the automatic 

on-line synthesis and tuning of fuzzy control-

ler parameters (i.e., the use of on-line data to 

continually “learn” the fuzzy controller, which 

will ensure that the performance objectives are 

met).  
Recently, adaptive FLC design has drawn 

much attention of many researchers. Palm 

[14] and Wang [15] employed a switch func-

tion as the input fuzzy variables and proposed 

a fuzzy sliding mode controller. Lu and Chen 
[16] extended this approach and developed a 

self organized fuzzy sliding mode controller to 

smooth the chattering phenomenon. They 

employed a fuzzy system adjusted by an adap-

tive law to approximate an optimal controller 

to a specified accuracy based on the Lyapunov 
stability theory. However, this kind of direct 

adaptive law is limited to nonlinear system 

with constant control gain. After that, Chai 

and Tong [17] proposed a fuzzy direct control 

scheme by using a fuzzy system to approxi-
mate an optimal controller that was designed 

based on the assumption that all of the 

system's dynamics were known. Then a fuzzy 

sliding mode controller was added to the 

adaptive controller to compensate for the un-

certainties and smoothing the control signal. 
Ting et al. [18] employed fuzzy sliding mode 

controller for the active suspension system to 

investigate the ride comfort. Their approach 

however, depends on a certain model for a 

sliding mode to operate. In addition, the data-
base of the fuzzy system is still complicated. 

In the work of Hsu et al. [19], the fuzzy data 

base is complicated and expert knowledge is 

still needed to enhance the performance. 

In this work, a Hybrid Adaptive Fuzzy 

Control (HAFC) is proposed for robotic sys-
tems. The scheme is based on the universal 

approximation property of fuzzy systems and 

the powerfulness of SMC theory. A one dimen-

sional adaptive FLC is designed to generate 

the appropriate control actions so that the 
system's trajectories stick to the sliding 

surfaces. Adaptive control laws are developed 

to determine the fuzzy rule base and the 

uncertainties. With respect to SMC, the 

proposed algorithm eliminates the usual as-

sumptions of SMC and faster convergence can 

be achieved. Simulation tests are reported and 

discussed.  
The paper is organized as follows. In 

Section 2, the equivalent control method is 

used to derive a SMC for rigid robots. Section 

3 introduces the proposed HAFC which is a 

model free approach. Simulation results which 

include comparison between HAFC and SMC 
are presented in Section 4. Section 5 offers 

our concluding remarks.  

 

2. Sliding Mode Control (SMC) design 

 
In this section, the well-developed litera-

ture is used to demonstrate the main features 

and assumptions needed to synthesis a SMC 

for robotic systems. SMC employs a discon-

tinuous control effort to derive the system traj-

ectories toward a sliding surface, and then 
switching on that surface. Then, it i.e. will 

gradually approach the control objective, the 

origin of the phase plane. To this end, 

consider a general n -link robot arm, which 

takes into account the friction forces, 

unmodeled dynamics, and disturbances, with 

the equation of motion given by [19]. 

 

)()()()(),()( ttTxFxFxGxxxCxxM dsd   ,  (1) 

 

where: 
nRx   joint angular position vector of 

the robot, 
nR  Applied joint torques (or forces), 

nnRxM )(  Inertia matrix, positive definite, 

nRxxxC  ),(

 

effect of Coriolis and centrifugal 

forces, 

nRxG )(  gravitational torques, 

nn
d RF   diagonal matrix of viscous and/ 

or dynamic friction coefficient, 
n

s RxF )(  vector of unstructured friction 

effects and static friction terms, 
and 

n
d RT   vector of generalized input due 

to disturbances or unmodeled 

dynamics.  

The controller design problem is as fol-

lows. Given the desired trajectories ,,, ddd xxx   

with some (or all) system parameters being 

unknown, derive a control law for the torque 
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(or force) input )(t  such that the position 

vector x  and the velocity vector x  can track 

the desired trajectories, if not exactly then 
closely. For simplicity, let (1) rewritten as: 

 

)(),()( txxfxxM    ,                                       (2) 

 

where the vector  x)x,x(C)x,x(f   )x(G  

)t(T)x(FxF dsd  .  

The following assumptions are needed to 

synthesis a SMC:  

Assumption 1: The matrix )(xM  is bounded by 

a known positive definite matrix )(ˆ xM .  

Assumption 2: There exists a known estimate 

),(ˆ xxf  for the vector function ),( xxf   in eq. (2).  

The tracking control problem is to force 

the state vector to follow desired state trajecto-

ries )(txd . Let )()()( txtxte d  be the tracking 

error vector. Further, let us define the linear 

time-varying surface )(ts  [9,10,20]. 

 

)()()( ttets   , T
n )]t(s),...,t(s),t(s[)t(s 21 , (3) 

 

where )()()( txtxte d   and )(t  is a time 

varying linear function. Thus from eqs. (2) and 

(3), we can get the equivalent control (also 
called ideal controller [9]) [6,7], 

 

])[(),()(    d
eq xxMxxft ,      (4) 

 

where )(teq  is equivalently the average value 

of )(t  which maintains the system’s trajecto-

ries (i.e. tracking errors) on the sliding surface 

0)( ts . To ensure that they attain the sliding 

surface in a finite time and thereafter main-

tains the error )(te  on the sliding manifold, 

generally the control torque )(t  consists of a 

low frequency (average) component )(teq  and 

a hitting (high frequency) component ht  as 

follows: 
 

)()()( ttt hteq   .        (5) 

 

The role of )(tht  acts to overcome the ef-

fects of the uncertainties and bend the entire 

system trajectories toward the sliding surface 

until sliding mode occurs. The hitting 

controller )(tht  is taken as [7]: 

 

)sgn()( sKxMht   ,                                        (6) 

 

where, )k,,k(diagK n1 , 0ik ,  

T
n )]ssgn(,),ssgn(),s[sgn()ssgn( 21 . 

To verify the control stability, let us first 

get an expression for )(ts . Using eqs. (3-5), the 

first derivative of eq. (3) is: 

 

)t()t(e)t,x(s                                              

 

ht

d

d

)x(M          

)t(x)t,x(f)x(M          

)t()t(x)t(x          







1

1















  . )ssgn(K                  (7) 

 
Choosing a Lyapunov function, 

 

)(
2

1 2

11 tsV i
n

i 
 ,         (8) 

 

and differentiating using eqs. (6) and (7), we 

obtain: 

 

(9)                                 , 0)(     

)sgn()()()(

1

111













tsk

stsktstsV

i
n

i i

ii
n

i ii
n

i i 

       

which provides an asymptotically stable sys-

tem.  
Since the parameters of eq. (2) depend on 

the manipulator structure and payload it 

carries, it is difficult to obtain completely 

accurate values for these parameters. In SMC 

theory, estimated values are usually used in 

the control context instead of the exact 
parameters. So that eq. (4) can be written as: 

 

])[(ˆ),(ˆ)(    deq xxMxxft ,                 (10) 
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where )(ˆ xM , ),(ˆ xxf   are bounded estimates for 

)(xM , and ),( xxf   respectively. As mentioned 

earlier in assumption 1 and 2, they are 
assumed to be known in advance.  

In sliding mode, the system trajectories are 

governed by [20]:  

 

,0)( tsi 0)( tsi
 ,  ni ,,1 .            (11) 

 

So that, the error dynamics are deter-
mined by the function )(t . If coefficients of 

)(t  were chosen to correspond to the coeffi-

cients of a Hurwitz polynomial, it is thus 

implying that 0)(lim  tet . This suggests 

)(t  taking the following form:  

 

 dt)( 21 iiiii ectec ,  with 0, 21 ii cc . (12) 

 

So that, in a sliding manifold, the error 

dynamics is: 

 

0)()()( 21  tectecte iiiii  ,                       (13) 

 

and the desired performance is governed by 
the coefficients c1 and c2.  

In summary, the sliding mode control in 

eqs. (5, 6) and (10) can guarantee the stability 

in the Lyapunov sense even under parameter 

variations. As a result, the system trajectories 

are confining to the time varying surfaces eq. 
(3). With this in hand, the error dynamics is 

decoupled i.e. each degree of freedom is 

dependent on its perspective error function, 

eq. (13). The control law eq. (10) however, 

shows that the coupling effects have not been 

eliminated since the control signal for each 
degree of freedom is dependent on the 

dynamics of the other degrees of freedom. 

Independency is usually preferred in practice. 

Furthermore, to satisfy the existence condi-

tion, a large uncertainty bound should be cho-
sen in advance. In this case, the controller 

results in large implementation cost and leads 

to chattering efforts.  

 

3. Decoupled robot tracking control design 

 
In this section, we propose a fuzzy system 

that would approximate the equivalent control 

eq. (4). The main challenge facing the applica-

tion of fuzzy logic is the development of fuzzy 

rules. To overcome this problem, an adaptive 
control law is developed for the on-line 

generation of the fuzzy rules. The input of the 

fuzzy system is the sliding surfaces eq. (3), 

and the output is a fuzzy controller, which 

substitutes for the equivalent eq. (4). With this 

choice, no bounds are needed about the 
system functions. Furthermore, the uncertain-

ties are estimated and continuously compen-

sated for, which means that the hitting 

controller htu  eq. (6) is adaptively determined 

on-line.  

The coming Subsection gives a brief intro-
duction to fuzzy logic systems and character-

izes them with the type, which is utilized in 

this contribution.  

 
3.1. Fuzzy logic systems 

 
A fuzzy logic system consists of a collection 

of L  fuzzy IF-THEN rules. A one-input one-

output fuzzy system has the following form:  

 
l

fl       A  s  isTHENisIF :l Rule .             (14) 

 

where L,...,,l 21  is the rule number, s  and 

f  are respectively, the input and output 

variables. lA  is the antecedent linguistic term 

in rule l ; and l , L...l 1  is the label of the 

rule conclusion, a real number called fuzzy 
singleton. The conclusion of each rule (control 

action), a numerical value not a fuzzy set, can 
be considered as pre-defuzzified output. 

Defuzzification maps output fuzzy sets defined 

over an output universe of discourse to a crisp 

output, f . In this work, we have adopted 

singleton fuzzifier, product inference, the 

center-average defuzzifier which reduces the 

fuzzy rules eq. (14) into the following fuzzy 

logic system: 
 

)(

)(

),(

1

1

s

s

s
L

l

A

A

L

l

l

f

l

l

















 ,                               (15) 
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where 
lA  is the membership grade of the 

input s  into the fuzzy set lA . In eq. (15), if 

l ’s are free (adjustable) parameters, then it 

can be rewritten as: 

 

)(),( ss T
f   ,                      (16) 

 

where ),...,( L 1  is the parameter vector 

and TL )]s(),...,s([)s(  1  is a regression 

vector given by, 

 





L

l
A

Al

s

s
s

l

l

1

)(

)(
)(




 .                    (17) 

 

Generally, there are two main reasons for 
using the fuzzy systems in eq. (16) as building 

blocks for adaptive fuzzy controllers. Firstly, it 

has been proved that they are universal 

approximators [21]. Secondly, all the parame-

ters in )(s  can be fixed at the beginning of 

adaptive fuzzy systems expansion design 
procedure so that the only free design parame-

ter vector is  . In this case, ),( s  is linear in 

parameters. This approach is adopted in syn-

thesizing the adaptive control law in this 

paper.  

Without loss of generality, Gaussian 

membership functions have been selected for 
the input variables. A Gaussian membership 

function is specified by two parameters  ,c : 

 

,
cx

-expσ)c,;xgaussian()x(
j

jjAl
j 


























 


2

2

1




 
where c  represents the membership function’s 

center and   determines its width.  

The fuzzy system used in this contribution 
is one input one output system, eq. (14). The 

input of the fuzzy system is normalized using 

L  number of equally spaced Gaussian mem-

bership functions inside the universe of 

discourse. Slopes are identical, see fig. 1.  

The described fuzzy system is used to 
approximate the nonlinear dynamics of robotic 

systems. In a  decoupled  manner,  the control  

 
 

Fig. 1. Input fuzzy sets.  
 

action is computed for each degree of freedom, 

based on the corresponding sliding surface. 

The control actions l  (output singletons) 

which are contained in the parameter vector   

should be known. In the coming Subsection, 

adaptive laws are derived to do this task. The 
antecedent part is fixed with Gaussian mem-

bership functions. 
 
3.2. The adaptation mechanism  

 
Fuzzy systems are universal function app-

roximators. They can approximate any nonlin-

ear function within a predefined accuracy if 

enough rules are used. This implies the 

necessity of using expert knowledge in the 

form of large number of rules and suitable 
membership functions. Usually trial and error 

procedure is needed to achieve the requested 

accuracy. Assigning parameters of the fuzzy 

systems (or some of them) adaptively greatly 

facilitates the design (e.g. reduce the number 
of rules) and enhances the performance (saves 

the computation resources).  

In this Subsection, we derive an adaptive 

control law to determine the consequent part 

(control actions contained in parameter vector 

 ) of the fuzzy system which is used to 

approximate the unknown nonlinear dynamics 

of robotic systems. The proposed scheme 

saves the need to expert knowledge and 

tedious work needed to assign parameters of 
the fuzzy system. Furthermore, disturbances, 

approximation errors and uncertainties are 

determined on-line leading to a stable closed 

loop system. Lyapunov stability analysis is the 

most popular approach to prove and evaluate 

the convergence property of nonlinear 
controllers, e.g., sliding mode control, fuzzy 

control system. Here, Lyapunov analysis is 
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employed to investigate the stability property 

of the proposed control system.  

To this end, an expression for )(ts  can be 

expressed as follows:  
 

)t()t(e)t,x(s         

)t(x)x,x(f)x(M)x(M         

)t()t(x)t(x         

d

d













 11

 ).t(x)]x,x(f)[x(M         d
hteq    1  

                   (18) 

 

By the universal approximation theorem 

[21], there exists a fuzzy controller ),(  sf  in 

the form of (14) such that: 
 

i
T
iiiifieq st   ),()( ,      ni ,,1 .         (19) 

 

Employing a fuzzy controller )ˆ,(ˆ iiif s   to 

approximate )(t
ieq  as [22, 23], 

 

ii
T
iiiif s   ˆ)ˆ,(ˆ ,                   (20) 

 

where i̂  is the estimated value of the ideal 

parameter vector i  and i  is the 

approximation error. Now, the SMC in eq. (5) 

can be rewritten as:  

 

iiihtiiifi sst   )()ˆ,(ˆ)( ,         (21) 

 

where the fuzzy controller )ˆ,(ˆ iiif s   is 

designed to approximate the equivalent 

controller )(t
ieq . Define )ˆ,(ˆ~

iiifieqif s   , 

iii  ˆ~
 , and use eq. (17), then it is 

obtained that: 
 

ii
T
iif  

~~ .                             (22) 

 

Substituting from eqs. (5) and (20-22) into 

eq. (18) yields:  

 

))((1   
htxMs ,                (23) 

 

where ],,
~

,
~

[ 2111 n
T
n

TTT   . Now, )(1 xM   

may be approximated by a constant positive 

definite diagonal matrix M . Unlike constant 

control gain schemes (see [24] for example), 

this assumption has been taken into account 

as follows. Eq. (23) can be rewritten as: 
 

)
~

(, ii
T
iihtiii EMs   ,     n,,i 1 ,        (24) 

 

where Ei  is the sum of approximation error i  

and the uncertainty; ii E . A control goal 

would be the on-line determination of its 

estimate; )(ˆ tEi . The estimation error is defined 

by: 
 

)(ˆ)(
~

tEEtE iii  ,    ni ,,1  .                  (25) 

 

Define a Lyapunov function as: 
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where 1  and 2  are positive constants. 

Differentiating eq. (26) with respect to time 
and using eq. (23), it is obtained that: 
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Substituting for iE  from eq. (25), 
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To satisfy 02 V , the adaptive laws can be 

selected as: 
 

iiii s  1
~




,                          (27) 

 

)sgn(ˆ
iiiht sE ,                               (28) 

 

and using (25) (recalling iE  is constant) 

 

iiii sEtE 2
~

)(ˆ 


.                               (29) 

 

Then, the first time derivative of (26) can 

be written as: 
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              (30) 

 

Therefore, 2V  is reduced gradually and the 

control system is stable which means that the 

system trajectories converge to the sliding 

surfaces )(ts  while ̂  and Ê  remain bounded. 

Now, the control law eq. (18) can be rewritten 

as follows: 

 

)sgn(ˆ)ˆ,(ˆ)( iiiifi sEst
i

  ,        ni ,,1  .  (31) 

 

In summary, the adaptive fuzzy sliding 

mode controller eq. (31) has two terms; 

)ˆ,(ˆ  s
if  given in eq. (17) with the parameter 

i̂  adjusted by eq. (27) and the uncertainties 

and approximation bound iÊ  adjusted by eq. 

(29). By applying these adaptive laws, the 

HAFC is model free and can be guaranteed to 
be stable for any nonlinear system has the 

form of eq. (2).  

It should be noted that implementing the 

implies that both error algorithm and control 

signals have been decoupled, since each of 

them is dependent only on the perspective 
sliding surface. Unlike SMC, the proposed 

HAFC does not require any knowledge about 

the system functions nor their bounds. It 

adaptively determines and compensates for 

the unknown dynamics and external 
disturbances leading to a stable closed loop 

system. Fig. 2 shows the main elements of the 

control system.  

 

5. Simulation results 

 
To simplify the presentation, a two-link 

robot arm with varying loads is used to 

generate data in the simulation tests; fig. 3. 

The arm is depicted as 2-input, 2-ouput 

nonlinear system. The control architecture 
shown in fig. 2 represents the closed loop 

system, in which the robot is the plant to be 

controlled. The control input for each joint is

 

 

 
 

 

 

 

 
 

 

 

 

 

 
Fig. 2. The closed loop control system utilizing HAFC. 
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dependent on its sliding surface, parameter 

vector of the fuzzy controller and the esti-

mated error; eqs. (18), (27-29) and (31).  
The equations of the robot motion are 

given in Appendix A. The state variable vector 

is considered as the joint positions; i.e. 
Txxx ],[ 21 . They are usually available feed-

back signals through encoders mounted on 

the motor shafts.  

Link parameters are given in table 1, 

where the mass of link one 1m  and link two 

m2 are randomly varied; rand (1) is a pseudo-

random number ranges from 0.10.0  . Fig. 

4-a shows their time history. A random 

disturbance torque has been added to link 

two, such that Td = [0,7rand (1)]T; fig. 4-b. Dy-

namic and static friction torques are selected 
as follows:  
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)xsgn(.

)xsgn(.
Fs

2

1

21

81




. 

 

The friction and disturbance torques are 

unknown to the algorithm. Random signals 
are generated by the rand function in Matlab. 

The desired trajectories for 
1

x  and 
2

x  are: 

  ),sin()(   , )sin()( 222111 tAtxtAtx dd    with  

 .A 601  rad, 802 .A   rad, 1
1 50  s  . rad , 

  .  012   rad, s-1. 

Initially, the arm is assumed at rest, i.e. 
T

t ,x ]00[0   rad/s, and position of links as 

T
t .,.x ]750750[0   rad, which resulted in 

initial position error T
)t( .,.e ]750750[0   rad 

and velocity error  ,.e )t( 320[0   T. ]36351  

rad, /s. 

 

 

 

 
 

 

 

 

 
 
 

Fig. 3. A two link rigid robot. 

Table 1 
Parameters of the robot arms 

 
Inertia parameter Link 1 Link 2 

m  mass (kg) )1(32 rand  )1(41 rand  

l  length (m) 1.0 0.7 

cl  position of c.g. (m) 0.5 0.35 

 

The HAFC has been simulated under the 

following settings. Two rules were imple-
mented to determine each of the two 

equivalent control components (i.e. 2L ). 

Each rule base has one input, is  and one 

output,
ieq , where the subscript 2 ,1i  de-

notes the joint number. This means that 4 

rules are used to determine the arm’s 

nonlinear dynamics. The universe of discourse 

of the input is  is [-50, 50]. Constants of the 

sliding surfaces c1=[40,40]T and Tc ]3.0,3.0[2  . 

The slopes are set to 50  for all member-

ship functions. The learning rates are selected 

as ]5.1,15[1 T  and ]6,45[2 T . To reduce the 

chattering phenomenon, the sign function in 

eq. (28) is replaced by the saturation function.  
Evolution of the parameter vectors is given 

in fig. 5-a. Zeros were used to initiate their 

components. The superscripts denote the rule 

number, 1 and 2. Rates of adaptation for the 

parameter vectors are depicted in fig. 5-b. 

Also, the estimated errors and uncertainties 
were initiated from zeros and their magnitudes 

were adaptively tuned on-line, fig. 6. They 

reach the steady state after relatively short 

time (less than half second).  

For the sake of comparison, the SMC in 
eqs. (5), (6) and (10) has been simulated under 
the following settings. Gain K of the hitting 

controller gain in eq. (6) was set as IK 400  

where I is 2×2 identity matrix. This value of K 

has been selected as the maximum possible 
one, which means maximum possible rate of 

convergence. Larger value results in chatter-

ing. ),(ˆ xxf   and )(ˆ xM  in eq. (10) were selected 

as follows: IM 5ˆ   i.e. time-independent (con-

stant) matrix and  
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(b) 
 

Fig. 4. Mass of links (a) and disturbance (b) profiles. 
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(b) 

 
Fig. 5. Time history of (a) parameter vectors (i.e. control 

actions) and (b) adaptation rate. 

 

 

 
 

 

 

 

 

 
 

 

 
 

Fig. 6. Time history of the estimated errors.  
 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 
 

Fig. 7. The desired joint angles, 
dx  and actual angles x .  

 

Similar to HAFC, the friction and distur-

bance torques were unknown to the algorithm. 

Results are shown in figs. 7 to 12. Conver-
gence has been achieved by the two control-

lers. However the HAFC was faster than SMC.  

It can be concluded that all signals of the 

control system are bounded, the states have 

converged to the equilibrium points and the 

control targets have been met.  
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Fig. 8. Time history of the sliding surfaces.  
 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 
Fig. 9. Phase plots.  

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 
 

Fig. 10. Velocity tracking errors.  
 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
Fig. 11. Trajectory tracking errors.  

 



A. Sharkawy / Control for robotic system 

       Alexandria Engineering Journal, Vol. 44, No. 3, May 2005                                      
371     

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

Fig. 12. The inputs.  

 

5. Conclusions  

 
In this article, the universal approximation 

property of fuzzy systems and powerfulness of 

SMC theory have been utilized to compose a 

new hybrid control algorithm for robotic sys-

tems. Optimal parameters of the fuzzy system 

and uncertainty bound are generated on-line. 
The proposed control scheme has the following 

advantages: (a) do not require the system 

model; (b) guarantees the stability of the 

closed loop system; (c) simple rule base (one-

input one-output fuzzy system). The adaptive 
control law generates on-line the fuzzy rules. 

Furthermore, the uncertainties are learned 

on-line and adaptively compensated for. In 

comparison with SMC, the proposed scheme 

has eliminated the assumptions, which are 

usually needed to synthesize a SMC. 
Simulation tests have been carried out on a 

two link planar robot. The fuzzy system needs 

only two rules per joint to determine the 

control signal.  

The approach significantly eliminates the 
fuzzy data base burden and reduces the com-

puting time, thereby increasing the sampling 

frequency for possible implementation. It 

should be emphasized that, the developed 
adaptive laws learn the fuzzy rules and uncer-

tainties. Zeros have been used to initiate 

them. Results show the effectiveness of the 

overall closed-loop system performance.  

 

Appendix A 

 

Assuming rigidity of links and joints, it can 

be shown that the equation of motion of the 

robot arms is given by: 

 

,),,,()()( 12121122121211  xxxxHxxMxxM   

 

,),,,()()( 22121222221212  xxxxHxxMxxM   

 

where: 
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2
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2
11211 xllmlmIlmIlmxM ccc   

 

),cos()( 22122
2
22212 xllmIlmxM cc   

,2
2
2222 IlmM c   

 

),sin( 2212 xllmh c  

 

),cos()(                            

)cos(2),,,(

11211

21222121211

xglmlm

xxglmxxhxxxxH

c

c



 
 

 

),cos(),,,( 2122
2
121212 xxglmxhxxxxH c    

 

and 2/ 81.9 smg   is the acceleration of 

gravity.  
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