Modeling of rectangular submerged hydraulic jumps

Gamal M.M. Abdel-Aal
Water \& Water Structures Dept., Faculty of Eng., Zagazig University, Zagazig, Egypt

Abstract

Submerged hydraulic jump is one of the most interested and encountered phenomenon that formed downstream of single vent regulators. The basic characteristics of these jumps were covered well in literature both experimentally and theoretically. This paper presents a simplified solution based on the application of the 1-D momentum equation. The results of the developed equation were compared to those available in the literature using the results of the experimental data obtained by the present study. Similar models are developed for the energy loss. Also, empirical models are developed for the basic characteristics of this type of jumps based on the present showy experimental data. تتكون الققزة الهيّروليكية المغمورة خلف المنشأت الهيدروليكية وهى من الظواهر الهامة التى حظيت باهتمام الباحثين فى كل أنحاء الطاقة) لاشتقاق معادلات دقيقة ومبسطة لحساب العمق النسبى (أونسبة الغمر) والفاقد فى الطاقة بدلالـة متغيرات السريان مثل رقم فرويد. وقد تم التأكد من صحة ودقة المعادلات المثنقة بمقارنتها بالقياسـات المعمليـة الحاليـة. وتتميز المعـادلات المثـتقة (لاسيما معادلة العمق النسبى) بأنها أبسط من معادلة جوفيندا وراجر اتنام وادق من معادلة العزيزى وذلك في مجال البيانات المعمليـة الحاليـة. هذا وقد استخدمت البيانات المعطلية التى تم الحصول عليها من الار اسة الحالية فى النتوصل الى نمـاذج احصـائية لحسـاب خصـائص

القفزات الهيدروليكية المغمورة فوق القيعان اللطساء.

Keywords: Submerged hydraulic jump, Stilling basins

1. Introduction

Submerged hydraulic jump has attracted many researchers one of the poineer studies on the submerged hydraulic jump is that of Govinda Roa and Rajaratnam [1]. They discussed the characteristics of the submerged hydraulic jump in rectangular channels. The momentum and continuity equations were applied to have the following equation.
$\frac{y_{3}}{y_{1}}=\left[\left(1+S_{r}\right)^{2} \phi^{2}-2 F_{1}^{2}+\frac{2 F_{1}^{2}}{\left(1+S_{r}\right) \phi}\right]^{0.5}$.
In which, y_{3}, is the backup water depth, y_{1}, is the supercritical flow depth, S_{r}, is the Govinda Roa and Rajaratnam submergence ratio and equals $S_{r}=\left(y_{4}-y_{2}\right) / y_{2}$, y_{4} is the tailwater depth, y_{2}, is the sequent depth for the free jump, and F_{1}, is the supercritical Froude number and $\phi=0.5\left(\sqrt{1+8 F_{1}^{2}}-1\right)$.
In addition, they defined the relative energy loss as:

$$
\begin{align*}
\frac{E_{L}}{E_{1}}= & {\left[\left(\frac{y_{3}}{y_{1}}-\left(1+S_{r}\right) \phi\right)+0.5 F_{1}^{2}\left(1-\frac{1}{\left(1+S_{r}\right)^{2} \phi^{2}}\right)\right] } \\
& {\left[\frac{y_{3}}{y_{1}}+\frac{F_{1}^{2}}{2}\right]^{-1} } \tag{2}
\end{align*}
$$

Rajaratnam [2] Studied the submerged jump as the case of a plane turbulent wall jet under an adverse pressure gradient over which a backward flow had been placed. Narayanan and Bhargara [3] studied the pressure fluctuation in submerged jump downstream of a sluice gate. They showed that the increasing of tail water depth up to certain submergence causes a rise in the magnitudes of pressure fluctuations, beyond that, it begins to decrease. El-Azizy [4] studied the effect of different intensities of bed roughness on the rectangular submerged hydraulic jump. A theoretical equation was developed for smooth case. The control volume was starting at the gate opening and ending at the end of the jump. It was noticed that, the theoretical curve for all verification cases is almost lower than the experimental one.

In addition to the above, McCorquodal and Khalifa [5], Abdel Gawad et al. [6,7], Smith [8], Ohtsu et al. [9] and Negm et al. [10] analyzed the submerged hydraulic jump formed in a radial stilling basin provided with sudden drop both theoretically and experimentally. Both the experimental results and the developed equations indicated that at a particular relative location of the drop, the relative water depth, relative energy loss and relative length of jump increase by increasing Froude number keeping the submergence unchanged. Negm et al. [11] studied the effect of end sill on the main characteristics of the submerged radial jump. It was found that the presence of sill at the end of the radial basin produces a small effect on the jump characteristics. Negm et al. [12] analyzed both theoretically and experimentally the submerged flow in radial stilling basin provided with negative step and an end sill. The effects of various parameters such as submergence, relative height of sill, relative height of step and inlet Froude number were presented and discussed.

The present paper aims at developing a more accurate equation than that developed by El-Azizy [4] and more simplified than that developed by Govinda Roa and Rajaratnam [1].

2. Experimental work

The experimental data were collected (ElAzizy [4]) in the hydraulic laboratory of Faculty of Engineering, Ain Shams University. Recirculating rectangular flume was used. The flume is 13.92 m long, 0.53 m wide, and 0.70 m deep. A moving point gauge was used to measure the water depth. The rate of flow was measured by using a pre-calibrated orifice meter. A sluice gate was used to control the upstream flow while the tailgate was used to control the tailwater level. The experiments were conducted to cover a range of supercritical Froude number ranging from1.1 to 3.5. The following test procedure was followed to complete any particular run in a horizontal flume. (a) the gate opening was set, (b) the power is switched on and the control valve was adjusted to a specific discharge. (c)
a submerged hydraulic jump was formed using the tailgate (c) once the stability conditions were attained, the flow rate, length of the jump, water depth just downstream of the gate and the tail water depth were recorded. The length of jump was taken to be the section at which the flow depth becomes almost horizontal (d) the position of the tailgate was changed to obtain another submergence ratio and then step (c) was repeated. (e) step (d) was repeated several times then the procedure was repeated for another discharge till the required discharges were covered (f) the procedure was repeated for another gate opening and so on till the range of the experimental data were covered.

3. Theoretical approach

In order to apply the momentum equation on control volume b-c, the following assumptions are involved. (a) the velocity distribution at the two sections b and c are unifrom. (b) the pressure distribution at both sections b and c is hydrostatic. (c) the flow is steady and is incompressible. (d) the effects of bed friction, side wall effect, air entraibment are all ignored.

Based on these asumptions and based on fig. 1 which shows the phenomenon under investigation, the related terms and pressure forces to be used in the momentum equation are being defined in table 1 based on two control volumes. The first one a-c was used by El-Azizy [4] and the second one b-c is used by the present study.

Applying the momentum equation and continuity equation on the control volume b-c, yields:
$P_{1}-P_{2}=\frac{\gamma}{g} Q\left(V_{\text {out }}-V_{\text {in }}\right)$.

In which, P_{1} is the back up hydrostatic force, P_{2} is the hydrostatic pressure force at the end of the jump, V is the specific weight, g is the gravitational acceleration, Q is the flow rate, $V_{\text {out }}$ is the velocity of flow at the end of control volume, and $V_{i n}$ is the velocity of flow at the beginning of the control volume.

Table 1
different parameters affecting on rectangular submerged jump

Control Volume	a-c	b-c
Y_{o}	$\frac{y_{4}}{G}$	$\frac{y_{4}}{y_{1}}$
$V_{\text {in }}$	$V_{G}=\frac{Q}{B G}$	$V_{1}=\frac{Q}{B y_{1}}$
$V_{\text {out }}$	$V_{2}=\frac{Q}{B y_{4}}$	$V_{2}=\frac{Q}{B y_{4}}$
P_{1}	$\frac{\gamma}{2} y_{3}^{2} B$	$\frac{\gamma}{2} y_{3}^{2} B$
P_{2}	$y_{4}^{2} B$	$y_{4}^{2} B$
E_{1}	$y_{3}+\frac{V_{G}^{2}}{2 g}$	$y_{3}+\frac{V_{1}^{2}}{2 g}$
E_{2}	$y_{4}+\frac{V_{2}^{2}}{2 g}$	

By substituting all defined parameters from table 1 into eq. (3), gives:
$\frac{\gamma}{2} y_{3}^{2} B-\frac{\gamma}{2} y_{4}^{2} B=\frac{\gamma}{g} Q\left(V_{2}-V_{l}\right)$.
In which, B is the width of flume.
By substituting $V_{o u t}$, and $V_{\text {in }}$ from table 1 (control volume b-c) into eq. (4), and dividing it by $\gamma B y_{1}^{2}$ the following equation is obtained:
$\left(\frac{y_{3}}{y_{1}}\right)^{2}-\left(\frac{y_{4}}{y_{1}}\right)^{2}=2 F_{1}^{2}\left(\frac{y_{1}}{y_{4}}-1\right)$.
This equation can be put in the following form:

$$
\begin{equation*}
S^{2}-Y_{o}^{2}=2 F_{l}^{2}\left(\frac{1}{y_{o}}-1\right) \tag{6}
\end{equation*}
$$

In the pervious equation, S is the submergence ratio $\left(y_{3} / y_{1}\right), Y_{o}$ is the relative water depth $\left(y_{4} / y_{1}\right)$, and F_{1} is the Froude number at the supercritical flow depth $\left(y_{1}\right)$.

Fig. 1. Definition sketch for rectangular submerged hydraulic jump.

Applying the energy equation at control volume b-c
$E_{1}=y_{3}+\frac{V_{1}^{2}}{2 g}$,
$E_{2}=y_{4}+\frac{V_{2}^{2}}{2 g}$,
and

$$
\begin{equation*}
\frac{E_{L}}{E_{1}}=1-\frac{Y_{o}^{3}+0.5 F_{1}^{2}}{Y_{o}^{2}\left(S+0.5 F_{1}^{2}\right)} \tag{9}
\end{equation*}
$$

In which, E_{1} is the specific energy at the end of control volume, E_{2} is the specific energy at the end of the submerged jump, and E_{L} is the energy loss.

It should be mentioned that applaying the momentum equation based on control volume a-c, El-Azizy [4] developed the following equation:

$$
\begin{equation*}
S^{2}-Y_{o}^{2}=2 F_{G}^{2}\left(\frac{1}{y_{o}}-1\right) \tag{10}
\end{equation*}
$$

In which S is the submergence ratio $\left(y_{3} / G\right), G$ is the gate opening, Y_{o} is the relative water depth $\left(y_{4} / G\right)$, and F_{G} is the under-gate Froude number. Also, she developed the following equations for the energy loss:
$\frac{E_{L}}{E_{1}}=1-\frac{Y_{o}^{3}+0.5 F_{G}^{2}}{Y_{o}^{2}\left(S+0.5 F_{G}^{2}\right)}$.

4. Verification of the developed equation and comparisons

4.1. Relative depth ratio

The relative water depth either for $Y_{o}=y_{4} / G$ (El-Azizy [4]) or $Y_{0}=\left(y_{4} / y_{1}\right.$ the present study) were drawn versus the prediction from eqs. (10) and (6) respectively as shown in figs. 2-a and $2-\mathrm{b}$. It was found that eq. (10) gives pre-
diction values underestimated (The predicted values less than the measured one), on contrary, eq. (6) fits well the experimental data. The correlation coefficient and mean relative error for eq. (10) and eq. (6) were ($97 \%, 10 \%$) and ($99 \%, 2 \%$), respectively. The residuals for both equations were clarified figs. $3-\mathrm{a}$ and $3-\mathrm{b}$, the residual for the present eq. (6) seems to be random and distributed around the line of zero error (fig. 3-b).

Fig. 2. The measured relative water depth compared with the predicted from (a) eq. (10), and (b) eq. (6) (present study).

Fig. 3. The predicted (Y_{o} either for $y_{4} / \operatorname{Gor} y_{4} / y_{1}$) versus residuals for (a) eq. (10), and (b) eq. (6) (present study).

Fig. 4. The relationship between F_{G} and Y_{o} for $S=3.5-4.5$ and $S=4.57-5.50$ according to eq. (10).

Fig. 5. The relationship between F_{1} and Y_{o} for $S=3.7-4.47$ and $S=4.56-5.53$ according to eq. (6).

A typical case for the relationship between F_{G} and y_{4} / G for $S=3.5-4.5$ and 4.57-5.5 was shown in fig. 4, also, the theoretical equation was plotted with $S=4.0$, and $S=5$ fig. 4. The correlation coefficient and mean relative error for both submergences (S) were ($92 \%, 9.2 \%$) and ($96 \%, 9.3 \%$) respectively. Also, A typical case for the relationship between F_{1} and y_{4} / y_{1} for $S=3.7-4.47$ and 4.58-5.53 was shown in fig. 5. Also, the theoretical equation was plotted with $S=4.0$ and $S=5$ fig. 5. The correlation coefficients and mean relative error for both relationships of fig. 5 were (92%, 3\%) and ($97 \%, 1 \%$) respectively.

4.2. Relative energy loss

The measured relative energy loss was plotted versus the prediction from eq. (9) (present study) and (11) (El-Azizy [4]) as shown in figs. 6. It was found that eq. (11) gives predicted values higher than the actual measured data, on contrary, eq. (9) fits well the experimental data. The correlation coefficient and mean relative error for eq. (9) and eq. (11) were ($97 \%, 4 \%$) and (61%, 65%) respectively. The residuals for both equations were clarified figs. $7-\mathrm{a}$ and $7-\mathrm{b}$, the residual for the present equation (eq. (9)) seems to be
random and distributed around the line of zero error fig. 7-b.

A typical case for the relationship between F_{G} and E_{L} / E_{1} eq. (11) for $S=3.5-4.5$ and 4.575.5 was shown in fig. 8 , also, the theoretical equation was plotted with $S=4.0$ and $S=5$ fig. 8. The correlation coefficient and men relative error for both (S) were (85%, 79%) and $(93 \%$, $82 \%)$ respectively. Also, A typical case for the relationship between F_{1} and E_{L} / E_{1} eq. (9) for $S=3.7-4.47$ and 4.58-5.53 was shown in fig. 9, also, the theoretical equation was plotted with $S=4.0$ and $S=5$ fig. 9. The correlation coefficient and men relative error for both figs. were ($91 \%, 5 \%$) and ($99 \%, 1 \%$), respectively.
4.3. Comparison between present eqs. (6) \& (9) and Govinda Rao and Rajaratnam eqs. (1) \& (2)

Eqs. (1) and (2) for Govinda Rao and Rajaratnam [1] were solved by trial and error to predict the depth ratio $\left(y_{4} / y_{1}\right)$ and the relative energy loss $\left(E_{L} / E_{l}\right)$. These predicted values were compared to the predicted values from eqs. (6) and (9), respectively, as shown in table 2.

It was found that, the same theoretical values for both depth ratio and relative energy loss for eqs. (6) and (9) and eqs. (1) and (2) were obtained.

Fig. 6. The measured relative Energy loss compared with the predicted from eq. (11), and Eq. (9). (present study).

Fig. 7. The predicted (E_{L} / E_{1}) versus residuals for (a) eq. (11), and (b) eq. (9) (Present study).

Fig. 8. The relationship between F_{G} and E_{L} / E_{1} for $S=3.5-4.5$ and $S=4.57-5.50$ according to eq. (11).

Fig. 9. The relationship between F_{1} and E_{L} / E_{1} for $S=3.70-4.47$ and $S=4.56-5.53$ according to eq. (9).
Table 2
Comparison between the present eqs. (6) and (9) and eqs. (1) and (2)

y_{1}	F_{1}	S	Y_{4} / Y_{1} Exp.	$E L / E y_{1}$ Exp.	Y_{4} / Y_{1} Theo. eq.(6)	E_{L} / E_{1} Theo. eq. (9)	Y_{4} / Y_{1} Theo. eq. (1)	E_{L} / E_{1} Theo. eq. (2)
2.400	3.497	3.730	5.439	42.655	5.847	38.790	5.847	38.790
1.800	4.442	3.885	6.710	49.606	6.994	47.671	6.994	47.671
2.400	2.885	3.906	5.246	33.102	5.367	31.689	5.367	31.689
2.400	3.497	3.934	5.779	24.628	5.988	23.270	5.988	23.270
2.400	2.245	3.934	4.754	40.674	4.846	38.718	4.846	38.718
2.400	3.155	3.975	5.500	36.728	5.675	34.886	5.675	34.886
2.100	3.525	4.070	6.487	35.477	6.112	38.948	6.112	38.948
2.100	3.525	4.098	6.848	32.302	6.131	38.932	6.131	38.932
2.400	2.586	4.135	5.127	29.744	5.286	27.717	5.286	27.717
2.100	2.743	4.141	5.522	28.570	5.424	29.754	5.424	29.754
2.400	2.885	4.357	5.508	33.728	5.720	31.360	5.720	31.360
1.800	4.442	4.366	8.005	42.666	7.288	47.487	7.288	47.487
2.100	3.855	4.370	6.632	42.361	6.660	42.139	6.660	42.139
2.100	3.159	4.468	6.112	33.969	6.052	34.576	6.052	34.576

Table 3
Different statistical equations for rectangular submerged jump

Equation	R^{2}	MRE	R^{2} residual
$\frac{L j}{y_{1}}=-0.862+3.59 S+5.28 F_{1}$	(12)	0.95	0.051
$Y_{o}=\frac{y_{4}}{y_{1}}=0.178+0.839 S+0.701 F_{1}$	(13)	0.98	0.000007
$\frac{E_{L}}{E_{1}}=-5.026-1.225 S+19.448 F_{1}-3.013 F_{1}^{1.5}$	(14)	0.95	0.042

Fig. 10. Measured values of $y_{4} / y_{1}, E_{L} / E_{1}$, and L_{j} / y_{1} versus predicted ones using (a) eq (12), (b) eq. (13), and (c) eq. (14).

5. Statistical models

The experimental data was treated using MLR (Multiple Linear Regression) to obtain different statistical equations for relative length of jump $\left(L_{j} / y_{1}\right)$, depth ratio $\left(y_{4} / y_{1}\right)$ and relative energy loss $\left(E_{L} / E_{1}\right)$. These equation was fully described on table 3.

As shown in fig. 10, the statistical equations for depth ratio, relative energy loss, and relative length of jump were found to be in a good agreement with the experimental data. On the other hand, Govinda Rao and Rajaratnam [1] presented the following relationship between L_{j} / y_{2} and S_{r}.
$\frac{L_{j}}{y_{2}}=4.9 S_{r}+6$.

6. Conclusions

Simplified theoretical equations for
rectangular submerged hydraulic jump were developed based on the application of the 1-D momentum equation. The developed equation agreed well with the experimental results of the present study. Compared to the previously developed equations, the present equations are more simplified than that obtained by Govinda Roa and Rajaratnam [1] and more accurate than that obtained by El-Azizy [4]. Also, empirical models were developed for predicting the basic properties of the jump using multiple linear regression. The coefficients of these models were estimated based on the experimental data. The developed equations could be safely used in the design of the rectangular smooth stilling basin in the case of submerged hydraulic jump conditions.

Notations

B is the width of the channel,
E_{1} is the total energy at the jump toe,
E_{2} is the total energy at the jump heel,
E_{L} is the relative energy loss,
F_{1} is the Froude's number at the vena contracta,
F_{G} is the Froude's number below the gate opening,
G is the gate opening,
L_{j} is the length of the hydraulic jump,
F_{1} is the hydrostatic pressure before the jump,
F_{2} is the hydrostatic pressure after the jump,
Q is the rate of flow,
R^{2} is the coefficient of determination,
S is the degree of submergence, y_{3} / y_{1} or y_{3} / G,
S_{r} is the Govinda Roa and Rajaratnam submergence ratio and equals $\left(y_{4}-y_{2}\right) / y_{2}$,
$V_{\text {in }}$ is the average velocity at the vena contract $\left(V_{1}\right)$, or below the gate opening $\left(V_{G}\right)$,
V_{2} is the average velocity at the sequent depth,
y_{1} is the supercritical flow depth,
y_{2} is the sequent depth for the free jump,
y_{3} is the back up water depth just downstream the gate,
y_{4} is the tail water depth at the end of the jump,
Y_{0} is the relative tail water depth, y_{4} / y_{1} or y_{4} / G, and
Y is the specific weight.

References

[1] N.S. Govinda Rao, and N.Rajaratnam, "The Submerged Hydraulic Jump," Journal of Hydraulic Div., Vol. 89 (1), pp. 139-162 (1963).
[2] N. Rajaratnam, "Pressure Fluctuations Beneath Submerged Jump," Journal of the Hydraulic Div., Vol. 104 (HY9), pp. 1331-1342 (1978).
[3] S. Narasimhan, and P. Bhargara, "Pressure Fluctuations in Submerged Jump," Journal of the Hydraulic Div., Vol. 102 (HY3), pp. 339-350 (1976).
[4] I. El-Azizi, A study of submerged Hydraulic Jump Stilling Basins of Low Head Irrigation Structures, M.Sc. Thesis, Faculty of Engineering, Ain Shams University, Egypt (1985).
[5] J.A. McCorquodale, and A.M. Khalifa, "Submerged radial hydraulic jump," Journal of the Hydraulic Div., Vol. 106 (HY3), pp. 355-367 (1980).
[6] M. Abdel Gawad, Smeh, and J.A. McCorquodal, "Modeling Submerged Radial Hydraulic Jump," Annual Conference Canadian Society for Civil Eng., Vol. 2 Publ. By Candian Society for Civil Eng., Montreal. Canda, pp. 711-725 (1984).
[7] S.M. Abdel Gawad, and J.A. McCorquodal, "Analysis of the Submerged Radial Hydraulic Jump," Canadian Journal for Civil Engineering, Vol. 12 (3), pp. 593-602 (1985).
[8] C.D. Smith, "The Submerged Hydraulic Jump in an Abrupt Lateral Expansion," Journal of Hydraulic Research. Vol. 27 (2), pp. 257-266 (1989).
[9] I. Ohtsu, Yasuda and M. Ishkikawa, "Submerged Hydraulic Jump Below Abrupt Expansions," Journal of Hydraulic Engineering, Vol. 25 (5), pp. 492-499 (1999).
[10] A.M. Negm, G.M. Abdel Aal, M.M. Elfiky and Y.A. Mohamed, "Characteristics of Submerged Hydraulic Jump in Radial Basins with a Vertical Drop in the Bed," AEJ, Faculty of Eng., Alex. University, Alex., Egypt, Vo. 42 (1) (2003).
[11] A.M. Negm, G.M. Abdel Aal, M.M. Elfiky, and Y.A. Mohamed, "Theoretical and Experimental Evaluation of the Effect of End Sill on Characteristics of Submerged Radial Hydraulic Jump," Scientific Bulletin. Faculty of Engineering. Ain Shames University. Faculty of Engineering. Cairo. Egypt, Vol. 38 (1), (2003).
[12] A.M. Negm, G.M. Abdel-Aal, M.M. Elfiky and Y.A. Mohamed, "Hydraulic characteristics of submerged flow in nonprismatic stilling basins," Mansoura Engineering Journal, Faculty of Engineering, Al-Mansoura University, AlMansoura, Egypt (2002).

Received August 31, 2003
Accepted September 9, 2004

