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Other work showed how to construct a Pseudo-Random Generator (PRG), from any one-way
function using the theory of hardcore predicates. This construction is generic and considered
as the mapping between one-way functions and PRGs. This construction has two main
inefficiencies. First, we can generate only a few number of bits per each computation of the
one-way function. Second, we cannot generate the jth block of pseudo-random bits without
generating all the j-1 previous blocks. This means that the constructed generators are not
parallelizable. In this paper, we propose a new construction method of PRGs using a
combination of a one-way function and a simple deterministic sequence. This method results
in PRGs that are fully-parallelizable, i.e., the cost of generating the ith and jth blocks are the
same for all i and j. This method also generates a large number of bits per each computation
of the underlying one-way function. We also put conditions for the combinations of one-way
functions and deterministic sequences to result in provably secure PRGs. Of course, not all
combinations satisfy these conditions. Hence, this construction is not intended to replace the
original one. It is intended to construct fully-parallelizable PRGs. Searching for combinations
of one-way functions and deterministic sequences satisfying the stated conditions is not an
easy job. We examined a lot of cases. Some of them are provably secure PRGs. We present
constructions based on block ciphers and secure hashing as examples for these cases. Other
cases are totally insecure. Other cases are conjectured to be secure PRGs. We present
constructions based on RSA and the subset sum problem as examples of conjectured secure
PRGs.
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1. Introduction

Secure Pseudo-Random Generator (PRGs)
(or PRGs that are suitable for use in
cryptographic applications) are generators for
which no one (with limited resources) can
predict even one bit of the generated sequence
given a part of this sequence. For a good
(practical) cryptographic PRG there are four
main required properties: Simplicity, Effi-
ciency, Provable Security, and Parallelizability.

It is proven that secure PRGs exist if and
only if one-way functions exist [9]. The proof of
this result is constructible. This construction
is simple. Given a one-way function, f(x), with
some proven simultaneous hardcore predi-
cates, B(x). Apply the function, f, on a random
input (the seed), x, and output B(x). Repeat
the function with f(x) instead of x. This
construction is applicable for any one-way
function even if we cannot prove any bit of its
input to be a hard core predicate. This is be-
cause we can construct a hardcore predicate
for any one-way function [2]. Fig. 1 illustrates
this original construction.

The main advantages of this construction
are:

e It maps one-way functions and PRGs: This is
a very important theoretical result. It says that
we can construct a PRG from any one-way
function.

e It is a generic construction: Any one-way
function can be used in this construction to
generate a pseudo-random bits string.

e Provable security: The generated PRG is
secure as long as the underlying function is
one-way.

There are two main inefficiencies in this
original construction:

e Only a few number of random bits can be
generated per each computation of the one-way
function: most of the known one-way functions
(mainly based on number theoretic problems
that are assumed to be hard) generate only a
few hardcore bits (usually O(log n) LSBs or
MSBs where n is the size of the input of the
one-way function) per each computation.

The sequential nature of the construction itself:
Namely, to generate the jth block of the
pseudo-random bits we have to generate all j-1
previous blocks.

Hard-core
predicates

One-way ,
function '
f(x)

Fig. 1. The original construction of the PRGs.

In [3] Impagliazzo and Naor showed a very
efficient construction for a PRG based on the
intractability of the subset sum problem for
certain dimensions. The increase in efficiency
in their construction is due to the fact that
many bits can be generated with one
application of the assumed one-way function
and the efficiency in computing the one-way
function itself. The security of this
construction does not depend on proving
simultaneous hardcore predicates of the
subset sum-based one-way function. Instead,
it depends on the proof of the pseudo-
randomness of the output of the one-way
function. (The only known one-way function
that is proven to simultaneously hide O(n) of
its input bits is the discrete log modulo
composite [4]).

Although the subset sum-based one-way
function is efficient to compute and is
parallelizable (can be implemented in Nike's
Complexity Class NC wusing an optimal
number of processors), the nature of their
PRG is still sequential. Blum, Blum, Shub
(BBS) generator [5] is an example of PRGs that
are not pure sequential. An interesting feature
in the BBS generator is that if the factorization

of n is known, the Z‘Mth bit can be generated
in time polynomial in |n|.

Now, we can see that the first mentioned
inefficiency is solved by the construction of
Impagliazzo and Naor [3]. The main interesting
point is that they did not go through the
original construction and they did not prove
the simultaneous hard core predicates of the
used one-way function. Their construction is
also not a generic one and it is suitable (and
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proven) only for the subset sum-based one-
way function.

In this paper we propose a technique to
solve the second mentioned inefficiency,
namely, to eliminate the sequential nature of
the original construction. Using this technique
we can construct parallelizable pseudo-
random generators for which the cost of
generating the jt block of the pseudo-random
bits equals the cost of generating any other
block. This construction also increases the
number of output bits per each computation
of the used one-way permutation.

2. How to eliminate the sequential nature
of the original construction

What do we mean by eliminating the
sequential nature of constructing PRGs? The
answer is: we want to construct a PRG for
which computing the jt block of pseudo-
random bits does not require the computation
of any previous block. This PRG can generate
any number of blocks at a time by using the
same number of processors. Our proposed
method for constructing such generators is as
follows:

- Choose x randomly and uniformly

- Generate any "simple" "deterministic" se-
quence So(x), S1(),..., Sn1(x).

- Input this sequence to f(x) and output
f(So(x)), f(S1(x),..., f(Sn1(x)) as pseudo-random
blocks.

This is illustrated in fig. 2.

Of course this is not a generic construc-
tion. One can easily show that there are many
combinations of one-way functions and simple
deterministic sequences that fail to produce a
secure PRG when they are used in this way.

X —2— One-way function f(x) |—=— f(x)

S0

One-way function f(x) —=— f(S(x))

S > one-way function f(x) |—s— S,

S0

One-way function f(x) |—=- (S ()

Fig. 2. The proposed construction.

Before going through which combination is
successful and which is not let us first give
conditions on the used one-way function and
sequence that are necessary to produce a
provably secure and fully-parallelizable PRG.
These conditions are:

1. The sequence Sjix) is a deterministic
sequence: This is obvious because the only
input true randomness for a PRG must be in
the seed x.

2. O(computing Sj(x)) = O(computing Si(x)) for
all i, j. This means that the used sequence is
not sequential by nature.

3. O(computing Sj(x)) < O(computing f(x)). This
is an empirical condition to guarantee the
efficiency of generating each block.

4. The sequence Sj(x) does not belong to some
small set with non-negligible probability for
non-negligible number of seeds. If this
condition is not satisfied one can use brute
force attacks to scan the values of this small
set as an input for every output block and he
will succeed in finding Sj(x) for some j and
then x with non-negligible probability.

5. The structure of the one-way permutation
hides the sequence Sj(x). If x € Urand a =

O(| x|) ¥ PPT Algorithm A, V polynomial Q and
¥ sufficiently large k,

Pr{A(fSo(), fIS1(), ..., ASa(x))) = fASab(:)) ,
b>0] < 1/2+1/Q(k),

where the probability is taken over the
random coin tosses of A, and random choices
of x of length k. This condition means that no
one can use some relationship between the
bits of a given portion of the output blocks to
find some next output.

If we look at the above conditions we will
note that the first four conditions apply to the
used sequence and the fifth condition is the
one in which the combination of the sequence
and the one-way function can succeed or fail
to construct a PRG. As we mentioned, this
construction is not a generic one. Not all one-
way permutations can be successfully used
with all sequences. In fact, there may be a
permutation which has no suitable sequence
at all.

In the rest of this paper we will present the
results of the examination of some specific
combinations of one-way permutations and
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simple deterministic sequences. These cons-
tructions are categorized into three main cate-
gories:

e Unsuccessful constructions: In these con-
structions although we wuse a sequence
satisfying the first four conditions, the fifth
condition is not satisfied when the sequence is
combined with a specific one-way permuta-
tion. There are many examples of such com-
binations.

o Successful constructions: The security of the
resulting PRG is proven and depends on the
security of the underlying one-way permuta-
tion. These constructions and their proofs of
security will be discussed in section III

e Unproven and still unbreakable construc-
tions: For these constructions we cannot find
successful attacks on the constructed PRGs.
On the other hand, we cannot prove their
security or link it to the security of the
underlying one-way permutation or any other
secure system. These constructions will be
discussed in section IV.

3. Successful constructions

The Encryption function of a block cipher
is a function that takes as an input a message
m, and a key k, and outputs a cipher ¢, that is
random looking. If we look at this function as
a one-way function that takes a single input
and outputs ¢ we can use it with the sequence
Si(x) = x+j to produce a secure PRG using our
proposed method. This construction was
proved to be secure [6]. The following theorem
states this result:

Theorem 1: Let Fk(x):{O,l}L ><{O,l}IkI —>{0,1}L
where |x| = L be an encryption function of a
block cipher and s be a random string then:

G(s)=Fs(0)Fs(1) Fs (2)... Fs (n-1),

is a provably secure PRG. More precisely:
Insec 29(t) < Insec 2" (¢ ,n),
where t'=t+0(n(2L)).

In a similar way we can prove that we can
use a secure hash function combined with the

same sequence Sjx) = x+j to produce a secure
PRG. This is stated as follows:

Theorem 2: Let H(x) be a secure hash function
and s be a random string then,

G(s) = H(s)H(s+1)H(st+2),...,H(s*tn-1),
is a secure PRG.

4. Unproven and still unbreakable
constructions

4.1. RSA

If we consider the PRG constructed by
using the RSA encryption function x¢ mod n
with the modulus n=pg and p and q are strong
primes [7] and the encryption exponent e is
large combined with the sequence Sjx) = x+j
then the generated blocks will be a set of
encrypted related messages. The only known
attack on the RSA with related messages is
when the encryption exponent is small [8]. No
such attack is known on RSA with large
encryption exponent, e. Note that when we
implement such a system we have to avoid
some other known attacks on the RSA
function. For a survey of these attacks see [9].

If we cannot find an attack for such
system this is by no means provide a proof for
its security. We have to relate breaking such
system to breaking the RSA itself. This system
is conjectured to be a secure PRG. This
conjecture is stated formally as follows:
Conjecture 1: Let flx) = x¢ mod n where n is a
product of two strong primes p and g where
| p-q| is not small, e is large (e=O(n)) and d

>Jn  where d:e_1m0d¢(n). Let x be a

randomly chosen seed of the same length of n.
Let yo=f1, yi=flx+1),..., yi=flx+) where i is
polynomial in |n|. Given yo,y,...,y: there is no
PPT that can find f{x+i+j) for some j polynomial
in |n| without inverting the RSA function.

A proof of this conjecture may be provided
in the future. The report in the Appendix
shows that this generator is only a candidate
for a secure PRG. It does not prove its
security.

4.2. Subset sum

Definition 3.4.1: The subset sum problem
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of dimensions n and [ is: given n numbers,
a=(a1, ag,..., an), each [ bits long, and a
number T, find a subset S < {1,...,n} such that

Zai =Tmod2'.
ieS

The one-way function that is based on the
subset sum problem is defined as:
f{0,1}»—>{0,1}! where the it bit in the input
decides whether to take the element a: into the
summation or not. If the ith bit is 1 then take
a; in the summation; otherwise do not take it.
The output of the function is the resulting
summation of the chosen elements. The
Subset sum problem is one of the original
problems that Karp [10] proved to be NP-Hard,
(i.e., the corresponding decision problem is
NP-Complete). We can also produce random
instances of the subset sum problem that are
hard on the average [11]. Hence, computing
flx) is easy and inverting f{x) is hard.
Theorem 3: The constructed PRG using the
subset sum-based one-way function combined
with the sequence Sj(x) = x+j is not secure.
Proof: Given f(x), fix+t1), fix+2) then we can
find flx+3)
- Either x or x+1 is even.
- This means either LSB(x)=0 or LSB(x+1)=0.
- This means either f{x+1)-f{x) = ao mod N or
flxt2)-flx+1) = ao mod N.
- If fix+1) - filx) = ao then flx+3) = fl[x+2) + ao.

The subset sum based one-way permuta-
tion has a special property that is not found in
any other one-way permutation (specially the
permutations that are based on number
theoretic hard problems). This property is: the
hard problem is to find a valid bit assignment
to the input of the function not to invert some
mathematical function. This property helps in
using the sequence jx mod n as an input
sequence to this function. An interesting
property of the sequence jx mod n is: If x is
uniformly chosen then the jth element of the
sequence differs from the (f+1)st element by
O(| x|) bits (i.e., O(]x]|) bits will be converted
from O to 1 or from 1 to 0.) Hence, to gain any
information about x using the values of two
successively generated blocks it is required
from the attacker to decide which bits are
inverted. Intuitively, it is required from the
attacker to solve another subset sum problem.

We tried to map the security of this RPG to
the security of the subset sum itself. All our

attempts have unfortunately failed. We also
tried to find attacks on this system but could
find none. The security of this system is an
open problem and may be solved in the future.
The following conjecture states this result:
Conjecture 2: Let f{x) be the subset sum-based
one-way function and s be a random string.
Given the sequence f{s)f25)f(3s)...flis) where i
is a polynomial in |s| there is no PPT algo-
rithm that can find f{(i+j)s) where j is a
polynomial in |s| without inverting f{x).

A proof of this conjecture may be found in
the future. The report in the Appendix shows
that this generator is only a candidate for a
secure PRG. It does not prove its security.

5. Conclusions

The original method of constructing a PRG
from any one-way function has a sequential
nature. One approach to eliminate this
sequential nature is to search for suitable
deterministic sequences for specific one-way
permutations for which there is no PPT that
can find f{Sn+a(x)),a>0 and a is a polynomial in
[n] by knowing f(So(x)), f{Si1(x),...,f(Sn(x)). If we
use a suitable deterministic sequence with
some one-way permutation then we can
construct a PRG where the cost of computing
the j* block of the pseudo-random sequence is
exactly the same as the cost for computing the
next block of this sequence. This PRG is
Simple, Efficient, Provably Secure and
Parallelizable. We presented examples for
provably secure PRGs constructed using the
proposed method.

In two of the constructions given the
resulting PRGs are conjectured to be secure.
We encourage efforts to try to prove the
security of these generators. We also
encourage efforts to search for other examples
of successful combinations or to introduce
new solutions to produce provably secure and
fully-parallelizable generators.

An open question is how to generalize this
approach. Reaching a generalization of this
approach will be a valuable result. By
generalization we mean finding a secure
sequence for every one-way function.

Appendix

This appendix presents the results of our
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implementations of the block ciphers, hash
functions, RSA and subset sum-based
constructions. The implementation is written
in Java and run on Intel Pentium II 400 MHz
machine with windows 2000 professional
platform. The generated reports describe the
results of experiments in which we
sequentially generate 20000 random bits
using the examined generator and measure
the performance and randomness of this
generator. Performance is measured by the
time needed to generate the 20000 bits.
Randomness is tested using (FIPS 140-1
statistical tests for randomness). If the
generator passes these tests then it is a
candidate to be a secure PRG. But, passing
the tests does not prove the security of the
generator. If the generator fails to pass one of
these tests then it is completely insecure.

Testing Generator: AES_PRG

Key size: 16 bytes = 128 bits

Key:
SA920547BEECA6BA9B7B5773D0ODBCB2F
Block size: 16 bytes = 128 bits

Initialization time: 37 milliseconds
—————————————————————————————————————————— Sequential
generation------------- oo oo oo
Number of generated bits: 20000

Number of random bits per calculation of the
one way function: 128

Generation time: 42 milliseconds

Sample bits:
000010000101111001110001011101100111
011001101111111000000000010100000011
0000101001100110010111000000

Monobit test

Number of 1s: 9915 passed

Poker test

X3: 30.6496 passed

Run test

Gap 1:2543

Gap 2: 1291
Gap 3:583
Gap 4: 284
Gap 5: 180
Gap 6: 169
Block 1: 2601
Block 2: 1220
Block 3: 643

Block 4: 281

Block 5: 148

Block 6: 157

passed

Long run test

Max run length: 16 passed
The generator passes all tests
Testing Generator: MD5_PRG

Initialization time: 3 milliseconds
—————————————————— Sequential generation------------
Number of generated bits: 20000

Number of random bits per calculation of the
one way function: 128

Generation time: 27 milliseconds

Sample bits:
001010011100000010000110000101110110
011111110101100011010110101010001101
0001011101100011110011110100

Monobit test

Number of 1s: 10037 passed

Poker test

X3: 13.1648 passed
Run test

Gap 1:2521

Gap 2: 1232

Gap 3: 642

Gap 4: 301

Gap 5:154

Gap 6: 154

Block 1: 2510

Block 2: 1257

Block 3: 612

Block 4: 283

Block 5: 184

Block 6: 157

passed

Long run test

Max run length: 12 passed
The generator passes all tests
Testing Generator: SHA_PRG

Initialization time: 2 milliseconds
———————————————————— Sequential generation----------
Number of generated bits: 20000

Number of random bits per calculation of the
one way function: 160

Generation time: 27 milliseconds

Sample bits:
001001010101111011101010001000000110
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110111000111000101111011101000110111
1111010100100110010111011110

Monobit test

Number of 1s: 10025 passed

Poker test
X3:9.7856 passed
Run test

Gap 1:2511

Gap 2: 1209

Gap 3: 609

Gap 4: 317

Gap 5:163

Gap 6: 167

Block 1: 2475

Block 2: 1215

Block 3: 663

Block 4: 307

Block 5: 150

Block 6: 166

passed

Long run test

Max run length: 14 passed
The generator passes all tests
Generator: RSA_PRG

number of bits of primes: 128

p:
282855661594162267458257527374267569
683

q:
242167371823603717744560872026395653
777
n:68498412173684919731814524679108480
369888665215009283247770510244311689
642691
phi(n):6849841217368491973181452467910
848036936364218159151726256769184491
1026419232
€:68179491434253140789418757909056244
898518028569049219575958234216735296
410293
d:10626953821672408370849853271694723
970171323470866303210964508803483007
437661
Seed:09039126843727307931997759994436
360333988878824597130670571885285297
154805598

Initialization time: 481 milliseconds
———————————————————— Sequential Generation----------
Number of generated bits: 20000

Number of random bits per calculation of the
one way function: 256

Generation time:894 milliseconds

Sample bits:
101110101101000100010111111011011011
100010110101001010011101011110011000
1111100001010111110101010000

Monobit test

Number of 1s: 9760 passed

Poker test

X3 :36.1664 passed
Run test

Gap 1: 2427

Gap 2:1197

Gap 3: 658

Gap 4: 300

Gap 5:174

Gap 6: 195

Block 1: 2482

Block 2: 1276

Block 3: 615

Block 4: 307

Block 5: 127

Block 6: 145

passed

Long run test

Max run length: 14 passed
The generator passes all tests
Testing Generator: SSS_PRG

| S|: 128

I(]S]): 128

Seed:
303974519955064967531450883017475967
940

Initialization time: 8 milliseconds
——————————————————————— Sequential generation-------
Number of generated bits: 20000

Number of random bits per calculation of the
one way function: 128

Generation time: 783 milliseconds

Sample bits:
010011101001011111111011000000000101
110100101000111001000111010010111101
0101000110100010110001001000

Monobit test

Number of 1s: 10028 passed

Poker test

X3:19.9424 passed

Run test

Gap 1:2461
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1273
632
305
152
154

QaHEWN

Block 1: 2536

Block 2: 1163

Block 3: 630

Block 4: 319

Block 5: 156

Block 6: 173

passed

Long run test

Max run length: 12 passed
The generator passes all tests
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