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An efficient numerical simulation and visualization method has been developed for modeling 
the dynamics of N-connected bodies such as robotic arm manipulators. The method features 
Kane-type formulation of the equations of motion, a variable time step integrator, and a 
visualization procedure for displaying the time history of motion dynamics. Flexibility effects 

have been incorporated in the developed method by using a novel approximate model of 
segmented lumped masses and rotational springs. The developed numerical method has 
been tested on a number of robotic configurations with successful correlation with available 
data. The test cases include a robotic arm manipulator, and a multi-link flexible beam. The 
flexibility model has been validated for the case of elastic flat plate wing divergence 
phenomenon. The divergence speed predicted by the model closely matches the observed 
experimental data. Correlation of simulation indicates that the developed method is accu-
rate and posses a high level of computational efficiency. Visualization and animation of the 
numerical simulation results have been affected through combined geometrical modeling 
and key frame approach. “AVI” type movies have been produced that display the motion 
time history of the cases considered. 

تم تطوير خوارزم وبرنامج عالي الكفاءة للمحاكاة العددية لديناميكا المنظومات المتعددة الأجسام كالأذرع الروبوتية. ويعتمدد النمدوذ  
ارزم عددد  متييدر الخطدوة لحد  معدادلات الحركدة  " للحركة ويشدتم  علدى خدوKaneالرياضي للخوارزم المطور على معادلات " 

". وقد تدم تنفيدذ الخدوارزم المطدور AVIبالإضافة إلى طريقة لإظهار مسار الحركة الديناميكية في صورة فيلم باستخدام المواصفات "
عددة حدالات تضدمنت نمداذ  في برنامج باستخدام لية الفورتران. وقد تم تقييم أداء الخوارزم المطور بالرسالة عن طريق تطبيقد  فدي 

مختلفددة للمنظومددات الروبوتيددة المتعددددة الأجسددام اشددتملت علددى ذراع روبددوت لتحريددلأ الخ يددا الشمسددية ل قمددار الاصددطناعية وذراع 
روبوت للتطبيقات الصناعية وكمرة جسيئة متعددة الأجزاء. وقد دلت مقارنة نتائج البرنامج مع نتدائج الأبحداا المنشدورة علدى دقدة و 

فاءة حسابية عالية. وقد تم تطوير نموذ  رياضدي لدراسدة تدر ير مروندة المنظومدات المتعدددة الأجسدام علدى الأداء الدديناميكي يعتمدد ك
وقدد تدم تطبيدق النمدوذ  لدراسدة الدديناميكا المرندة الهوائيدة  .ذو كتد  مركدزة وزنبركدات ذات الحركدة الدائريدة علدى نمدوذ  ميكدانيكي

أظهدرت النتدائج العدديدة عندد مقارنتهدا بالنتدائج المعمليدة علدى  وقدد ت تحدت صدوتية و زوايدا سدقوط متييدرةلجناح مستطي  عند سرعا
إمكانيدة تحديدد سددرعة الانفدرا  الناتجددة عدن تدر ير المرونددة علدى الأداء الايروديندداميكى. وقدد تدم عمدد  تم يد  ونمذجددة لنتدائج المحاكدداة 

 .زمني لتاريخ الحركةالعددية من خ   تطوير فيلم  يوضح التم ي  ال
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1. Introduction 

 

Many common engineering structures, 
including various types of spacecraft, land 

vehicles, industrial machinery and robots, can 

be modeled as multibody systems. The 

technical literature on the subject is vast, 

indeed, with publications going back several 

decades. In some applications multibody 
structures can be modeled by assuming that 

all bodies in the structure are rigid, with the 

derivation of equations of motion carried out 

by a variety of techniques such as Newton-

Euler equations, d’Alembert’s principle, La-

grange’s equations, or the method popularized 

by Kane.  The literature devoted to rigid 

multibody structures is well established by 
Amirouche [1], Huston [2-4], Roberson and 

Schwertassek [5], and Haug [6-7], as well as 

papers by Kane and Levinson [8-9]. 

In recent years, there has been a signifi-

cant rise in the demand for robots to perform 

increasingly more complex tasks. Dynamic 
simulation of such systems is an important, if 

not essential tool used for design, testing, and 

optimization. The need to examine design 

variations and alternate system configurations 

mandates the use of dynamic simulation.  
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In the last decade, when extensive dy-

namical studies of multibody spacecraft, robot 

devices, complex scientific equipment, and 
biomechanical systems were first undertaken, 

it became apparent that the straightforward 

use of classical methods could entail the 

expenditure of very large, at times even 

prohibitive amounts of analysts’ labor, and 

could lead to the equations of motion so 
unwieldy as to render computer solutions 

unacceptably slow for technical and/or eco-

nomical reasons. During the past decade, a 

number of methods of dynamical analysis 

have been developed and employed to over-
come this difficulty. Efforts were undertaken 

to reduce the formulations of the equations of 

motion for complex systems to a truly simpler 

task. A great deal of effort has been involved in 

the development of multibody computer pro-

grams, programs intended to generate and 
solve equations of motion simultaneously for 

user-specified arrangements of connected 

bodies. A leading and increasingly popular 

method in multibody dynamics is based on 

Kane’s equations (or Lagrange’s form of 
d’alembert’s principle, or principle of virtual 

power) [9-10] for obtaining the governing 

equations of motion. The use of Kane’s 

equations leads to major saving in labor as 

well as to simpler equations of motion. More-

over being highly systematic, this method 
focus attention on motions rather than on 

configurations, giving the analyst maximum 

physical insight not involving variations, such 

as those encountered in connection with 

virtual work, it can be presented at a relatively 
elementary mathematical level. Furthermore, 

for multibody systems kane’s equations have 

been shown to possess the advantages of both 

Lagrange’s equations and Newton-Euler 

methods but without the corresponding 

advantages. That eliminated from the analysis 
enables one to deal directly with non-

holonomic systems without the introduction of 

scalar energy function and their derivatives. 

Also kane’s equations are ideally suited for 

accommodating generalized speeds and quasi-
coordinates. The equations may be derived in 

forms that are easily converted into numerical 

algorithms. 

2. Method formulation 

 

The present method is based on Kane's 
formulation of the equations of motion. This 

formulation introduces the new concept of 

generalized speeds that can add up to 

characterize the speed of the entire system. By 

focusing on generalized speeds instead of 

Newtonian or Lagrangian coordinates, the 
equations of motion produced are far simpler 

than those of the classical methods, especially 

for complex multibody problems. 

 
2.1. Formulation of Kane’s equations of motion 
 

The formulation of the equations starts by 

defining the generalized speeds, partial 

angular velocities, partial velocities; these are 

followed by the definition of the generalized 

inertia forces, and the generalized active 
forces. The expression of these quantities is 

given below: 
1) Generalized speeds; 

 

   (1) 
 

 
Where wij, xi are functions of q1,…,qn, t and 

can solve uniquely for q1o,..., qno 

 
2)-a. Partial angular velocity; 
 

   ,             (2)  

 

 

where,  is the angular velocity of the rigid 

body (rad/s), r is called partial angular 

velocity (rad/s), r, t are functions of q1,… ,qn 

and the time t. 
 
2)-b. partial linear velocity; 
 

                                                                                                         

,        (3) 

 
 
where, V. is the linear velocity of a point in the 

rigid body (m/s), Vr is called partial linear 

velocity (m/s), Vr, Vt are functions of q1,…,qn 

and the time t. 
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3)-a. Generalized inertia forces/torques; 

 

The generalized inertia forces/toques are 
defined as: 

 

                                                                    (4) 

 
 

where N is the inertial reference frame, n is 

number of the degrees of freedom for the body 

under consideration, 
B

r

N  is the partial 

angular velocity for body B, and 
B

r

NV  is the 

partial linear velocity for body B. 

The terms T* and F* are defined as follows: 

                                                                              

(N.m).  (5) 

                                                                              
(N).  (6) 

 
IB/B*  is the moment of inertia for body B  

(Kg.m2), 
NB   is the angular velocity for body B with 

respect to inertial reference frame  

(rad/s), 
NB    is the angular acceleration for body B 

with respect to inertial reference frame 

(rad/s2), and 
NB*    is the linear acceleration for point B* 

(the C.G. of the body B) with respect to 

inertial reference frame (m/s2). 

 
3)-b. generalized active forces and torques; 

The generalized inertia forces/toques are 

defined as: 

                                                                        

)n,...,r(F.VT.)F( P
r

NB
r

N
Br 1   (N),       (7) 

 

as p is the point of action of the force acting 
the body. 

The equations of motion then takes the 

simple form of: 

 

)n,...,r(FF r
*
r 10  .        (8) 

 

Details of method implementation   for a 

configuration of four connected bodies are pre-
sented in appendix A. The equations of 

motions are integrated using the efficient 

Kutta-Merson algorithm with a variable time 

step for stability considerations. Inversion of  

the matrices is accomplished by using LU 

decomposition method.  
 
2.2. Visualization and animation of numerical  

 results   

 

The visualization and animation of the 

computed dynamics results are effected in 

two-step procedure. The first step involves the 
creation of a three dimensional geometrical 

model that represents the robotic system 

under consideration. In the second step the 

position of each link of the robotic system is 

established from the numerical results that 
describe the time history of the motion 

dynamics. A number of frames are thus cre-

ated with each frame representing the position 

of the robotic system at a specified time 

interval.  

The procedure described above is imple-
mented by using the software 3D studio max 

[11]. The software offers the capability to 

create geometrical models and AVI movies 

composed of frames supplied by the user. 

Other features include the addition of different 
textures and light modes to enhance the 

appearance of the developed model. It also 

provides the flexibility of specifying camera 

position enabling model viewing from different 

directions. The following is a brief outline of 

the steps taken to develop an AVI movie for 
the motion dynamics resulting from the 

numerical simulation of the of a given robotic 

system. 

A screen shot showing a robotic model 

displayed on 3D studio max screen is shown 
in fig. 1.  

 
2.3. Numerical simulation results  

 

The present algorithm is validated by 

performing numerical motion simulation for a 
number of test cases and comparing the 

results with available data. Visualization and 

animation of the time history of the motion 

has been also performed by constructing geo-

metric models of the cases under considera-
tion and feeding the computed results into a 

number of frames that represents the instant-

aneous position in each case.   
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3. Test cases 
 
3.1. Robotic arm manipulator   
  

The first case considered represents a 

robotic arm manipulator of ref. [10]. 

Fig. 2 displays a schematic representation  

of  the robot arm consisting of three elements 

A, B and C, the last of which holds a rigid 
body D rigidly. One end of A is a hub that is 

made to rotate about a vertical axis fixed in 

the reference frame N. B is connected to A at a 

point P by means of a motor (all parts of which 

are rigidly attached either to A or to B) that 
causes B to rotate relative to A about a 

horizontal axis fixed in A passing through P, 

and perpendicular to the axis of A. finally, C is 

connected to B by means of a rack-and-pinion 

drive that can make C slide relative to B. 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 
 

Fig. 1. Graphical interface showing model being 
developed. 

 

 

 

 

 

 
 

 

 

 

 
 

 
 

Fig. 2. Schematic representation of robot arm. 

 

 

 
 

 

 

 

 

 
 

 

 

 
 

Fig. 3. Motion history simulation of manipulator arm 
position angle Q3. 

 

 

 

 

 

 
 

 

 

 

 
 

 

 
 

Fig. 4. Motion history simulation of manipulator arm 
position angle Q1. 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 
 
 

Fig. 5. Motion history simulation of manipulator arm 

position angle Q2. 
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  (a) t =2 S     (b) t =5 S 

 

 

 

 

 

 
 

 

 

 
  (c) t =7 S     (d) t =13 S 

 
Fig. 6. Sample frames of motion animation. 

 

The robot arm considered has three 

degrees of freedom with generalized speeds 
(U1, U2, U3), external forces and torques are 

given above. The data required to perform the 

numerical simulation are taken from ref. [10]. 
Motion simulation results are displayed in 

figs. 3, 4 and 5 along with the results of ref. 

[10] for a duration of 15 seconds. The results 

indicate a rapid increase, a slight overshoot 

followed by a steady value for the position 
angles Q3, Q1, and displacement Q2, which 

accurately correlate with the results of ref. 

[10]. 
 

3.1.1. Visualization of simulation results 

The computed results of motion simulation 

are visualized and animated using a con-

structed geometric model and a number of key 

frames representing the time history of the 
motion dynamics in an animated fashion. 

Samples of key frames at different times are 

displayed in fig. 6.  

 
3.2. Flexible multi-link beam model 

 
In this case a multi-link beam model 

having four beams of square cross section and 

rotational springs between adjacent links fig. 7 

is used to model the elastic divergence of a 

planar aircraft wing. Wing divergence occurs 

when a wing deflects under aerodynamic load 

so as to increase the applied load, or move the 

load so that the twisting effect on the 
structure is increased. The increased load 

deflects the structure further, which causes a 

further increase in load, until the structure 

fails. This case is selected to test the 

capabilities of the present algorithm in han-

dling elastic effects.  
Aerodynamic forces and moments are first 

computed using a linear unsteady vortex-

Lattice method, the details of which can be 

found in [12] to provide the external forces 

and moments needed in solving the dynamical 
equations of motion of the multi beam link. 
The stiffness (K) of the rotational springs 

constants are computed using the approxi-
mate value K = EI/L that is based on the static 

deflection of a cantilever beam, where I is the 
beam moment of inertia, E is the modulus of 

elasticity, and L is the beam length. 

At each time step the aerodynamic forces 
which are function of the links deflections are 

computed and then used as external applied 

force at each beam link representing the 

planer wing. The deformation of each link is 

then computed by solving dynamical 
equations of motion of the multi beam links 

resulting in new link deflections that will 

cause the aerodynamic forces to change.  

The wing model selected is known to have 

a divergence speed at about 110 m/s, the data 

used in the computation are as follows: Beam 
length L=0.085725m, Beam width B= 

0.001455 m, Beam mass m=0.124 kg, 
Modulus of elasticity E = 2 x 1011 N/m2. 
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Fig. 7. Flexible multi-link beam model. 
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       (a) bending mode                                                     

 

 

 
 

 

 

 

 
 

 
 

         (c) bending mode                                                                 

 

 

 

 

 
 

 

 

 

 
 

(e) Bending mode                                                            

 

 

 

 
 

 

 

 

 
 

 

 
 

(g)Bending mode 

 

 

 

 
 

 

 

 

 

 
 

 (b)  torsion mode 

 

 

 
 

 

 

 

 
 

 

 
 (d) torsion mode 

 

 

 

 
 

 

 

 

 

 
 

(f) Torsion mode  

 

 
 

 

 

 

 

 
 

 

 

 
 

(h) Torsion mode 

 
Fig. 8. Variation of deflection angles of the flexible multi link beam wing model at an air speed  a, b,  c, d Air speed = 

100m/s close to the divergence speed e, f,  g, h Air speed = 60m/s below the divergence speed. 
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Numerical simulation is performed for two 

air speeds of 60 and 100 m/s respectively at 

an angle of incidence of one degree and 
duration of about one second. Simulation 

results are displayed in fig. 8 for the torsional 

and bending deflection modes. The results 

clearly show a diverging oscillations and 

instability at air speed of 100 m/s close to the 

divergence speed in contrast to the results at 
60 m/s that exhibit damped oscillations. The 

computational results demonstrate the 

capability of the present model in approxi-

mately addressing the effects of elastic effects 

in dynamical systems. 
 

4. Conclusions and recommendations 
 

In this paper the problem of numerical 

simulation of the dynamics of multi body 
systems exemplified in robotic arm manipula-

tor is addressed. An efficient formulation of 

the equations of motion has been developed 

based on Kane's method for dynamics model-

ing, general enough to handle n-connected 

bodies. The equations of motion are integrated 
using a fast algorithm utilizing LU decomposi-

tion and a variable time step Kutta-Merson 

method. The developed numerical algorithm 

has been implemented in a robust FORTRAN 

code that outputs the time motion history for 
the case under consideration. 

Code validation is implemented by per-

forming numerical simulations for several test 

cases including robotic arm manipulator, and 

a flexible multiconnected beam. Correlation of 

simulation results with available data indi-
cates that the developed method is accurate 

and posses a high level of computational 

efficiency.    

Flexibility effects have been incorporated 

in the developed model in an approximate 
fashion utilizing a segmented lumped mass 

approach and rotational springs. The flexibil-

ity model has been validated for the case of 

elastic flat plate wing divergence phenomenon. 

The divergence speed predicted by the model 

closely matches the observed experimental 
data.  

The visualization and animation of the 

numerical simulation results are effected in a 

two-step procedure. The first step involves the 

creation of a three dimensional geometrical 
model that represents the system under 

consideration. In the second step the position 

angles describing the orientation of the system 

are established from the numerical results 
that describe the time history of the motion 

dynamics. A number of frames are thus 

created with each frame representing the 

position of the system at a specified time 

interval. The animation procedure is then 

finalized by stacking the frames to produce an 
AVI movie. Correlation results and the visuali-

zation movies demonstrate the effectiveness of 

the developed method in performing accurate 

dynamic simulation and visualization for 

robotic arm manipulators and general multi-
connected bodies. 

Further improvements to the developed 

numerical procedure could still be added; 

these could include improving the treatment of 

flexibility effects using more accurate model-

ing such as finite element techniques and 
including motion constraints consideration in 

the dynamic formulation 
 

Appendix A 
 

Formulation of the equations of motion for 

a multibody configuration consisting of 

four connected objects: 
 

Define generalized speeds: 
NVA*=UaEa ,      
NA=UaEa ,  

NB=UbEb ,   

NC=UcEc , 

 ND=UdEd   
 

Define length vector: 
A*rP1=La+Ea   P1rB*=Lb-Eb     
B*rP2=Lb+Eb      P1rP2=LbEb 

P2rC*=Lc-Ec      C*rP3=Lc+Ec 

P2rP3=LcEc      P3rD*=Ld-Ed , 

 

as Ea unit vectors define each body local axis: 
Velocity of CG’S (Translation Velocity): 

NVA*= UaEa, NVB*= [UaEa+ (UaLa+)Ea] + [(UbLb-)Eb] 
NVC*= [UaEa+ (UaLa+)Ea + (UbLb-)Eb] + [(UcLc-)Ec]  

NVD*= [ UaEa+ (UaLa+)Ea + (UbLb-)Eb + (UcLc-)Ec]      

      + [(UdLd-)Ed] 
 

Coordinate system transformations: 

Eb=EaRab, Ec=EaRac , Ed=EaRad 
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Fig. 9. Four body system. 
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as La+ and La- is the distance of any C.G. and consecutive point. 
Acceleration: 

NaA* = Ea(U’o+UaUo), 

NaB* = Ea(U’o + UaUo + U’aLa++ Ua  UaLa+)) +Eb(U’bLb-+ Ub  (UbLb-)) 
NaC* = Ea(U’o + UaUo + U’aLa++ Ua  (UaLa+)) +Eb(U’bLb-+ Ub  (UbLb-)) + Ec(U’cLc-+ Uc  (UcLc-)) 

NaD* = Ea(U’o + UaUo + U’aLa++ Ua  (UaLa+)) +Eb(U’bLb-+ Ub  (UbLb-)) + Ec(U’cLc-+ Uc  (UcLc-)) 

+ Ed(U’dLd-+ Ud  (UdLd-)) 
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Generalized inertia force F*f   (force part): 

 

 
 

 

 

 

 

 
 
Inertia torque:                                                      partial angular velocity: 

TA*= -Ea Ia U’a - Ea (Ua Ia Ua) 

TB*= -Eb Ib U’b – Eb (Ub Ib Ub) 

TC*= -Ec Ic U’c – Ec (Uc Ic Uc) 

TD*= -Ed Id U’d – Ed (Ud Id Ud) 
 

Generalized inertia force 
*

TF ( torque part): 

 

 
 
 
 
 
 
 
Generalized active force Fr: 

Given ma , mb, mc , md, Ia , Ib , Ic , Id, Rab , Rac , Rad , La+ ,Lb- , Lb+ ,Lc- , Lc+ ,Ld`-, 
At each instant when Uo , Ua , Ub , Uc , Ud are known. 

BAUFr  '  
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and 
A(1,1)= -(ma+mb+mc+md) 

A(1,2)= -(mb+mc+md) (La+) 

A(1,3)= -Rab(mbLb- + mcLb+ mdLb) 

A(1,4)= -Rac(mcLc-+ mdLc) 

A(1,5)= -Rad(mdLd-) 

A(2,1)= - (La+)T(mb+mc+md)=[A(1,2)]T 

A(2,2)= - Ia- (La+)T(mb+mc+md) (La+) 

A(2,3)=- (La+)T Rab(mbLb-+ mcLb+ mdLb) 

A(2,4)= - (La+)T Rac(mcLc-+ mdLc) 

A(2,5)= - (La+)T Rad(mdLd-) 

A(3,1)=-(mbLb-+mcLb+mdLb)T RTab 

=[A(1,2)]T 

A(3,2)=-(mbLb-+mcLb+mdLb)T RTab 

(La+)=[A(2,3)]T 

A(3,3)=-Ib - (Lb-)T mb(Lb -) –(Lb)T (mc 

+ md)(Lb) 

A(3,4)= - (Lb)T RT
ab Rac(mc Lc-+ mdLc) 

A(3,5)= - (Lb)T RTab Rad(mdLd-) 

A(4,1)= -(mcLc- + mcLb+ mdLb)T 
RTab=[A(1,4)]T  

A(4,2)=- (mcLc-+ mdLc)T RTac (La+) 
=[A(2,4)]T 

A(4,3)= - (mcLc-+ mdLc)T RT
acRab (Lb) 

=[A(3,4)]T 
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A(4,4)= -Ic-(Lc-)T mc(Lc-) – (Lc)T md (Lc) 

A(4,5)= - (Lc)T RTac md Rad Ld- 

A(5,1)= -(Ld-) RTad  md=[A(1,5)]T 

A(5,2)= - (Ld-)T RTad md La+=[A(2,5)]T 

A(5,3)= - (Ld-)T RTad md Rab Lb=[A(3,5)]T 

A(5,4)= - (Ld-)T RTad md Rac Lc=[A(4,5)]T 

A(5,5)= -Id-(Ld-)T md(Ld-) 

Ta= (UaUo)ma 

Tb= [UaUo +Ua(UaLa+)+Rab Ub (UaLb-)]mb 

Tc= [UaUo +Ua(UaLa+)+Rab Ub (UaLb) +Rac Uc 

(UcLc-)]mc 

Td= [UaUo +Ua(UaLa+)+Rab Ub (UaLb) +Rac Uc 

(UcLc)+ Rad Ud (UdLd-)]md 
B(1)=-(Ta+Tb+Tc+Td) 

B(2)=- UaIaUa- (La+)T (Tb+Tc+Td) 

B(3)=- UbIbUb-[ (Lb-)T RTabTb+ (Lb )TRTab 
(Tc+Td)] 

B(4)=- UcIcUc-[ (Lc-)T RTacTc+ (Lc )TRTac Td] 

B(5)=- UdIdUd- (Ld-)T RTad Td. 
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