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In previous study, the Boundary Element Method (BEM) was applied on Laplace’s equation
to solve the problem of seepage through earth dams provided with horizontal toe filters and
founded on impervious foundations. The scope of the present study is to construct simple
and accurate equations to solve that problem of seepage depending on the results of the
BEM. Different forms of equations were suggested and tested. Levenberg-Marquardt
method was used to calculate the unknown constants through these equations. Different
equations were created to estimate accurately the following seepage characteristics: (1) total
quantity of seepage through the dam, (2) crossed length of the filter, (3) location and
magnitude of maximum seepage rate along the upstream face of the dam, (4) seepage rates
along the filter, and (5) profile of the free surface and location of its inflection point. Average
Absolute Relative Error (AARE), between estimated values using the created equations and
BEM results, ranges from 2% to 5%, which can be considered sufficiently satisfactory. The
procedure followed in this research can be applied forward to any problem to represent its
numerical solution through simple and accurate equations.
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1. Introduction

Many investigators studied the problem of
seepage through earth dams provided with
horizontal toe filters. Two approaches are
mainly used to solve the mathematical
formulation of the problem. First one is the
analytical approach, which can conclude an
exact and continues solution for the problem.
Harr [1] presented a sufficient revision of
previous researches based on analytical solu-
tions. In 1972, Moayeri used conformal map-
ping and inverse hodograph to create a closed
form solution [2].

Second approach is the numerical approxi-
mations for the mathematical formulation of
the problem through a discritization scheme.
Neuman [3] solved this problem using finite
element method and a minimization tech-
nique. Abdrabbo [4] studied the problem using
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the BEM with constant elements. Abdel-
Gawad and Shamaa [5] have used the BEM
with linear and singular elements to create a
numerical solution for the problem. Good
agreement has been noticed between BEM
results and the analytical solutions.

Analytical approach always ended with
complex equations between the dependent
variables and different seepage characteristics.
These equations cannot apply directly. Es-
pecial skills in mathematics and programming
are needed to use these equations. In the
other hand, numerical solutions are always
ended with approximate discrete solutions at
the pre-specified nodes simulating the
problem domain. These discrete solutions can
be represented only in graphical forms.

The objective of this work is to create new
simple and accurate equations that calculate
seepage characteristics due to different
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changes in the dependent variables. Different
simple and usable forms of equations were
suggested and tested. Results obtained from
applying BEM on that problem, Abdel-Gawad
and Shamaa [5], were used to calibrate these
equations. Levenberg-Marquardt method was
used to determine the unknown coefficients
for the suggested equations. A Fortran pro-
gram was written to apply the optimization
method for the BEM results.

2. Variables and output results

Seepage through homogenous isotropic
dam with horizontal filter, see fig. 1, can be
represented by Laplace’s equation. The
governed equation and its boundary condi-
tions were explained in details in [5]. Depend-
ent variables through this problem are the
upstream face angle ¢, and the relative
horizontal distance from point A to point C,
(Xb/Hu = Xb’). The problem has been solved
using the BEM for 278 combinations of the
dependent variables [5], (=100, 200,..., 909),
and (Xb/Hu = Xb’= 0.0, 0 .1, 0.2, 0.3,..., 3.0).

The output results were: (1) seepage rates
along upstream face of the dam AB, (2) seep-
age rates along the filter CD, (3) free surface
coordinates and its exit point D, and (4) poten-
tial head along the impervious bed BC.

3. Levenberg-marquardt method

This is a nonlinear unconstrained optimi-
zation method that used to calibrate the sug-
gested equations with BEM results [0].

Applicant equations were suggested to
connect between the dependent variables («,
Xb’) and different seepage characteristics. The
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Fig.1. Trapezoidal earth dam with horizontal filter.

unknown constants through these equations
can be calculated by minimizing the following
function:

XB=3.02=90 0=m 2

SE= > > >[RE(a,Xb ,c),—-RNs] , (1)

XB=0.0 4=10" o=1

where, SE is known as the objective function
and represents the summation of square
differences between the BEM numerical re-
sults (RN) and the expected results from the
suggested equation (RE) for different values of
a and XB’, and c is a vector represents N un-
known constants through the suggested equa-
tion. The subscript o represents different
nodes in case of studying the free surface pro-
file or the seepage rates along the horizontal
filter, where m is the total number of nodes
along the free surface or the filter. In case of
studying univariable such as total seepage
through the dam or crossed length of the filter
m will be equal to one, consequently the
subscript o should be ignored.

Any optimization method starts searching
from an initial guess for the unknown con-
stants through an iteration process. Taylor’s
expansion of the objective function SE must
be recognized to understand the optimization
procedure. Taylor’s expansion of SE at itera-
tion i+1 can be represented in the following
matrix form [6]:

SE(Ci+1) = SE(Ci + Ac; ) = SE(Ci )+
g}rACi + 0.5(ACi )T Hi(ACi )+ O(ACi )23 , (2)

where, SE(cj;1), and SE(cj) are the magni-
tudes of SE at iteration i+1, i respectively, Ac;
is N-dimensional vector represents the differ-
ences between the N unknown constants at it-
eration i and i+1, g?-is N-dimensional vector
for the gradients of SE with respect to each
element of the known vector ¢; (known as the
gradient vector) and the superscript T means
the transpose of the vector, H; is a square N-
dimensional matrix represents the second de-
rivatives of SE with respect to the elements of
the vector cjand called the Hessian matrix,
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and O(Aci)z?’ represents the third and higher
order terms of Taylor’s expansion.

If only the first two terms of Taylor’s
expansion are considered, the optimization
will be first order and called steepest descent
method. This method converges linearly to the

minimum with gradient:

o

OSE _ g3 < ORE,

(o) =2= Z ZREo—RNo] .
I GCJ XB=0.0 10" o=l acj

for j=1,2,..,.N (3)

where, (g j )i represents gradient of SE with re-

spect to constant ¢j at iteration i. To speed up

the convergence rate to the quadratic level
three terms of Taylor’'s expansion must be
considered. This is the base of Newton’s
method, also called inverse-Hessian method
[6]. If the solution is close enough to the mini-
mum, we can consider that the gradient of SE
at iteration i+1 equals to zero that
9is1 =VSE(ci;1)= 0. Applying this assumption

to eq. (2), then:

-1
cis1=¢;—H;g;, (4)

where, H; ! is the inverse of the Hessian ma-
trix at iteration i. If Newton’s method starts
from initial guess close enough to the mini-
mum H will be invertible positive definite ma-
trix and the solution converges quadratically.
However the solution almost starts far from
the minimum, so singularity for H can take
place that means no inverse of H can be
achieved. From here stems the powerfulness
of the Levenberg method, which varies
smoothly between the extremes of the second
order inverse-Hessian method and the first or-
der steepest descent method. The latter
method is used far from the minimum, switch-
ing continuously to the former as the
minimum is approached.

Elements of Hessian matrix can be
simplified by ignoring the terms of second
derivatives as [7]:

(H”) ai Zlcz, =2

XUZ—IS OaZQO Ozm{[RE

XB=0.0 g=10" 0=1
XB=3.0¢=90 0= m{OREO aREO}

NZ*Z Z“Z“é‘cJ oc

XB=0.0 =10 0=1

aZRE L REq REg
ac joc oy acy

(5)

This simplification eliminates the necessity
of calculating second derivative of the
suggested equation with respect to the
unknown constants. Modified elements of H
affect only the iterative route to the minimum
but not the final solution.

The main idea of the Levenberg method is
to amplify the diagonal elements of H if we are
far from minimum, as the solution approaches
the minimum diagonal elements diminish to
its original values. This will satisfy the
invertible constrain of H in eq. (4). Thus only
the diagonal elements of Hessian matrix must
be modified as:

H; = (1+5)Hii for i=1,2,..,N, (6)

where, & is a positive constant. Given an ini-
tial guess for the set of fitted parameters c;,
Levenberg method follows the subsequent
steps:

1. compute SE(c;).

2. pick a modest positive value for &, say
£=0.01.

3. use ¢ to calculate the gradient vector g;j
and the Hessian matrix H;j.

4. use Gauss elimination method to inverse
H; and solve the linear eq. (4), then the calcu-
lated parameters cij,; must be used to evalu-
ate SE(Cj,q)-

5. if SE(¢j)< SE(cj,q) increase & by a factor of

10, then re-amplify the diagonal elements of
the Hessian matrix and go back to step 4.

6. if SE(cj,1)<SE(c;) decrease & by a factor of
10, update the trial parameters form c; to cjy
and go back to step 3.

Any optimization method needs a stopping
criterion. Maximum number of iterations was
restricted with 5000. Also, search stops if
SE(cj)= SE(cj,1) for 12 subsequent iterations.

A Fortran program was written to apply
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Levenberg method to any trial equation. Input
data to the program are: (1) number of un-
known constants through the suggested equa-
tion, (2) the suggested equation and its first
derivatives with respect to the wunknown
constants, (3) Initial guess for the unknown
constants, (4) numerical results previously ob-
tained from the BEM.

Output data from the program are: (1)
fitted constants for the suggested eq. (2) final/
minimum value of the objective function SE,
and (3) average absolute relative error between
the BEM results and the predicted results
from the trial equation.

4. Suggested equations

To generate suitable forms for the
suggested equations the following steps must
be considered: (1) graph, in curves, the BEM
results against different values of the
dependent variables « and Xb’, (2) explore the
plotted curves carefully to estimate effect of
the o and Xb’ on the BEM results, (3) based
on realm of the researcher judgment the most
appropriate structure of the trial equation
must be chosen to simulate the effect of o and
Xb’ on theses results , (4) in some cases the
BEM results must be transformed first (e.g., to
the logarithmic form) to enhance the behaviors
of the plotted curves, which make it more
compatible with the response of the suggested
equation.

In spite of increasing number of terms and
consequently number of unknown constants,
through the suggested equations, increases di-
mensions of the optimization domain and con-
sequently accuracy of these equations. It is
more desirable to construct simple equations
with a minimum number of terms and un-
known constants.

The following forms of equations were sug-
gested:

fl =C +Cza+03a2 +Cy Xb'+C5Xb'2 , (7)
f2 = fl +06063 +C7XbI3; (8)
f3 = f2 +08a010 +CgXb'Gll, (9)

C5XU

f4 =01 +Cpe%% +cge%%0 4 ce&7XY (10)

e [C3OC+C4 ]

f5 :Cl +C2 —[—]'e CSXU+CG 5 (11)

f e [caaveq [ (12)
=C1+C) ———,
6T e[CGXU+c7]°8
C
C3a +Cq |
f7201+02@, (13)
[C6 Xb'+C7 ]CS
where, fy,7 are seven forms of equations,

Citql1 are eleven unknown constants, and a is

angle of inclination for upstream face of the
dam in radians. All the above seven equations
were tested to simulate different seepage char-
acteristics or their logarithms. The calculation
of the derivatives of the pervious equations
fito7 Wwith respect to the unknown constants

Cii011> can be achieved as in [8].

The selection of the most appropriate
equation is guided by the Average of the
Absolute Relative Error (AARE), between BEM
results and the estimated ones:

XB=3.0=90 0=m

D)

XB=0.0 4=10 o0=1

RE, — RN, (14
RNy, |’

where, 278 represents total number of runs
carried out using the BEM (run related to a =
90° and Xb’ = 0.0 was excluded). In case of
using a smaller number of runs to calibrate
the objective function, this number must be
settled instead of the total number of runs.

Egs. (9) to (13) are nonlinear in the un-
known constants. This non-linearity creates
more than one minimum for the objective
function SE. To increase the probability of
catching the global/lowermost minimum, sev-
eral initial guesses must be used to calibrate
any nonlinear equation. So, for every initial
guess Levenberg-method ended with the val-
ues for the unknown constants and the corre-
sponding AARE. Fitted constants correspond-
ing to lowest magnitude of AARE should be
considered.
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In some cases, the above trial equations
were found inefficient to represent some
seepage characteristics. Therefore, additional
forms of equations were suggested to these
cases and will be mentioned later in
subsequent section.

5. Results

The following equations were chosen to
simulate relative total flow through the dam,
Q/(k.Hu), and relative crossed length of the fil-
ter, (L/Hu):

ol0257541.565 0143

In(i)=—2.122+1.15 ,  (15)
k.Hu

ol04xB+1.137]-3%2

[0.2072a+1.177]%%

In(-=)=-3.194 +0.675 -° ——, (16)
Hu £[0-4886XD'+0.0215]"

where, In(A) is the logarithm of A, Q is the to-
tal quantity of seepage through unit width of
the dam, L is the crossed length of the filter,
Hu is the upstream water head on the dam,
and k is the hydraulic conductivity of the dam.
The AARE for egs. (15) and (16) are equal to
2.35% and 1.15%, respectively.

In some cases, the free surface profile can
contains an inflection point. The inflection
point is always located at the position where
the rate of the slope representing the free sur-
face changes from a decreasing rate to an in-
creasing rate. There is no inflection point
when the rate of the slopes is monotony in-
creasing as we sweep down from point A to
point D, see fig. 1. Next relation calculate the
lower limit for Xb’ that assures existing of an
inflection point for different values ofa:

Xbi'= —0.04076 +0.0793¢(3:64280-1.4514) (17)

If Xb’ >Xbi’ there is an inflection point
along the free surface. It must be noticed that,

Eq.17 is applicable only for a < 90° as there is
no inflection point for rectangular dams.

The relative horizontal distance from point
A to the inflection point, (Xi/Hu), can be ob-
tained by the following equation with AARE
equals to 2.1%:

Xi / Hu = 0.08966 + 0.2362a — 0.3484¢°
+0.3087 Xb/—0.0364X0' 2 . (18)

Eq. (18) is similar to the polynomial f;. In-
creasing number of terms for that polynomial
to be likes f> or fs3, logically decreases the
magnitude of AARE to 1.94% and 1.91% re-
spectively. The enhancement in accuracy is
insignificant, so it’s more desirable to choose
the simplest function.

From results of the BEM it can be noticed
that, in case of existing an inflection point
along the free surface, maximum seepage rate
along the upstream face (qum) will be located
at the upstream tip point, point A, with
magnitude equals to k. sin (90°-a°). In the
other hand, if there is no inflection point, gum
will move down along the upstream face. The
following two relations represent the magni-
tude of qum and its relative height above the
impervious base of the dam (Ym/Hu), for
Xb’< Xbi’, with AARE equal to 4.9% and 5.2%,
respectively:

o ol14740+03355°

MMy _ 21410377

In(—
k ol1.1422x8+0.1507%72%2

+sin(90—ao), (19)
In(YH—m) = 2.4344 - 6.461c +5.2044 &% +
u

1.875Xb'~0.7207 Xb'2—2.1350:3 + 0.114Xb' 3, (20)

where, Ym is the height of qum above the
impervious base. Eq. (20) is applicable only for
a<90°. For rectangular dams, qum is always
located besides the upstream toe of the dam,
point B.

Seepage rate along the horizontal filter
ranges from infinity at the outset of the filter,
point C, to k at the exit point of the free
surface, point D. Seepage rate at any point
along the filter can be represented with the
next equation with AARE equal to 3%:

N (21)

where, gris the rate of seepage percolating the
filter at distance equal to r from the outset
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point C, and L is the crossed length of the
horizontal filter. Minus sign in eq. (21) repre-
sents the movement of the flow outside the
dam.

Two approaches were
simulate the free surface profile. First
approach exploits the relation given by
Nelson-Skornyakov, see [1] that represents the
free surface profile for dam with vertical or
horizontal upstream face. Levenberg-method
was used to combine the effect of various val-
ues of @ and Xb’in that relation, as:

considered to

x = L+|(Xo+ L) sinl"lo0° (Hu — y)/ Hu|, (22)
and,
n=1.01667 — 0.2936¢:%44% 1+ 0.14 X 01717 (23)

where, x and y are the coordinates of the free
surface measured from point B, see fig. 1, L’is
the horizontal distance from point A to point
B, ¢ is the upstream face angle in radians, Xb
is the horizontal distance from point A to point
C, see fig. 1. Average Absolute Relative Error
(AARE) for eq. (22) was found equal to 3%.

The second approach depends on improv-
ing the approximate solution of Casagrande
[1]. Casagrand’s approximation assumed that
the free surface profile is always similar to
parabola. Computed free surfaces using the
BEM were investigated to check their
configurations. The following equation were
used to test if the free surface profile is
parabola, ellipse, or hyperbola:

y=\/2.p.x'—‘;—a)2)x‘2 , (24)

where, x’ is the horizontal coordinate meas-
ured from point D and is equivalent to
(L+Xb+L-x), see fig. 1. The parameters p and
@ are the focal chord of the free surface curve
and its eccentricity. If the parameter o equals
1.0, the corresponding free surface is parabola
and satisfies Casagrand’s assumption. For
o >1, the free surface behaves like hyperbola,
and as ellipse for o <1.

General least squares method, [7], was
used to calculate the parameters p and @ for
any free surface determined using the BEM.

This method can be represented in matrix
form as:

G171 G 2p F
11 “12], , |- 1l (25)
Go1 Gy |0 -1 |F2
i=A X._2 i=A X._3
where, Gll: —I, GlZ 2621=Z—|,
i=D Ti i=D ¥i
i=A .4 =A 2. i=A 2.2
G COX F_' YiXi RS
22 = 2 > 1= 2 ’ 2 _Z 2 ’
i=D T i=D i i=D Oi

X', and Y, are rectangular coordinates of the

free surface at node i, oi is the length of the
free surface simulated by node i, i represents
node along the free surface that ranges from
node D at the filter to the inflection node or to
point A if there is no inflection along the free
surface.

The variations of p and @ against « and
Xb’ are shown in fig. 2-a, 2-b. From fig. 2-a it
can be shown that, p decreases as Xb’or 1/«
increases with a decreasing rate. The free sur-
face profile behaves like parabola when o is
equal to 1.0, that satisfied when Xb’>1.5, as
shown in fig. 2-b. For Xb’<1.0, the free surface
is ellipse when « > 70° and hyperbola when «
> 40° and changes from ellipse to hyperbola
for @ = 50° and 60° as Xb’ increases from O to
1. The parabola of Casagrande’s ap-
proximation has always a focus at the outset
of the filter, at point C (see fig. 1). Thus the
Casagrande’s parabola has a focal chord pc
equal to [1]:

pc =\ Hu? + (0.3L'+Xb)? —(0.3L'+Xb). (26)

The ratios between the focal chords
according to Casagrande’s approximation pc
and the focal chords according to the BEM
solutions p for different values of ¢ and Xb’
are shown in fig. 3. From that figure it can be
seen that Casagrande’s approximation
behaves accurately when pc/p =1.0 at Xb>1.5
and « >300°.
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Using Levenberg-method the following two
equations were concluded to simulate the
variations of p and @ with respect to « and Xb’
with AARE equal to 3% and 5.9%, respectively:

0[0.4535:10.624]
p/ Hu=0.1478 + o.eaesm , (27)
0+—2% 1001097+
Xb'+0.1 28)
~ 031417
3 7944 743470 +7.531]

[0.591Xb +1.351[-2476

Eq. (28) is applicable only for Xb’< 1.5.
For larger values of Xb’ the free surface is pa-
rabola with eccentricity o=1.

It must be noticed that eq. (24) simulates
the free surface from its exit point D to point
A. If there is an inflection point, an additional
quadratic curve must be added to eq. (24)
when representing the free surface between
the inflection point and point A, that assuring
smoothness the free surface profile and catch-
ing point A:

N2
y= \/pr'—El—a)Z };'2 +(Hu—ye{xl)_(:(I j : (29)

where, xi’= Xb+L-Xi, (30)

ye =y/2.p(xb+L)-fl-w? [xb+ L), (31)

where, ye is magnitude of y-coordinate corre-
sponding to point A using eq. (24).

6. Illustrated examples

The results obtained using the concluded
equations in the previous section will be com-
pared with BEM and Casagrande’s solutions
through the following two examples.

Example 1: For an earth dam provided with
horizontal toe filter, the upstream face angle
=20° (analogy to the Aswan high dam), [9], and
upstream water head =10m. The filter located
at a horizontal distance (Xb)= 25m from the tip
point of the wetted upstream face of the dam,
and the hydraulic conductivity = 50m/day.
Find the different seepage characteristics for
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that dam. Compare these results with BEM
and Casagrande’s outputs.

Solution: The available data is Hu= 10m, Xb=
25m, «=20°, k=50m/day, then Xb’= Xb/Hu =
2.5, and ¢ (in radians) = (20/180).(22/7) =
0.349.

Table 1 summarizes different values of
seepage characteristics in comparison with
available solutions.

From the table 1, total quantity of flow
through on meter width of the dam Q=
84.35m3/day, and length of the filter L=
0.805m.

Using eq. (17), it an be found that Xbi=
0.02 <(Xb=2.5), then there is an inflection
point along the free surface, consequently
maximum seepage rate along the upstream
face will be located at the tip of the upstream
face with magnitude equal to k. sin (90°-¢?) =
50*sin(70) = 46.98m/day.

To plot the free surface profile with the
first approach, use eq. (22) as:

x=—0 (254 0.805).sin[0'99654twj =27.47
tan20 10/90

5+[25.805{5iN**°****(90-9y)}], where x and y are

coordinates of the free surface measured from
upstream toe of the dam, point B.

To plot the free surface with the second
approach, transfer the x-coordinate of the
inflection point to the x’—coordinate as:
xi= Xb+ L - Xi= 25 +0.805-(0.674)10 =
19.065m. Then use eqgs. 24 and 29 as:

y=y2*1728% x—f1-12 )2 ~1859/x, for O .Om
< x’< 19.065m.

Table 1
Seepage characteristics of example 1

Eq. Output Estimated Casagrade’s BEM
no. variable value solution solution
15 Q/(kHu) 0.1687 0.1472 0.169
16 L/Hu 0.0805 0.0736 0.0811
17  Xbt’ 0.02<Xp’
18 Xi/Hu 0.674  coeee- 0.62
27 p/Hu 0.1728 0.1472 0.1717

w for

Xb>1.5 1.0 1.0 1.0
31 Ye 9.4437m 8.7044m --———----
23 N 0.99654

Max. qum/k Sin(70)

at point A =0939 T 0.939

and

. 2
y=1.850Vx +(10—9.4437)(%3f65) , for
19.065m < x’< 25.805m.

Fig. 4 shows good agreement between free
surface profiles estimated from the two
proposed approaches and the BEM solution.
Unsatisfactory free surface profile was noticed
form Casagrande’s solution.

From eq. (21) seepage rates along the filter
can be calculated as:

gs =-50.0+/0.805/r m/day,

where r is the distance along the filter
measured from point C.

Example 2: Repeat the previous example one
for anisotropic dam with kx = 45m/day, ky= 5
m/day, a=30°, and Xb= 15m.

Solution: First step is to transform the
anisotropic dam to an equivalent isotropic one
by multiplying the  x-coordinate with

[ky Iky =1/3, then L= (10/tan30)/3
=5.7735m, Xb =15/3 =5 m, Xb’ =5/10 =0.5,

and the transformed angle a=tan-1(10/5.7735)
= 60° = 1.047 in radians. Equivalent hydraulic

conductivity k=,/k,K, =15m/day.

Seepage characteristics for the equivalent
isotropic dam can be calculated directly as in
table 2.

From table 2, seepage characteristics for
the anisotropic dam are Q= (0.615) (10) (15)=
92.25m3/day, and L= (0.30153) (10) (3) =
9.046m.

From eq. (22) free surface profile, within
the anisotropic dam, can be plotted as:

X X 10

ly/k, 3 tan6o

(5+3.0153).sin[°-8413(MJ - 5.7735 +
10790

8.0153 sin®8143 (90-9y).

+

To plot the free surface with the second
approach, use eq. (24) as:
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6 P~

Free Surface Profile

——+—— BEM Results
—~— eq. 22

2 N
—<— eq. 24+ eq. 29

N S : Casagrande"s So/L‘ltiojn E

1 1 J \ i
30 35 0 45
x-Coordinate (m)

Y-Coordinate (m)

Fig. 4. Free surface profile for dam in example 1.

y=y2*6.14% x-[1-0982 2 =

V12.28x—0.0396x 2 .

where x’ is the horizontal coordinates for the
free surface within the equivalent/isotropic
dam measured from point D.

Fig. 5 shows the free surface profile for
that dam with the suggested eqgs. (22, 24) and
both the BEM and Casagrande’s approxima-
tion.

Maximum seepage rate within the
upstream face of the isotropic dam was
located at height Ym above the impervious
base equals to 7.378m, and perpendicular
magnitude qum= (0.597) (15) = 8.955 m/day.
Vertical and horizontal components of qum for
the anisotropic dam are equal to (8.955)
(cos60) = 4.4775m/day, and (8.955) (sin60) (3)
= 283.265 m/day respectively. Maximum
seepage rate along the upstream face of the
anisotropic dam equals to 23.69 m/day, and
slopes 10.9°with the horizontal.

Table 2
Seepage characteristics of example 2

Eq. Output Estimated Casagrade’s BEM
no. variable Value solution solution
15  Q/(kHu) 0.615 0.3683 0.5865
16 L/Hu 0.30153 0.18415 0.2949
17 Xbi’ 0.8>Xb’
27 p/Hu 0.614 0.3683 0.593
w for
28 Xb<1.5 0.98 1.0 1.045
23 N 0.8413
qum/k at Sin(30) 05
point A =0.5 ’
19 Max. oL — 0.622
qum/k
20 Ym/Hu 0.7378 = -—m——---- 0.694

From eq. (21) seepage rates along the filter,
for the anisotropic dam, can be calculated as:

[oF; =—qy /Lanisotropi/ r=—-5J9.046/r m/day.

Fig. 6 shows seepage rates through the
filter from eq. (21) and the BEM solution.

7. Conclusions

A new set of simple equations were created
to simulate accurately different seepage
characteristics through a dam with horizontal
toe filter. Two illustrative examples were added
to test the power of these equations. The
corresponding solutions of theses equations

10
=~ SR
P
g ~
S ~1C
é 4+ —— BEM solution N
QI_) N—< e 22 N A"
= 27—5— Casagrande's solutio E\ \
0 1 T E[\]' 24 T T \“
[ I =
ZJ 0 j 5 30 35 40

Xx- Coordinate (m)

Fig. 5. Free surface profile for dam in example 2.

N

2 ]

3 =

S ]

END

§-12 /

S 7

S /

.76

8 /

N
. \

§20 j [ ‘ Eqg. 21

§ + \ BEM solutio.
24 — T

2 4 36 \BJ:S’ 20 4

W
N

x-Coordinates along the filter (m)

Fig. 6. Seepage rates within the filter in example 2.

Alexandria Engineering Journal, Vol. 44, No. 2, March 2004 265



are
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similar to BEM results and behaves more

accurately than Casagrande’s approximation.
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