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Discrete time queueing systems had been extensively used in the analysis of buffer behavior 

in computer communication systems. Currently, discrete time queueing systems are used in 

the analysis of computer and communication networks working under the Asynchronous 

Transfer Mode (ATM) technology. A distinct feature of this technology is that the basic cell 

(called ATM cell) containing data and routing information has a fixed size. Thus, the time 

required to transmit such cells within the same system is constant and can be considered as 

the basic time slot. In this paper, we consider a blocking ATM switch where both internal 

blocking and output port blocking are encountered by incoming cells. The switch is 

investigated under a general arrival stream and uniform output port distributions. It is 

assumed that the switch is provided with internal output buffers. Analytical expressions for 

utilization, occupation and delay of every internal buffer as well as total delay through the 

switch are computed to add new general results to the existing special ones in the literature. 

Moreover, simulation is used to compute cell loss probability for switches with finite buffers. 

An important result, from a practical point of view, is obtained, namely that, a small loss 

probability can be achieved with a small buffer size.  
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1. Introduction 
  

Discrete time queueing systems had been 
extensively used in the analysis of buffer 
behavior in computer communication systems 
[1-4]. Currently, discrete time queueing 
systems are used in the analysis of computer 
and communication networks working under 
the Asynchronous Transfer Mode (ATM) 
technology [5-7]. A distinct feature of this 
technology (as opposed to other packet 
switching techniques) is that the basic cell 
(called ATM cell) containing data and routing 
information has a fixed size. Thus, the time 
required to transmit such cells within the 
same system is constant and can be 
considered as the basic time slot. ATM 

switches are divided into two basic categories: 
blocking switches and non-blocking switches. 
In a non-blocking switch, no internal blocking 
is encountered by arriving cells. However, cells 
may suffer from output port contention. In a 
blocking switch, both internal blocking and 
output port blocking are encountered by 
incoming cells. Nevertheless, a blocking switch 
has a superior reduction in the number of 
switching elements required to implement it.  

In this paper, we use a discrete time 
queueing system model to analyze a blocking 
ATM switch based on a banyan network 
structure [8,9]. Banyan networks are usually 
provided with one or more performance 
enhancement techniques [8-11]. In [12], a 
Banyan network with infinite output queueing 
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was analyzed where it was shown that a 
maximum throughput of one can be achieved. 
However, infinite buffer size assumption is not 
suitable for practical implementation. Hence, 
in [13], the finite output buffer case was 
considered. With special implementation to 
take care of the overflow problem, it was 
shown [13] that a maximum throughput of one 
can again be achieved. In the present work, we 
assume infinite buffer size for the analytic 
analysis. Moreover, a simulation study is 
presented for switches with finite buffer sizes. 
The analysis of ATM switches is affected by the 
assumption on the arrival stream. Bernoulli 
arrivals is a common assumption [12,13]. In 
the present work, we assume general arrival 
stream which includes the Bernoulli arrivals 
as a special case. Another important feature of 
the switch model is the traffic pattern which 
describes the chance of an incoming cell to be 
assigned to different output ports. In uniform 
traffic, output ports have equal chance. This 
assumption was employed in [12,13] and will 
be used in the present work. The non-uniform 
traffic case where output ports have different 
chances is readily analyzed and will appear in 
another paper. 

Exact expressions for the utilization, 
occupation and delay of every internal queue 
as well as an analytical expression for the total 
delay through the switch are derived. Infinite 
buffer assumption is assessed by computing 
the maximum expected queue length. It is 
noticed that the expected queue length doesn't 
exceed a small finite value for almost all the 
working loads. Cell loss probability (for 
switches with finite buffers) is estimated using 
simulation. It is verified that a small loss 
probability can be achieved with a small buffer 
size 
 The rest of this paper is organized as 
follows: In Section 2, we state the model 
description and introduce the notations that 
will be used throughout this work. The 
analytical analysis appears in Section 3 and 
numerical results are presented in Section 4. 
Conclusion and some open problems are given 
in Section 5. 
 

2. Model description 
 

 Consider an N×N ATM switch which is 
built using a baseline Banyan network Error! 

Reference source not found.[14] consisting of 

log2N stages where each stage has N/2   
binary   switching   elements. An example for 

N = 8 is shown in fig. 1.  Assume that the 

arrival stream to input port i, 1≤ i ≤ N, is 
represented by the time stationary stochastic 

process {Ai(n), n ≥ 1} with moments 

))n(A(EA and ))n(A(EA iiii
22 == .Assume  that  

a  cell arriving at input port i is destined for 

output port j with probability rij, 1 ≤ i, j ≤ N. 
Throughout this work, we assume uniform 

output distribution, i.e., rij = 1/N, 1 ≤ i, j ≤ N. A 
parallel study concerning non-uniform traffics 
is readily analyzed and will appear in another 
paper. The arrival streams and the routing 
probabilities are assumed to be mutually 
independent. The Banyan network is provided 
with internal output buffers with infinite 
capacity as shown in fig. 2. The switching 
element fabric runs twice as fast as the input 
and output ports of the switch in order to be 
able to deliver two incoming cells (with the 
same output link destination) to the required 
output queue during one time slot.  

Define Ai,j(n) as the number of ATM cells 
that arrive during the nth time slot to input 

link j located at stage i of the Banyan network 

where 1 ≤ i ≤ log2 N, 1 ≤ j ≤ N. Similarly, define 

Bi,j(n) as the number of ATM cells that arrive 
during the nth time slot to the queue located 

at output link j and stage i. Denote that queue 

by bi,j. Finally, define Ci,j(n) as the number of 

ATM cells departing from the buffer bi,j during 
the nth time slot. The late arrival scheme is 

assumed [15]. The processes Ai,j(n), Bi,j(n) and 

Ci,j(n) are illustrated in fig. 2. Let the first and 
second steady state moments of these 

processes be denoted by B j,i,2
ji,A,j,iA   

C j,i,2
ji,B and 2

ji,
C , respectively.  

 
3. Analytical analyss 
 
 The uniform output distribution implies a 
uniform   distribution   at  each   stage  of  the 
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Fig. 1. An 8 ×8 Banyan network based ATM switch. 

 

 
 

Fig. 2. Internal output queuing in a 4×4 Banyan network 

based ATM switch. 

 
banyan network. More specifically, the 
incoming cell to a switching element chooses 
between the two output links with equal 
probabilities. Dfine the indicator function 

)n(I
i

j,k
, 1 ≤ i ≤ log2 N, 1 ≤ k, j ≤ N, as follows: 

)n(I
i

j,k
= 1, if cells that arrive during the nth 

time slot at the input link k of stage i are 

directed to the output link j 
           = 0, otherwise 

The process )n(I
i

j,k
is a Bernoulli process with 

a success probability 0.5 whenever k and j 
belong to the same switching element.  
 Analytical expressions for the moments 

B ,B j,ij,i

2
, 1 ≤ j ≤ N, at the first stage of the 

Banyan network are given in the following 
lemma: 

Lemma 1 
 In the described blocking ATM switch the 
steady state first and second moments of the 

processes B1,j(n), 1 ≤ j ≤ N, are given by: 
 

∑=
∈ (j)  k

kj, A  B
θ2

1

1
,        (1) 

 

∑ ∑+∑=
∈

≠

∈∈ )j(  k

k  k

)j(  k
kk)j(  k

kj, A A      A  B
2

θ θθ 1

12

2
2

2

1 14

1

2

1
 

  
     (2) 
 

where θ(j) = {k  Ai,k(n) is an input process to 

the switching element containing buffer bi,j}. 

 

Proof: 

Consider the first stage of the banyan 

network at which A1,j(n) = Aj(n), 1 ≤ j ≤ N. 
Hence,

∑=∑=
∈∈ )j(  k

j,k
)j(  k

j,kj,
)n(I)n(Ak

)n(I)n(A k,
)n(B

θθ

11

1 1

 

Taking the expectation of both sides and 

noting that Ak(n) and )n(I j,k

1
are independent, 

then: 
 

∑
∈

=
)j(  k

))n(I j,k
(E))n(Ak

(E))n(B j,
(E

θ

1
1

. 

 

Noting that Ak(n) and )n(I j,k

1
are both time 

stationary and E( )n(I j,k

1
) = 0.5, then eq. (1) 

follows. Similarly, 

∑
∈

∑

≠

∈

+∑
∈

=

∑

∈
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
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
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Taking the expectation of both sides, gives eq. 
(2).  

Remark: 

The set θ(j) can be defined as follows: 

θ(j) = α( (j – 1) / 2 + 1), where α(q) = {2q – 1, 

2q} and q denotes the floor of q. 
Moreover, the set θ(j) can be generated 
algorithmically as follows: 

Algorithm 1 

function θ(j) 

 if j is odd then return (j, j + 1) 

 else return (j – 1, j) 
end. 
 
 Obtaining the performance measures of 

queues bi,j depends on the following theorem 
[16]: 

Theorem 1: (Performance measures of the 
batch arrivals-geometric service queue) 
 For a discrete time queue having: 
1. Arrivals that are represented by a time 

stationary stochastic process {A(n), n ≥ 1}. 
2. A single server with a geometric service time 

of parameter σ. 
Then, the steady state utilization, 

occupation and delay are given, respectively, 
by: 

E(W) = 
σ

A
,          (3) 

 

E(X) = 
)A(

)A(AA

−

−+

σ2

2
2

2

,       (4) 

 

E(D) = 
A

1
E(X) = 

)A(A

)A(AA

−

−+

σ2

2
2

2

,     (5) 

where A = E(A(n)) and A
2
 = E(A2(n)). 

 The performance measures of the queues 

b1.j, 1 ≤ j ≤ N, can now be computed using the 
above theorem as follows.  

Theorem 2:  
(Performance measures for the first stage) 

The steady state utilization, occupation 

and delay of the jth output queue, 1 ≤ j ≤ N, at 
the first stage of the described blocking ATM 
switch are given, respectively, by: 

 

E(W1,j) = B j,1
             (6) 

E(X1,j)  = 

)B j,
(

)B j,(B j,B j,

1
12

1

2
2

2
11

−

−+
,               (7) 

E(D1,j)  = 

)B j,
(B j,

)B j,(B j,B j,

1
1

1
2

1

2
2

2
11

−

−+
,          (8) 

where
B j,
 ,B j,

2

11
 are given by eqs. (1) and (2). 

 

Proof: 

 Each queue b1.j is a batch arrivals-
geometric service queue whose arrival process 

is B1,j(n) and whose service probability equals 
one. Thus, the utilization, occupation and 
delay expressions follow from eqs. (3), (4) and 
(5), respectively.   
 In order to analyze the other stages, we 

have to identify the departure processes Ci,j(n), 

1 ≤ i ≤ (log2 N) – 1, 1 ≤ j ≤ N. Moreover, we have 

to assign every Ci,j(n) to the appropriate Ai+1,k(n) 
according to the routing implied by the 
structure of  the baseline banyan network. 
Tackling these two tasks will now be 
described. 

 Since each buffer bi,j is a single server 

queue, then the departure processes Ci,j(n) are 
Bernoulli processes. Moreover, since the 
service probability at each buffer equals one 
and late arrival scheme is assumed, then the 

steady state departure rate equals E(Wi,j). 
Thus,  
 

),W(ECC j,ij,ij,i ==
2 1 ≤ i ≤ log2 N, 1 ≤ j ≤ N.   (9) 

 

 In order to assign each Ci,j(n) to the 

appropriate Ai+1,k(n), we define the map ψ(i,j), 1 

≤ i ≤ (log2 N) – 1, 1 ≤ j ≤ N  such  that  Ai+1,j(n) = 

Ci,ψ(i,j)(n). In other words, ψ(i,j) is the output 

link number at stage i to which the input link j 

at stage i + 1 is connected. The following 

algorithm is used to generate ψ(i,j): 
 

Algorithm 2 

function ψ(i,j) 

begin 

l =(log2 N)–i// l  counts in the reverse order  

s = 2 l +1   // Module size 
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a = (j – 1) div s // Number of increments when 
modules are connected 

j = ((j – 1) mod s) + 1  // Convert to the 
basic module 

if  (j ≤ s/2) then k = 2j – 1 // Odd k's are sent 
to the next upper half 

else k = 2(j – s/2)  // Even k's are sent to 
the next lower half 

k = k + a × s // Add the required increments 

return (k) 
end. 

For example, when N = 16 then the matrix 

[ψ(i,j)] equals: 
 

1 3 5 7 9 11 13 15 2 4 6 8 10 12 14 16

1 3 5 7 2 4 6 8 9 11 13 15 10 12 14 16

1 3 2 4 5 7 6 8 9 11 10 12 13 15 14 16

















 

 

 Identifying the departure processes Ci,j(n) 

and establishing the map ψ(i,j), we can analyze 

the buffers bi,j at other stages, 2 ≤ i ≤ log2 N.  
To obtain the required performance measures 
at these stages, we start by computing the 

moments of the processes Bi,j(n), 2 ≤ i ≤ log2 N, 

1 ≤ j ≤ N. 
 

Lemma 2: 
 In the described blocking ATM switch the 
steady state first and second moments of the 

processes Bi,j(n), 2 ≤ i ≤ log2N, 1 ≤ j ≤ N, are 
given by: 
 

∑
∈

−−
=

)j(  k
)W )k,i(,i

(E B
j,i θ ψ 112

1
,           (10) 

  
 

∑
∈

∑

≠

∈

+∑
∈ −−

=
)j(  k1

k2k1

)j(  k2

 
)j(  k

)W )k,i(,i
(E B j,i θ θθ ψ 4

1

112

12               

           ),W )k2,i(,i
(E)W(E )k1,i(,i 1111 −−−− ψψ

       (11) 

 

Proof: 

 From the definitions of Ci,j(n) and ψ(i,j), we 
can write the following relation:  
    

∑
∈

−−
=

∑
∈

=

)j(  k
)n(I

i

j,k
)n(C )k,i(,i

                

)j(  k
)n(I

i

j,k
)n(A k,i

)n(B j,i

θ ψ

θ

11

 

Taking expectation of both sides, 
considering the steady state and applying eq. 
(9), give eq. (10). 

 
Similarly, 









∑

∈

=
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i

j,k
)n(I

i
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k2k1

)j(  k2
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)n(C )k1,i(,i

          

)j(  k
)n(I
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j,k
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21

1111

2
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∈

∑

≠

∈
−−−−
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∑
∈ −−

=

θ θ
ψψ

θ ψ
 

 
Taking expectation of both sides, 

considering the steady state and applying eq. 
(9), give eq. (11).  
 Using the expressions given by eqs. (10) 
and (11), the performance measures of the 

queues bi,j, 2 ≤ i ≤ log2 N, 1 ≤ j ≤ N, can be 

computed using Theorem 1.  

Theorem 3: (Performance measures for the ith 

stage, 2 ≤ i ≤ log2 N) 
 The steady state utilization, occupation 

and delay of the jth output queue, 1 ≤ j ≤ N, at 

the ith stage, 2 ≤ i ≤ log2 N, of the described 
blocking ATM switch are given, respectively, 
by: 
 

E(Wi,j) = B j,i
,             (12) 

 

E(Xi,j)  = 

)B j,i
(

)B j,i(B j,iB j,i

−

−+

12

2
2

2

,             (13) 

 

E(Di,j)  = 

)B j,i
(B j,i

)B j,i(B j,iB j,i

−

−+

12

2
2

2

,             (14) 

 

where B j,i
 ,B j,i

2
 are given by eqs. (10) and (11).  

 



A.A. Hasan, S.I. Rabia / Blocking ATM switches  

124                                         Alexandria Engineering Journal, Vol. 44, No.  1, January 2005 

Proof: 

 See the proof of Theorem 2.  
 In fact, using eq. (12) we can simplify eqs. 
(10) and (11) to the following recursive form: 

 

Corollary 1: 
In the described blocking ATM switch the 

steady state first and second moments of the 

processes Bi,j(n), 2 ≤ i ≤ log2 N, 1 ≤ j ≤ N, are 
given by: 

 

∑
∈

−−
=

)j(  k
B )k,i(,i

 
B j,i θ ψ 112

1
,        (15) 

 

∑
∈

+∑
∈

−−
=

)j(  k1

 
)j(  k
B )k,i(,i

 B j,i θθ ψ 4

1

112

12
       

          ,

k2k1

)j(  k2
B )k2,i(,i
 B )k1,i(,i

∑

≠

∈
−−−−

θ
ψψ 1111

(16)

  

where B j,1
 is given by eq. (1). 

 

Example 1 

 If A1(n), A2(n),..., AN(n) follow a common 

stochastic process A(n) with moments 

))n(A(EA )),n(A(EA
22

== , then eqs. (1) and (2) 

reduce to: 
 

,AB j, =1                  (17) 

 

)A(AB j,

2

2

122

1
+= ,           (18) 

 

where 1 ≤ j ≤ N. 

Establishing the above simple form of j,B1 , 

the recursion formulas given in eqs. (15) and 
(16) can be solved to give: 
 

AB j,i
= ,                                                  (19) 

 

)A(AB j,i

22

2

1
+= ,                (20) 

 

where 2 ≤ i ≤ log2 N,  1 ≤ j ≤ N. 

Using eqs. (17), (18), (19) and (20), the 

performance measures of the buffers bi,j, 1 ≤ i 

≤ log2 N, 1 ≤ j ≤ N, are given by: 
 

E(W1,j) = A ,             (21) 
 

E(X1,j)  = 
)A(

)A(AA

−

−+

14

322
22

,         (22) 

 

E(D1,j)  = 
)A(A

)A(AA

−

−+

14

322
22

,         (23) 

 

E(Wi,j) = A                  (24) 

E(Xi,j)  = 
)A(

)A(A

−

−

14

34
2

,               (25) 

 

E(Di,j)  = 
)A(

A

−

−

14

34
,                (26) 

 

where 2 ≤ i ≤ log2 N, 1 ≤ j ≤ N. 

Thus, the total delay E(D) experienced by an 
incoming cell is given by: 

 

E(D)=
)A(A

)A(AA

−

−+

14

322
22

+ (log2 N – 1) 
)A(

A

−

−

14

34
 

                               (27) 
 

Remark: 
 The general result given in eq. (27) 
coincides with the result reported in [12] when 
we specialize our result to the Bernoulli arrival 
case which was considered in [12]. 
 
4. Numerical results 
 
 The analytical results obtained in the 
previous section will now be examined 
numerically. Based on the expression of eq. 
(27), the total delay was computed for different 
arrival processes and different switch sizes. 
The results are shown in fig. 3. Three different 
arrival processes were assumed: Bernoulli, 
binomial and Poisson. The switch size is 

16×16 in the first plot and 64×64 in the 
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second one. From this figure, it can be said 
that the performance of the three processes is 
nearly the same for light loads. However, there 
is an observed difference in the heavy traffic 
case. 

To assess the infinite queues assumption 
employed in the present analysis, we plot in 
fig. 4 the (maximum) expected queue length as 
given by eq. (22). It is noted that for the three 
considered arrival processes the expected 
queue length at the first stage (eq. 22) is 
greater than or equal to the expected queue 

length at the other stages (eq. 25), i.e., E(X1,j) ≥ 

E(Xi,j), 2 ≤ i ≤ log2 N, 1 ≤ j ≤ N. Therefore, we 
use eq. (22) to compute the maximum 
occupation. Moreover, it is noted that the 
given expressions for occupation are 
independent of the switch size. From fig. 4, we 
see that the expected queue length doesn't 
exceed a small finite value for almost all the 
working loads. Thus, in the practical 
implementation a small finite queue size will 
be sufficient. In addition, the queues at stages 
following the first one can assume smaller 
sizes. 
 To make this point more clear, we simulate 
the ATM switch operating with a finite queues 

size (L) and compute the cell loss probability.  

The results are shown in fig. 5 (N = 4). In the 
light load case, the cell loss probability is 
almost zero for all the studied queue sizes. For 

the heavy traffic case, a choice L = 8 keeps 
this probability less than 0.02 in the Bernoulli 
case and less than 0.06 in the Poisson case. 
Larger queue sizes may be considered to 
obtain smaller cell loss probability. 
 
 
5. Conclusions 
 
 Banyan network based ATM switches were 
analyzed using a discrete time queueing 
system model. General arrival stream and 
uniform traffic were assumed. The switch was 
assumed to have internal output queues of 
infinite size. Analytical expressions for three 
performance measures (utilization, occupation 
and delay) were computed to add new general 
results compared with the existing ones in the 
literature [12]. Moreover, the infinite queue 
size  assumption was assessed by computing 
(using simulation) the cell loss probability for 
switches with finite queue size. It was shown 
that a small cell loss probability can be 
achieved with a small queue size. This is an 
important result from a practical point of view.
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Fig. 3. Total delay for different arrival streams and switch sizes. 
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Fig. 4. Maximum occupation for different arrival streams. 

 

Bernoulli arrivals
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Poisson arrivals
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Fig. 5. Cell loss probability for different arrival streams and buffer sizes. 

 
The non-uniform traffic assumption may 

be more realistic. Hence, the aim of our next 
paper is to analyze the present model working 
under a non-uniform traffic pattern. Moreover, 

banyan network based ATM switches have 
several performance enhancement techniques 
(see for example: [8-11], besides the internal 
output queueing employed here. Examining 
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ATM switches provided with some of these 
performance enhancement techniques needs a 
separate study and is expected to appear in an 
incoming paper. 
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