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An efficient numerical simulation and visualization method has been developed for modeling
the dynamics of N-connected bodies such as robotic arm manipulators. The method features
Kane-type formulation of the equations of motion, a variable time step integrator, and a
visualization procedure for displaying the time history of motion dynamics. Flexibility effects
have been incorporated in the developed method by using a novel approximate model of
segmented lumped masses and rotational springs. The developed numerical method has
been tested on a number of robotic configurations with successful correlation with available
data. The test cases include a robotic arm manipulator, and a multi-link flexible beam. The
flexibility model has been validated for the case of elastic flat plate wing divergence
phenomenon. The divergence speed predicted by the model closely matches the observed
experimental data. Correlation of simulation indicates that the developed method is accu-
rate and posses a high level of computational efficiency. Visualization and animation of the
numerical simulation results have been affected through combined geometrical modeling
and key frame approach. “AVI” type movies have been produced that display the motion
time history of the cases considered.
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1. Introduction

Many common engineering structures,
including various types of spacecraft, land
vehicles, industrial machinery and robots, can
be modeled as multibody systems. The
technical literature on the subject is vast,
indeed, with publications going back several
decades. In some applications multibody
structures can be modeled by assuming that
all bodies in the structure are rigid, with the
derivation of equations of motion carried out
by a variety of techniques such as Newton-
Euler equations, d’Alembert’s principle, La-
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grange’s equations, or the method popularized
by Kane. The Iliterature devoted to rigid
multibody structures is well established by
Amirouche [1], Huston [2-4], Roberson and
Schwertassek [5], and Haug [6-7], as well as
papers by Kane and Levinson [8-9].

In recent years, there has been a signifi-
cant rise in the demand for robots to perform
increasingly more complex tasks. Dynamic
simulation of such systems is an important, if
not essential tool used for design, testing, and
optimization. The need to examine design
variations and alternate system configurations
mandates the use of dynamic simulation.
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In the last decade, when extensive dy-
namical studies of multibody spacecraft, robot
devices, complex scientific equipment, and
biomechanical systems were first undertaken,
it became apparent that the straightforward
use of classical methods could entail the
expenditure of very large, at times even
prohibitive amounts of analysts’ labor, and
could lead to the equations of motion so
unwieldy as to render computer solutions
unacceptably slow for technical and/or eco-
nomical reasons. During the past decade, a
number of methods of dynamical analysis
have been developed and employed to over-
come this difficulty. Efforts were undertaken
to reduce the formulations of the equations of
motion for complex systems to a truly simpler
task. A great deal of effort has been involved in
the development of multibody computer pro-
grams, programs intended to generate and
solve equations of motion simultaneously for
user-specified arrangements of connected
bodies. A leading and increasingly popular
method in multibody dynamics is based on
Kane’s equations (or Lagrange’s form of
d’alembert’s principle, or principle of virtual
power) [9-10] for obtaining the governing
equations of motion. The use of Kane’s
equations leads to major saving in labor as
well as to simpler equations of motion. More-
over being highly systematic, this method
focus attention on motions rather than on
configurations, giving the analyst maximum
physical insight not involving variations, such
as those encountered in connection with
virtual work, it can be presented at a relatively
elementary mathematical level. Furthermore,
for multibody systems kane’s equations have
been shown to possess the advantages of both
Lagrange’s equations and Newton-Euler
methods but without the corresponding
advantages. That eliminated from the analysis
enables one to deal directly with non-
holonomic systems without the introduction of
scalar energy function and their derivatives.
Also kane’s equations are ideally suited for
accommodating generalized speeds and quasi-
coordinates. The equations may be derived in
forms that are easily converted into numerical
algorithms.

2. Method formulation

The present method is based on Kane's
formulation of the equations of motion. This
formulation introduces the new concept of
generalized speeds that can add up to
characterize the speed of the entire system. By
focusing on generalized speeds instead of
Newtonian or Lagrangian coordinates, the
equations of motion produced are far simpler
than those of the classical methods, especially
for complex multibody problems.

2.1. Formulation of Kane’s equations of motion

The formulation of the equations starts by
defining the generalized speeds, partial
angular velocities, partial velocities; these are
followed by the definition of the generalized
inertia forces, and the generalized active
forces. The expression of these quantities is
given below:

1) Generalized speeds;

n
ui:ZWijq}+xi (i=1...n). (1)
=t

Where wjy, xi are functions of qi,...,gn, t and
can solve uniquely for guro,..., gn°

2)-a. Partial angular velocity;

n
a)zzwrur +a)t7 (2)
r=1

where, ® is the angular velocity of the rigid
body (rad/s), - is called partial angular
velocity (rad/s), @r, oxare functions of gi,... ,gn
and the time t.

2)-b. partial linear velocity;

n
V=) Viu +V; o (3)

r=1

where, V. is the linear velocity of a point in the
rigid body (m/s), V: is called partial linear
velocity (m/s), V», V:are functions of qi,...,gn
and the time t.
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3)-a. Generalized inertia forces/ torques;

The generalized inertia forces/toques are
defined as:
(F ="l T +NVBF"  (r=1..n) (4)
where N is the inertial reference frame, n is

number of the degrees of freedom for the body

B

. . N
under consideration, ,

is the partial

angular velocity for body B, and NVrB is the
partial linear velocity for body B.

The terms T* and F* are defined as follows:

T*:{IB/B*.Na)B)xNa)B - [B/B*N,B  (N.m). (5)

F* — —mg NaB* (N).  (6)

EB/B*  is the moment of inertia for body B
(Kg.m?),

NgB is the angular velocity for body B with
respect to inertial reference frame
(rad/s),

NoB is the angular acceleration for body B
with respect to inertial reference frame
(rad/s?), and

NoB* is the linear acceleration for point B*
(the C.G. of the body B) with respect to
inertial reference frame (m/s?).

3)-b. generalized active forces and torques;
The generalized inertia forces/toques are
defined as:

(Fg="oBT+NVPE (r=1..n) V), (7)

as p is the point of action of the force acting
the body.

The equations of motion then takes the
simple form of:

F +F =0 (r=1..n). (8)
Details of method implementation for a
configuration of four connected bodies are pre-
sented in appendix A. The equations of
motions are integrated using the efficient
Kutta-Merson algorithm with a variable time
step for stability considerations. Inversion of

the matrices is accomplished by using LU
decomposition method.

2.2. Visudlization and animation of numerical
results

The visualization and animation of the
computed dynamics results are effected in
two-step procedure. The first step involves the
creation of a three dimensional geometrical
model that represents the robotic system
under consideration. In the second step the
position of each link of the robotic system is
established from the numerical results that
describe the time history of the motion
dynamics. A number of frames are thus cre-
ated with each frame representing the position
of the robotic system at a specified time
interval.

The procedure described above is imple-
mented by using the software 3D studio max
[11]. The software offers the capability to
create geometrical models and AVI movies
composed of frames supplied by the user.
Other features include the addition of different
textures and light modes to enhance the
appearance of the developed model. It also
provides the flexibility of specifying camera
position enabling model viewing from different
directions. The following is a brief outline of
the steps taken to develop an AVI movie for
the motion dynamics resulting from the
numerical simulation of the of a given robotic
system.

A screen shot showing a robotic model
displayed on 3D studio max screen is shown
in fig. 1.

2.3. Numerical simulation results

The present algorithm is validated by
performing numerical motion simulation for a
number of test cases and comparing the
results with available data. Visualization and
animation of the time history of the motion
has been also performed by constructing geo-
metric models of the cases under considera-
tion and feeding the computed results into a
number of frames that represents the instant-
aneous position in each case.
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3. Test cases
3.1. Robotic arm manipulator

The first case considered represents a
robotic arm manipulator of ref. [10].

Fig. 2 displays a schematic representation
of the robot arm consisting of three elements
A, B and C, the last of which holds a rigid
body D rigidly. One end of A is a hub that is
made to rotate about a vertical axis fixed in
the reference frame N. B is connected to A at a
point P by means of a motor (all parts of which
are rigidly attached either to A or to B) that
causes B to rotate relative to A about a
horizontal axis fixed in A passing through P,
and perpendicular to the axis of A. finally, C is
connected to B by means of a rack-and-pinion
drive that can make C slide relative to B.
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Fig. 1. Graphical interface showing model being
developed.
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Fig. 2. Schematic representation of robot arm.
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Fig. 3. Motion history simulation of manipulator arm
position angle Q3.
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Fig. 4. Motion history simulation of manipulator arm
position angle Q1.
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Fig. 5. Motion history simulation of manipulator arm
position angle Q2.
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(@) t=28 (b) t=58

(€)t=78

(d)t=13S

Fig. 6. Sample frames of motion animation.

The robot arm considered has three
degrees of freedom with generalized speeds
(U1, Uz, Us), external forces and torques are
given above. The data required to perform the
numerical simulation are taken from ref. [10].
Motion simulation results are displayed in
figs. 3, 4 and S along with the results of ref.
[10] for a duration of 15 seconds. The results
indicate a rapid increase, a slight overshoot
followed by a steady value for the position
angles Qs3, Q:, and displacement Q2, which
accurately correlate with the results of ref.
[10].

3.1.1. Visualization of simulation results

The computed results of motion simulation
are visualized and animated using a con-
structed geometric model and a number of key
frames representing the time history of the
motion dynamics in an animated fashion.
Samples of key frames at different times are
displayed in fig. 6.

3.2. Flexible multi-link beam model

In this case a multi-link beam model
having four beams of square cross section and
rotational springs between adjacent links fig. 7
is used to model the elastic divergence of a
planar aircraft wing. Wing divergence occurs

when a wing deflects under aerodynamic load
so as to increase the applied load, or move the
load so that the twisting effect on the
structure is increased. The increased load
deflects the structure further, which causes a
further increase in load, until the structure
fails. This case is selected to test the
capabilities of the present algorithm in han-
dling elastic effects.

Aerodynamic forces and moments are first
computed using a linear unsteady vortex-
Lattice method, the details of which can be
found in [12] to provide the external forces
and moments needed in solving the dynamical
equations of motion of the multi beam link.
The stiffness (K) of the rotational springs
constants are computed using the approxi-
mate value K = EI/L that is based on the static
deflection of a cantilever beam, where I is the
beam moment of inertia, E is the modulus of
elasticity, and L is the beam length.

At each time step the aerodynamic forces
which are function of the links deflections are
computed and then used as external applied
force at each beam link representing the
planer wing. The deformation of each link is
then computed by solving dynamical
equations of motion of the multi beam links
resulting in new link deflections that will
cause the aerodynamic forces to change.

The wing model selected is known to have
a divergence speed at about 110 m/s, the data
used in the computation are as follows: Beam
length L=0.085725m, Beam width B=
0.001455 m, Beam mass m=0.124 kg,
Modulus of elasticity E = 2 x 1011 N/m?2.

Fig. 7. Flexible multi-link beam model.
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Fig. 8. Variation of deflection angles of the flexible multi link beam wing model at an air speed a, b, c, d Air speed =
100m/s close to the divergence speed e, f, g, h Air speed = 60m/s below the divergence speed.
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Numerical simulation is performed for two
air speeds of 60 and 100 m/s respectively at
an angle of incidence of one degree and
duration of about one second. Simulation
results are displayed in fig. 8 for the torsional
and bending deflection modes. The results
clearly show a diverging oscillations and
instability at air speed of 100 m/s close to the
divergence speed in contrast to the results at
60 m/s that exhibit damped oscillations. The
computational results demonstrate the
capability of the present model in approxi-
mately addressing the effects of elastic effects
in dynamical systems.

4. Conclusions and recommendations

In this paper the problem of numerical
simulation of the dynamics of multi body
systems exemplified in robotic arm manipula-
tor is addressed. An efficient formulation of
the equations of motion has been developed
based on Kane's method for dynamics model-
ing, general enough to handle n-connected
bodies. The equations of motion are integrated
using a fast algorithm utilizing LU decomposi-
tion and a variable time step Kutta-Merson
method. The developed numerical algorithm
has been implemented in a robust FORTRAN
code that outputs the time motion history for
the case under consideration.

Code validation is implemented by per-
forming numerical simulations for several test
cases including robotic arm manipulator, and
a flexible multiconnected beam. Correlation of
simulation results with available data indi-
cates that the developed method is accurate
and posses a high level of computational
efficiency.

Flexibility effects have been incorporated
in the developed model in an approximate
fashion utilizing a segmented lumped mass
approach and rotational springs. The flexibil-
ity model has been validated for the case of
elastic flat plate wing divergence phenomenon.
The divergence speed predicted by the model
closely matches the observed experimental
data.

The visualization and animation of the
numerical simulation results are effected in a
two-step procedure. The first step involves the
creation of a three dimensional geometrical
model that represents the system under

consideration. In the second step the position
angles describing the orientation of the system
are established from the numerical results
that describe the time history of the motion
dynamics. A number of frames are thus
created with each frame representing the
position of the system at a specified time
interval. The animation procedure is then
finalized by stacking the frames to produce an
AVI movie. Correlation results and the visuali-
zation movies demonstrate the effectiveness of
the developed method in performing accurate
dynamic simulation and visualization for
robotic arm manipulators and general multi-
connected bodies.

Further improvements to the developed
numerical procedure could still be added;
these could include improving the treatment of
flexibility effects using more accurate model-
ing such as finite element techniques and
including motion constraints consideration in
the dynamic formulation

Appendix A

Formulation of the equations of motion for
a multibody configuration consisting of
four connected objects:

Define generalized speeds:
NYA*=UgEq ,

NeA=UqEq ,

NawB=UpEp,

Naf=U.E. ,

NeP=UaEq

Define length vector:
A'rPl=Lq*Ea PIrB*=Ly Ep

B'rP2=Lp,*Ep  PIrP2=LpEp
P2rC*=LcEc  C'rP3=LctEc
P2pP3=[ E. P3rD*=LsFEq,

as Eq unit vectors define each body local axis:
Velocity of CG’S (Translation Velocity):

NVA*= UaEq, NVB'= [UaEa+ (UaxLa®)Ea] + [(UsxLy)Es]

NVC*= [UaEa+ (UaxLa*)Ea + (UpxLy)Eb] + [(UexLe)Eq]

NVD*= [ UaEa*+ (UaxLa*)Ea + (UpxLy)Ep + (UexLe)Ee]
+ [(UaxLa)Eq]

Coordinate system transformations:
Eb=EaRab, Ec=E.Rac 5 Ea=EaRad
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Fig. 9. Four body system.

Partial velocity

rrr My [ou, ou; aou; |
Ui Vi v, v, T av,
U, v, oU, oU,
U= . V=1 . oU _| oV, oV,
) ) v ) ) ’
U \74 aUn aUn o 8Un
- -m v, v, ~ ov, |
0 L, -L,
defineVxL=|-L; O L,
L, L, O
[Ea 0 0 0 0
Ea EaV xLa® EaRabV x Lb~ 0 0
V, =|Ea EaVxLa® EaRabVxLb EaRacV x Lc~ 0 ,

Ea EaVxLa® EaRabVxLb  EaRacVxLc EaRadV xLd

as La+ and La- is the distance of any C.G. and consecutive point.
Acceleration:

NaA* = Ea(Uo+UaxUo),
NgB* = Ea(Uo + UaxUo + UaxLa*+ Ua x UaxLa*)) +Eb(UpxLy+ Up x (UpxLy’))
NaC* = Ea(Uo + UaxUo + UaxLa*+ Ua x (UaxLa*)) +Eb(UbxLy+ Up x (UpxLy)) + Ec(UexLe+ Ue x (UexLe))

NgP* = Ea(Uo + UaxUo + UaxLa*+ Ua x (UaxLa*)) +Eb(UbxLy+ Up x (UpxLy)) + Ec(UcexLe+ Ue x (UexLe))
+ Eq(UaxLa+ Ua x (UaxLa’))

a ac
*

a® ab
c* = Eq|

a ac
%

aP ad
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Generalized inertia force F*r (force part):

m.a”® (1 |
f 0 (VxLa")"
. 1| m,a o
Ff __(Vr) m ac* = O (I:zab>< Lb )
C
. 0 0
m,a 0 0

Inertia torque:

TA*= -Eq In U'a- Ea (Uax In Ua)
TB'= -Ep Ip U'b— Ep (Upx I Up)
TC¢= -Ec I. Uc— Ec (UCX I Uc)
TP*= -Eq Ia U'a— Ea (Uax Ia Ua)

Generalized inertia force FT* ( torque part):

TA* i 0
) B 1Uq +Uq xI,U,
Fr =( o) per | = ToUb +Up xIpU,,
D" IUe +Ue x1.U,
| IUy +UgxIgUy |

Generalized active force Fr:

a

I I _
m_a
(VxLa")" (VxLa")" a

Given Ma, Mb, Mc, Md, Ia, Ib s Ic, Id, Rab, Rac, Rad} La+ ,Lb— 3 Lb+ ,Lc— s Lc+ ,Ld‘—,
At each instant when U, , Ua, Us, Uc, Ug are known.

F = AU'+B
U, | [A(LI)
U,

Where U'=|U, |, A=
U, .
Uq |A(5,1)

and

A(1,1)= (matmp+metma)

A(1,2)= -(mp+me+ma) (VxLas)

A(1,3)= -Rap(mpVxLp- + mcVx L+ maVxLy)
A(1,4)= -Rac(mc VxLe-+ ma VXLC)

A(1,5)= -Rag(maVxLg-)

A(2,1)= - (VxLa+)(mptmetma)=[A(1,2)]T

A(2,2)= - In- (VxLa+)[(mptme+ma) (VxLa+)

A(2,3)=- (VxLa+)F Rap(muV xLp-+ mcV xLo+ maV xLu)
A(2,4)= - (VxLa+)T Rac(mcVxLe+ maVxLe)

A(2,5)= - (VxLa+)T Rada(maV xLa-)

(RyxLy)  (RyxLy)" | M2
(RaxL )" (RyxL)™ | 2
0 (Rog x Ly ) 142
partial angular velocity:
O E, 0 0 O
O 0 E, 0 O
““lo o 0o E, O
0O 0 0 0 E,
A(L5)] [ B(1)]
B(2)
, B=|B(3)|,
. B(4)
A(5,5)] | B(5)]

A(3, 1)=-(mpVx Lp-+mcVx L+ maVxLy) T Rlap
=[A(1,2)]"

A(3,2)=-(mpVxLp-+mcVx Lyt maVx L) T RTap
(VxLa+)=[A(2,3)]T

A(3,3)=-Ip - (VxLp-)T mp( V*Ly -) —(VxLp)t (mc
+ mg)(VxLy)

A(3,4)= - (VxLp)T RTap Rac(me V Le-+ mq VxLe)
A(3,5)= - (VxLy)T RTap Rada(maV xLa-)

A(4, 1)= -(mcVxLe- + meVxLp+ maVxLp)T
RTap=[A(1,49)]T

A(4,2)=- (chXLc—+ deXLc)T RTgc (VXLa+)
~A(2,9)"

A(4,3)= - (mcVxLe-+ mgVxLe)T RTacRap (VxL)
=[A(3,4)]"
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A(4,4)= -1c-(VxLc-)T me(VxLe-) — (VXLe)T mg (VxLe)
A(4,5)= - (VXLJ)T RTac ma Rad V xLa-

A(5, 1)= -(VxLa-) RTaa ma=[A(1,5)]T

A(5,2)= - (VxLa-)T RTaa ma V xLa+=[A(2,9)]|T
A(5,3)= - (VxLa-)T RTad Mmd Rab V xLv=[A(3,5)]T
A(5,4)= - (VxLa-)T RTada Mmd Rac VxLc=[A(4,9)]|T
A(5,5)= -Ia-(VxLa-)T ma(VxLa-)

Ta= ( Uax U, o) Ma

Tv= [(Ja>< Uo +Ua><(Ua><La+)+Rab Ub ><(U:1><Lb-)]7nb

Te= [UaxUs +Uax(Uax La+)+ Rab Up x(Uax L) +Rac Uc
x(Uex Le-)|me

Ta= [UaxUs +Uax(Uax La+)+ Rab Up x(Uax L) +Rac Uc
x(UexLo)+ Rad Ua x(UaxLa-)|ma
B(1)=-(Ta+Tp+Tc+Ta)

B(2) =- UaxIaUa- (VXLCH) T (Tb+Tc+Td)

B(3)=- UpxIpUp-[ (VXxLb-)T RTapTv+ (VxLb JTR ap
(Tc+Td)]

B(4) =- UcXIcUc'[ (VXLC')T RTqcTe+ (VXLC )TRTac Td]
B(5)=- UaxlaUa- (VxLa-)T RTag Ta.

References

[1] M.L. Farid. Amirouche., Computational
Methods in  Multibody  Dynamics,
Prentice-Hall international, inc. (1992).

[2] R.L. Huston and C.E. Passerllo and M.
W. Harlow, Dynamics of Multi-Rigid-
Body Systems, J. Apple. Mech, Vol. 45
(4), pp. 889-894 (1978).

[3] R.L. Huston and C.E. Passerllo, “On
Multi-Rigid-Body Systems Dynamics”,
Comput. Struct., Vol. 10, pp.439-446

(1979).

[4] R.L. Huston and C.E. Passerllo,
“Multibody Dynamics Including
Translation Between The  Bodies”,

Comput. Struct., Vol. 11, pp.713-720
(1980).

[5] R. Shwertassek and R.E. Robenson, “A
State Space Dynamical Representation
for Multibody Mechanical Systems, Part
I: Systems with Tree Configuration”,
Acta Mech., Vol. 50, pp. 141-161 (1984).

[6] S.S. Kim and E.J. Haug, “A Recursive
Formulation for Flexible Multibody
Dynamics, Part I: Open-Loop Systems,”
Computer Methods in Applied Mechanics
and Engineering, Vol. 71, pp. 293-314
(1988).

[7] S.S. Kim and E.J. Haug “A Recursive
Formulation for Flexible Multibody
Dynamics, Part II: Closed-Loop
Systems,” Computer Methods in Applied
Mechanics and Engineering, Vol. 74, pp.
251-269 (1989).

[8] T.R. Kane and D.A. Levinson, “The Use
of Kane’s Dynamical Equations in
Robotics,” The International Journal of
Robotics Research, Vol. 2 (3), pp. 3-21
(1983).

[9] T.R. Kane and C.F. Wang, on the
Derivation of Equations of Motion, J.
Soc. Ind. App. Math., Vol. 13 (1969).

[10] T.R. Kane and D.A. Levinson, Dynamics:
Theory and Applications, McGraw- Hill,
New York, (1985).

[11] 3D Studio Max, Version 3, NewRiders
Publishing and its Licensors Copyright ©
(1997).

[12] P. Stephen, Timoshenko and J.N.
Goodier Theory of Elasticity, McGraw Hill
College Div; 3rd edition December (1970).

Received April 22, 2004
Accepted June 28, 2004

728 Alexandria Engineering Journal, Vol. 43, No. 6, November 2004



H.M. Abdelaziz et al. / Robotic arm manipulators

Alexandria Engineering Journal, Vol. 43, No. 6, November 2004 729



