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In this research, the Boundary Element Method (BEM) was applied for Laplace’s equation to 
solve the problem of seepage through earth dams underlined by horizontal filter. Linear 
elements were used to discretize the boundary of the flow domain. A novel idea was used to 
assure convergence of the unknown free surface to the correct one. Also, the effects of local 
singularity and numerical/analytical integration on the global solution were tested. The 
numerical results have an excellent agreement with the analytical/exact solutions. 

كت  يس لحت  طكتةعا اليتيقرخ   تا  اليتبتب الةيابقتا الطت تب  بطفي هذا البحث طبقت  طيققتا الاصر تي الطحقطتا معتي طاربلتا  بتا
تقب طبق  فةي  جبقب  لضطرخ ةقتري  يتط  الطقترل الطحيتت  أفقي. تقب اية بط  الاصر ي ال طقا لةطثق  حبتب طجر  الييقرخ. هذا 

 أثقي ةتاجب ح  طفيب مصب باض الصقرط تةتأثقي ايتة بام طةةترطا  مببقتا أت ةحعقعقتا معت  الحت  الاترم.ةطر ةم بيايا ة لطةرصا الحقققي.
 .ططةر  طع الحعت  الةحعقعقا أمط  الحعت  الاببقا ةتافقتقب 
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1. Introduction 

 
This work focused on trapezoidal earth 

dams provided with horizontal filters. 

Determining the position of seepage surface 

and its exit point with the filter is a necessary 

step to complete the design procedure of the 

dam. Kozeny [1], using conformal mapping, 
studied this problem for dams with parabolic 

upstream faces resting on an impervious base. 

He concluded that the phreatic surface has a 

parabolic shape. Later, Cassgrande in [2] 

suggested an approximation to make Kozeny’s 
solution available to simulate the seepage line 

through earth dam with trapezoidal cross 

section [1]. Using a modified form of 

Zhukovsky’s function Nelson-Skornyakov [1] 

obtained exact solutions for two relatively 

simple cases, a dam with horizontal upstream 
slope and another one with approximately 

vertical upstream face. The dam is resting on 

homogenous foundation of infinite depth.  

Moayeri [2] obtained the most accurate 

analytical solution for seepage through 
trapezoidal dams taking in account the effect 

of the inflection point on the free surface. He 

used inverse hodograph and conformal 

mapping. Hathoot [3] solved the problem 

using the image theory. He constructed his 

analyses on unrealistic assumptions: 1) flow 
leave the dam through the whole length  of the 

horizontal filter, 2) uniform rates of seepage 

along the upstream face and the downstream 

filter of the dam, 3) equation used to simulate 

seepage through the wetted part of the  

upstream face of the dam  were settled in 
unsatisfactory formulation, that it simulated a 

uniform flow through the whole infinite plane 

above the impervious bed. Wrong stream 

function  was concluded. Using that function 

along the filter, zero value of  was always 

calculated. Due to the previous assumptions 

Hathoot’s results were found far from 
analytical results according to Numerov [1].  

With the increase developments of the 

computer systems numerical methods started 

to handle the present problem. The main 

disadvantages of the numerical solutions are 

the bad convergence of the solution besides 
the existing of oscillations along the free 

surface when approaches vertical or near 

vertical. To eliminate these disadvantages, 

Neuman [4] combined the regular Finite 

Element Method (FEM) with a minimization 
function for the difference between inflow and 

outflow seepage through the dam. 
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Liggett [5] used the Boundary Element 

Method (BEM) to solve the problem of 

unsteady seepage through earth dams without 
drains starting from known initial location of 

the free surface. Cabral [6] developed a new 

BEM formulation using cubic B-splines, which 

provides continuity till the second derivative of 

the potential head. Also, he studied only dams 

without drains. Abdrabbo [7] studied the 
present problem using the BEM with constant 

elements. He simplified the problem by sug-

gesting in advance different positions for the 

exit point of the free surface with the drain. To 

the author knowledge there is no previous 
trial to analysis our problem that is 

determining the location of the free surface 

and its exact exit point, using the BEM. This 

is may be due to the appearance of more 

accurate and stable philosophy that adopted 

the effect of the partially saturated zone above 
the free surface [8, 9]. This philosophy that is 

more logic based on Richard’s equation and a 

specified relation between pore water pressure 

and hydraulic conductivity. The aforemen-

tioned disadvantages, when handling 
Laplace’s equation with numerical methods, 

eliminated through this approach. It must be 

noticed that, there is no fundamental equation 

for Richard’s equation, thus BEM is not 

applicable for that equation. 

The principle purpose of the present study 
is to make use of the BEM to obtain a 

numerical solution for the problem of seepage 

through homogeneous isotropic earth dams 

with horizontal filters and resting on 

impervious foundations. Also, the effects of 
singularity and integration process on 

accuracy of the solution were taken into 

consideration. 

 

2. Theoretical background 

 
The vertical two-dimensional steady in-

compressible laminar flow through a satu-

rated homogenous anisotropic earth dam is 

governed by Harr [1]: 
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Assuming isotropic hydraulic conductivity 

with constant value reduces eq. (1) to the 

following Laplace’s equation: 
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where  is the potential head (L), p is the 

excess pore water pressure (F/L2),  is the 
water density (M/ L3), g is the acceleration due 

to gravity (L/T2), ( yx kk , ) are hydraulic 

conductivities in (x, y) directions (L/T), and y 

is the elevation above the impervious bed of 

the dam (L). For the dam studied in fig. 1 the 

boundary condition are: 

 

 =Hu   on AB [Dirichlet B.C.]         (3-a) 

 

n
kqn

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 =0.0   on CD [DirichletB.C.],        (3-c) 
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where, Hu is the upstream water head (L), 

/n the derivative with respect to the normal 

(1/L), nq is the normal seepage (L/T), and k is 

the hydraulic conductivity (L/T). The location 

of the free surface and its exit point D are 

unknowns in advance, so the problem is 

nonlinear and must be solved through 

iteration process starting from an initial 

guess. 

 
3. Boundary element method  

 

In this numerical method, only boundary 

of the problem must be discretized with nodes 

in counterclockwise numbering. This reduces 
the dimensionality of the problem by one. 

Linear elements were adopted to simulate the 

boundary by attaching every two consecutive 

nodes. This means that, through any element 

both of   and q are represented by line 

connecting their values at the extreme nodes. 
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This is the only approximation considered 

when applying BEM. The effect of this approxi-

mation vanishes with increasing number of 
nodes discretizing the problem boundary. On 

essential condition to apply BEM to any 

problem is the existing of a fundamental solu-

tion for its governed equation. The fundamen-

tal solution  for Laplace’s equation is [10]:  

 

)(2 r  &    )/1ln().2/1( r  ,           (4) 

 
where, r is the distance between any point 

through the flow domain and any node on the 

boundary (L),
2 means second derivative, and 

)(r is the Dirac delta function equals to one 

only if r=0.0, otherwise equals zero. The 

mathematical basis stems from Green’s 

theorem [10]: 
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where, 
D

means double integration through 

the flow domain D, 
S

is line integration 

around the boundary S of flow domain. Eq. (5) 

can be represented in the following form: 
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where, U is any node on the boundary or 

inside the domain, V is a series of nodes on 

the boundary over which the integration is 
performed, c is a constant called the free term 

equal to 2 if U lies inside the domain, and 

equal to the interior angle of the boundary in 

radians if U  is located at a node on S. If  and 

n/  are known everywhere on the bound-

ary eq. (6) can be directly determined the 
amount of   at any interior point through the 

flow domain. In fact either  or n/ are 

given at each boundary node. Thus eq. (6) 
must be used first to find the missing data by 
choosing U to be located at a succession of 

boundary nodes. This creates number of 
equations N equal to the number of nodes 

discretize the domain boundary in equivalent 

number of unknowns at these nodes ( or 

n/ ). These equations can be settled in  

matrix form as [10]: 

 

          1*NN*N1*NN*NN*N n/.F.EC   , (7) 

 

where,     N*NN*N F,E are square coefficient ma-

trices with N rows,     1*N1*N n/,  are  two 

vectors with N rows, and   N*NC  is a diagonal 

matrix represents the free terms. Sub-ele-

ments in previous matrices can be calculated 

numerically using Gauss integration as 

follows, see fig. 2.  
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Fig.1. Trapezoidal earth dam with horizontal filter. 

 

 
 

 

 

 

 
 

 

 

 

 

   
 
 

Fig. 2. Notation for a Gauss numerical integration 

scheme. 
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where, 
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where, Lo represents the length of element o, 
o
iD  is the perpendicular length from node i on 

element o, M is number of Gauss points which 

have relative positions k form 1 to –1 along 

the studied element and corresponding 

weights k ,   is the interior angle in degrees 

at node i, and o
k,ir  is the distance between 

point i and Gauss point k along element o. To 

compute  
1j

i
1j

k,i
D,r


 replace the superscript j 

by j-1 through eqs. (14-18). If 1ji   then: 
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Matrices in eq. (7) must be rearranged that 

leads to N equations in N unknowns ( or 

n / ). 

 

4. Solution steps 
 

Fortran program BETIS [10], which con-

cerns only with confined/linear flow problems, 

was modified to be applicable to unconfined/ 

nonlinear problems. A new procedure for the 
iteration process was created to assure stabil-

ity and convergence of the solution. The 

solution procedure and addend modifications 

are illustrated in the following steps: 

1. Assume initial guess for the crossed part of 

the horizontal filter. Different equations were 
tested. The following empirical (suggested) 

equation was found reasonable, see fig. 1. 
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2. To remove non-linearity from the problem, 
the unknown free surface is assumed as a 

straight line with zero normal flow (Neumann 

B.C.). Then discretize the triangular flow 

domain with the selected number of nodes. To 

enhance the solution accuracy, the ratio 

between any two consequent elements is 
limited by 0.66 and 1.5. Also, the minimum 

initial number of nodes simulating the free 

surface is chosen to be more than 35. 

Previous constraints increase the convergence 

speed, catch the curved configuration of the 
free surface and diminish the difference 

between seepage flow in and out from the 

dam. 

3. The program BETIS is used to calculate the 

unknown potential heads for the assumed free 
surface AD, see fig. 1. The free surface is 

simulated by straight line only at first iteration 

and be curved as iteration process. Program 

BETIS uses numerical/Gauss integration to 

built matrices in eq. (7). 
4. After several trials, the polar at point o was 

selected empirically, as shown in fig. 3, with 
coordinates xo = Minimum [(L`-Hu), L`/2], yo =-
1.5Hu and the nodes on the free surface is 
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0 
 

moved for the next iteration along the rays 
connecting the polar o and different nodes on 

AD. This alleviates distortion of the ratio 

between consequent elements on the free 
surface. Consequently, better representation 

for the free surface can be achieved. 

5. To assure convergence of the problem, 

nodes representing iterated free surface 

should not settled outside the actual seepage 

domain.  The iteration process is always 
started from an underestimated position of the 

free surface. This produces an overestimated 

values for the pressure head, consequently the 

adaptive new free surface will be found higher 

than the actual one. Therefore, the movements 
of free surface nodes along their conjunction 

rays should be limited with only quarter of the 

differences between calculated potential heads 

and their vertical elevations. If the elevation of 

node 2 (as shown in fig. 3) after updating the 
free surface is more than 0.025 upstream 

head, add extra nodes to assure this 

condition, (fig. 3). This enable more accurate 

representation of the free surface when 

approaches vertical. Exit point at node 1 must 
always lies along the filter with x-coordinate   

x-coordinates for node 2. After updating the 

position of the exit point, rearrange nodes 
along the filter length to maintain the same 

ratio between the elements. 

6. Recall program BETIS and determine the 

new values of the potential heads along the 

free surface. If the maximum difference 
between the calculated technique used for free 

surface computation.   and the elevation 

head for any node on the free surface greater 
than 0.0001Hu go to step 5, otherwise stop 

iteration. Maximum allowed number of 

iterations equal to 500. The solution is called 

convergent if it stopped in less than 500 

iterations. 
7. Calculate the total amount of seepage flow 

in and out the dam. 

 

5. Effect of local singularity 

 

Under certain combinations of geometry 
and boundary conditions, the solution of  

Laplace’s equation with BEM may include 

singularity, that the flux reaches infinity at 

some  nodes  [10].  One  of  the  most  popular  

 

 

 

 
 

 

 

 

 
 
 
 
 
 
 

 
Fig. 3.  Solution domain and iteration. 

 
cases is shown in fig. 4, where the potential is 
known along one side ON and the flux is zero 

along the other side OM of the corner with 

internal angle 2/  . Motz gave the 

analytical solution near singular corner O, as 

referenced in [10]. Local flux along the side ON 

is obtained by substituting 2/  in Motz’s 

solution, then.  
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where, q is the flux at distance r from the 

singular point O along the singular element 

ON  with infinity flux at node O,   2/ , 

and to1B are unknown constants. The order of 

singularity is represented by 1- . Thus 

singularity disappears as 2/  . Coefficient 

B1 represents the intensity of the singularity. 

Number of terms that can be taken into 
account depends on number of nodes of the 

singular element. In this work two nodes, 

similar to the linear element, was taken to 

represent the singular element. Flux along 
singular element ON can be represented as 

[10]. 
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Fig. 4. Local definition of geometry and boundary 

conditions at singular point O. 

 

where,  q  represents the flux along the 

singular element for values of  varies form   -

1 at singular node O to +1 for node N, qN is the 

unknown flux at node N, Lo is length of 

element ON. In this work, BETIS was modified 

that enable replacing any linear element with 

singular one. Only first element along the filter 
CD fig. 1 was simulated by a singular element 

to check the effect of local singularity 
produced from existing zero and infinity fluxes 
around the two sides of point C. The remain-

ing part of the flow boundary was simulated 

with linear elements. If the singular point 
coincides with node j then [10]. 
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and  
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In case of using singular element the 
solution retains with the value of B1 instead of 

the infinite flux at the singular node. Hence, 

the flux along the singular element can be 
determined using eq. (22). The effect of using 

only linear elements to discretize the domain 

boundary and replacing first linear element at 

the outset of the filter with singular element is 
shown in fig. 5 for a dam has upstream face 

inclination with horizontal equal to 40.  

Negative seepage values mean that water 

flows out of the dam. It can be observed that 

as soon as we approach the singular node at 
point C, the use of linear element at that node 

produces wrong results that are reflected in 
jumps in the line joining the nodal results. 
While using singular element at point C 

eliminates these oscillations, both of total 

amount of seepage and the position of the free 

surface are the same for the two cases. This 

means that using singular element only 
enhance the local solution around the 

singular point, whereas the global solution is 

not affected by this local singularity. Relative 
seepage rate q/k equal to 1.0 at exit point D, 

satisfies the perpendicularity condition of the 

free surface with the filter. 
Analytical solutions always restrict the free 

surface to be perpendicular on the upstream 
face of the dam at point A, see fig. 1, [1]. For 

 90  the free surface adjacent to point A has 

a concave configuration. Simulating this part 

of the free surface by linear element increases 

the interior angle at point A over 90 which 

distorts the mathematical solution with unreal 
singularity at point A. The exact quantity of 

the flux at A must be equal to S/.k   = 

Syk  /. = )90sin(.  k  [7], where S 

represents distance along the free surface. If 
the calculated seepage rate at point A deviated 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 
Fig. 5. Effect of replacement first linear element simulates 

the drain with singular one on the calculated seepage. 
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Analytial integration

from the analytical/exact one, larger number 

of nodes reused to discritize the domain 

boundary. This enhances the representation of 
the free surface, and consequently numerical 
results of seepage rate at point A approaches 

the exact values. 
At the upstream face toe, point B in fig. 1, 

the analytical/exact value for the flux must be 

always equal to zero for  90 . In contrast to 

the exact solution using linear element to 

simulate this part produces nonzero flux at 

point B, for values of  close to 90 . Thus for 

the next runs, singular element was used to 

simulate the lowest part of the upstream face 
that guarantee existing of zero flux at point B 

for  90 . 

 
6. Effect of numerical integration 

 

Program BETIS uses only numerical 

integration to construct matrices in eq. (7). 

The program was developed to use numerical 
or analytical integration. The following equa-

tions represent different analytical integrands 

used  in eq. (7), [11], see fig. 6. 
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Free surface through a dam with  = 40 

was calculated using both of numerical 

integration with variable number of Gauss 

points (2 and 4) and analytical integration, as 
shown in fig. 7. It can be noticed that the 

obtained free surface is the same for all cases. 

This means that using numerical integration 

will give exact values for the integrands even if 

we use only two Gauss points. 

 
7. Model verification 

 

To check accuracy of the modified 

mathematical BEM model, the obtained 

numerical results were compared with both 
the analytical solutions of Moayeri and 

Numerov [2] and the approximate solution of 

Casagrande  [1]. Fig. 8  shows   comparison 
between the relative length of the filter L/Hu 

and relative total amount of seepage Q/(k.Hu) 

for different values of  = 30 , 60 , 90 . It can 

be seen that, Casagrande’s solutions always 
underestimate both of L/Hu and Q/(k.Hu) with 

respect to both of analytical and BEM 

solutions.  Also  it  can  be   noticed   that  the 
 

 

 

 

 

 
 

 

 

 

 
 

 
Fig. 6. The D coordinate system. 

 
 

 

 

 

 
 

 

 

 

 
Fig.7. Position of calculated free surface using numerical 

and analytical integration. 
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Fig. 8. Comparison between different results of L/Hu,Q/(k*Hu) using different methods 

(BEM, Moyeri, Numerov, and Casagrande) for (  90,60,30 ). 
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accuracy of Casagrand’s approximation de-
creases as Xb/Hu decreases. 

In the other hand the analytical solutions 

of Moyeri and Numerov are in a good 
agreement with the present BEM results for 

 =90. As  , decreases there are insignificant 

discrepancies <5% between analytical and 

BEM results. In general, BEM results are more 
close to Moayeri solutions than the others.  

 

8. Results and discussion 

 

To study the effect of upstream face angle 
  and position of the horizontal filter on 

seepage characteristics, large numbers of runs 

were carried out . The present problem was 

studied with nine values of ( = 10, 20,…, 

90), and thirty-one value of (Xb/Hu =0, 0.1, 

0.2,..., 3.0), producing 278 runs in total. Of 

course the run corresponding to   = 90, 

Xb=0 was excluded. Runs carried for  = 90, 

can be used to simulate a dam with vertical 

core and inclined upstream shoulder with 
high permeability. 

Fig. 9 and 10 show free surface profile and 
relative seepage rates q/k along the horizontal 

filter for ( = 10, 30, 60 90, and Xb/Hu 

=0,1,2,3. It can be seen that, crossed part of 

the filter increases as  increases with 
decreasing rate as Xb/Hu increases. Also, for 

the same angle , crossed distance, L, from  
the filter decreases as Xb/Hu increases. Free 

surface always meets the drain at 90. The 

free surface profile is mainly determined from 

Xb/Hu, and secondary affected by . Relative  
seepage rate q/k along the filter always ranges 

from infinity (from mathematical point of view) 
at the beginning of the filter at point C to 1.0 

at the end of the filter at point D.  

Influences of different combinations 

between ( = 10, 30 ,60, 90) and (Xb/Hu 
=0,0.5,1, 1.5,2, 2.5,3) on relative seepage rate 

q/k crosses the upstream face of the dam is 

shown in fig. 11. In this figure horizontal axes 

represent distance along the upstream face 
measured from point B till point A for 

Hu=1.0m, see fig. 1. Seepage rate q at the tip 

of the upstream face, point A, is always equal 

to k. sin (90-). This means that q at point A 

decreases with an increasing rate as  

increases. At lowest point of the upstream face 

of the dam, point B, q equal to zero for =90. 
Minimum quantity of q (qmin) is always 

located at point B except for =90, where 

qmin is located at point A.  When  equals to 

10, seepage flows only through the upper 

third of the upstream face. As  increases, 

seepage starts to percolate lower part of the 

upstream face with an increasing rate. When  

reaches 90, it can be found that, most of the 

total quantity of seepage passes through the 

lower part of the upstream face. Fig. 12-a 

shows variation in maximum seepage rate 
(qumax) along the upstream face of  the dam 

corresponding to different values of  and 
Xb/Hu. Fig. 12-b shows different relative 

elevations of qumax.  

From figs. 12, it can be seen that max. 

seepage rate qumax for  = 10,20,30 were 

found at the top of the upstream face at point 

A with magnitude equal to k. )sin( 90 . As  

increases more than 30, qumax starts to 

increase in magnitude than k. )sin( 90  and 

moves down along the upstream face to point 
B. The rate of this behavior increases as 

Xb/Hu decreases. For Xb/Hu=3.0 qumax is 

always found at point A except for  = 90 , 

where qumax is always located at the 

neighborhood node to point B.  

For all the carried runs the relative 

differences between inflow and outflow 

seepage rates was ranged between 0.1% and 

1% . Total amount of seepage for any run was 
assumed to be equal to the average of seepage  

flow in through the upstream face and out 

from downstream filter of the dam. 

The total amount of seepage flow through 

the dam and the crossed part of the horizontal 
filter increase with an increasing rates as   

increases and Xb/Hu decreases as shown in 

Figs. 13-a, b, respectively.  

The position of the point of inflection on 

the free surface, if existed, depends upon both 
variables Xb/Hu and  , as shown in fig. 14. 

The inflection point approaches the top of the 
upstream face, point A, as Xb/Hu decreases or 

as   increases. Broken curves in fig. 14 are 

due to representing the continues curvature of 

the free surface profile with linear elements. 

No inflection points can be appeared for
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Fig. 9. Comparison between different configurations of the free surface under different combinations of 

[=10 (no symbol), 30 (&), 60(+), 90(*)], and [ Xb/Hu =0.0,  1.0, 2.0, 3.0 ]. 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

Fig.10. Relative seepage rates along horizontal filters for different values of 
 and Xb/Hu. 

 
 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

Fig.11. Relative seepage rates along the upstream face of the dam for different values of 
 and Xb/Hu. 

(Horizontal axe represents distance along  the upstream face). 
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Fig.12-a. Maximum relative seepage rates and b) its relative elevations along the upstream face 

  of the dam for different values of Xb/Hu and . 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
Fig.13. Effect of different values of  and Xb/Hu on a) relative total amount of flow through the dam and  

b) relative crossed length of the horizontal filter. 
 

 

rectangular dams,  90 . Form figs. 12 and 

14 it can be observed that the free surface 

profile of the flow generate an inflection point 
only if maximum seepage rate along the up-
stream face lies at point A. 

 

9. Conclusions and recommendation 

 

Mathematical model based on BEM was 
developed and used to obtain a numerical 

solution to the problem of seepage through 

homogeneous and isotropic earth dams with a 

horizontal filter. Earth dams with upstream 

face slope,  , equal to 
10 , 20 ,...., 90 were 

considered in combination with different 
positions of the filter, Xb/Hu=0,  0.1, 0.2, 

0.3,…, 3.0. The results were given partly in 

forms of graphs. The following notes can be 

concluded: 

1. Casagrande’s method gives good results 
only when the values of Xb/Hu are large than 

unit. 
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Fig. 14. Effect of different values of and Xb/Hu on relative 

location of the inflictions of the infliction points. 

 
2. Numerical solutions of the BEM are in good 

agreement with analytical solutions of Moayeri 

and   Numerov. 

3. Free surface profile are mainly dependent 

on Xb/Hu and secondly on  .  

4. Seepage rates along upstream face of the 

dam are depended strongly on values of  and 

Xb/Hu.  

5. Positions of maximum seepage rate qumax 
along the upstream face of the dam coincide 

with the highest wetted  point on the 

upstream face for  30 with magnitude 

equal   to   k.sin  ( 90 - ).  As       increases, 

locations of qumax  move downward to the 

upstream toe with value higher than k.sin 

( 90 - ) as Xb/Hu decreases. 

6. Relative rate of seepage q/k along the filter 

always vary from infinity at the beginning of 

the filter to 1.0 at its end. 
7. Both of total rates of flow through the dam 

and crossed part of the filter are directly 

proportional with values  and Hu/Xb. But 

the effect of   diminishes as Xb/Hu 

increases. 

8. As   decreases than 90 and Xb/Hu 

increases an inflection point starts to appear 

along the free surface. The free surface profile 

always has an inflection point if maximum 

seepage rate along the upstream face is 

located at the tip point of the upstream face of 
the dam, point A. 

Present problem can be solved accurately 

using numerical approach as BEM or 
analytical approach as conformal mapping 

and inverse hodograph. Analytical solutions 

ended with complex relations between the 

desired output and the dependent variables, 

such relations needs especial skills in 
mathematics (i.e., elliptic integrals and finding 

roots of equations) and programming to 

handle. In the other hand, numerical models 

need an accurate program to be applied. Thus 

it’s recommended to create accurate and 

simple formulations between output and input 
variables of this problem. This will be the 

scope of the next work. 
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