

Alexandria Engineering Journal, Vol. 43 (2004), No. 6, 765-772 765
© Faculty of Engineering Alexandria University, Egypt.

Eliminating the sequential nature in the construction of secure
pseudo-random generators

A.M. Kourah and A.A. Belal
Computer Science of Dept., Faculty of Eng., Alexandria University, Alexandria, Egypt

ali_maher@acm.org and abelal@aast.edu

Other work showed how to construct a Pseudo-Random Generator (PRG), from any one-way
function using the theory of hardcore predicates. This construction is generic and considered
as the mapping between one-way functions and PRGs. This construction has two main
inefficiencies. First, we can generate only a few number of bits per each computation of the

one-way function. Second, we cannot generate the jth block of pseudo-random bits without
generating all the j-1 previous blocks. This means that the constructed generators are not
parallelizable. In this paper, we propose a new construction method of PRGs using a
combination of a one-way function and a simple deterministic sequence. This method results
in PRGs that are fully-parallelizable, i.e., the cost of generating the ith and jth blocks are the
same for all i and j. This method also generates a large number of bits per each computation

of the underlying one-way function. We also put conditions for the combinations of one-way
functions and deterministic sequences to result in provably secure PRGs. Of course, not all
combinations satisfy these conditions. Hence, this construction is not intended to replace the
original one. It is intended to construct fully-parallelizable PRGs. Searching for combinations
of one-way functions and deterministic sequences satisfying the stated conditions is not an
easy job. We examined a lot of cases. Some of them are provably secure PRGs. We present
constructions based on block ciphers and secure hashing as examples for these cases. Other
cases are totally insecure. Other cases are conjectured to be secure PRGs. We present
constructions based on RSA and the subset sum problem as examples of conjectured secure
PRGs.

إن استخدام السلاسل العشوائية في إجراء العمليات و الخوارزميات له استخدامات عديدة و تطبيقات متنوعة، ولكن الحصول على هذه
السلاسل عن طريق بعض الظواهر الطبيعية التي تنتج العشوائية يعد أمرا بالغ الصعوبة هذا لكون هذه الظواهر نادرة التواجد و إن

هذا ما دعا الباحثين للبحث عن وسائل مختلفة للحد من استخدام الظواهر الطبيعية سل متحيزة و مترابطة.وجدت فإنها تنتج سلا
إليه الباحثين هو مولدات الأعداد العشوائية و هي كيانات تتلقى سلاسل عشوائية لكمصدر للعشوائية للخوارزميات و يعد أهم ما توص

يختلف تعريف مولدات الأعداد العشوائية تبعا للتطبيق من ينظر أليها أنها عشوائية.قصيرة و تولد سلاسل أكبر تستطيع أن توحي ل
الذي ستستخدم فيه، فمن هذه التطبيقات التطبيقات المتعلقة بالمحاكاة و هي تتطلب سلاسل ذات خواص احصائية معينة أما التطبيقات

إن أي متفحص لجزء منها لا يستطيع التنبؤ بأي جزء مستقبلي منها. المتعلقة بالأمن فإنها تحتاج سلاسل غير قابلة للاستنتاج أي أن
اثبات وجود مثل هذه الكيانات غير معروف حتى الآن لذا لجأ الباحثين إلى الربط بين وجودها و وجود الدوال ذات الإتجاه الواحد و

ل و ومولدات الأعداد العشوائية ربطا نتج عنه هي دوال سهلة الحساب و صعبة الانعكاس و قد قام الباحثين بالربط بين هذه الدوا
تعد الطريقة التقليدية لتكوين مولدات الأعداد العشوائية طريقة ذات وضع طريقة لتكوين مولد عن طريق استخدام أي من هذه الدوال.

ا حساب الدالة ذات الاتجاه (المولدة في كل مرة يتم فيهBitsعيوب أساسية ظاهرة في أدائها تتلخص في أن عدد الأرقام الثنائية)
الواحد عددا قليلا و إن كان كثيرا في بعض الدوال فإن الطريقة غير قابلة للعمل على التوازي بمعنى أنه كي يتم توليد أي جزء من

عض الدوال في هذا البحث نعرض طريقة لاستخدام مجموعة من التتابعات البسيطة مع ب السلسلة فيجب توليد كافة الأجزاء السابقة لها.
ذات الاتجاه الواحد للتخلص من العيوب الأساسية المذكورة للطريقة التقليدية موضحين الشروط اللازمة الواجب توفرها في كل من
الدالة ذات الاتجاه الواحد المستخدمة و التتابع البسيط المستخدم لضمان نجاح التركيبة في تكوين مولد مثبت الأمن و قابل للعمل على

نقوم أيضا في هذا البحث بعمل مجموعة من التجارب على تركيبات مختلفة من الدوال و التتابعات للحصول على نتائج عن زي.التوا
إمكانية نجاح هذه الطريقة التي تبدو للوهلة الأولى بسيطة و بديهية ينتج عن هذه التجارب مجموعة من التركيبات مثبتة الأمن و

ليست مثبتة الأمن و لكن يمكن اعتبارها آمنة إن لم يمكننا الحصول على أي طريقة اركيبات غيرهتفشل تماما و ت ىتركيبات أخر
 لهدم أمنها.

Keywords: Secure pseudo-random generators, PRG, Fully-parallelizable, Block ciphers, RSA

mailto:ali_maher@acm.org

A.M. Kourah, A.A. Belal / Pseudo-random generators

766 Alexandria Engineering Journal, Vol. 43, No. 6, November 2004

1. Introduction

Secure Pseudo-Random Generator (PRGs)
(or PRGs that are suitable for use in

cryptographic applications) are generators for

which no one (with limited resources) can

predict even one bit of the generated sequence

given a part of this sequence. For a good

(practical) cryptographic PRG there are four
main required properties: Simplicity, Effi-

ciency, Provable Security, and Parallelizability.

 It is proven that secure PRGs exist if and

only if one-way functions exist [9]. The proof of

this result is constructible. This construction
is simple. Given a one-way function, f(x), with

some proven simultaneous hardcore predi-
cates, B(x). Apply the function, f, on a random

input (the seed), x, and output B(x). Repeat

the function with f(x) instead of x. This

construction is applicable for any one-way

function even if we cannot prove any bit of its

input to be a hard core predicate. This is be-
cause we can construct a hardcore predicate

for any one-way function [2]. Fig. 1 illustrates

this original construction.

 The main advantages of this construction

are:

 It maps one-way functions and PRGs: This is

a very important theoretical result. It says that
we can construct a PRG from any one-way

function.

 It is a generic construction: Any one-way

function can be used in this construction to

generate a pseudo-random bits string.

 Provable security: The generated PRG is

secure as long as the underlying function is

one-way.
 There are two main inefficiencies in this

original construction:

 Only a few number of random bits can be
generated per each computation of the one-way

function: most of the known one-way functions

(mainly based on number theoretic problems

that are assumed to be hard) generate only a
few hardcore bits (usually O(log n) LSBs or

MSBs where n is the size of the input of the

one-way function) per each computation.
The sequential nature of the construction itself:

Namely, to generate the jth block of the
pseudo-random bits we have to generate all j-1

previous blocks.

Fig. 1. The original construction of the PRGs.

 In [3] Impagliazzo and Naor showed a very
efficient construction for a PRG based on the

intractability of the subset sum problem for
certain dimensions. The increase in efficiency

in their construction is due to the fact that

many bits can be generated with one

application of the assumed one-way function
and the efficiency in computing the one-way
function itself. The security of this

construction does not depend on proving

simultaneous hardcore predicates of the

subset sum-based one-way function. Instead,

it depends on the proof of the pseudo-
randomness of the output of the one-way

function. (The only known one-way function
that is proven to simultaneously hide O(n) of

its input bits is the discrete log modulo

composite [4]).

 Although the subset sum-based one-way

function is efficient to compute and is
parallelizable (can be implemented in Nike's

Complexity Class NC using an optimal

number of processors), the nature of their
PRG is still sequential. Blum, Blum, Shub

(BBS) generator [5] is an example of PRGs that
are not pure sequential. An interesting feature

in the BBS generator is that if the factorization

of n is known, the n2 th bit can be generated

in time polynomial in |n|.

 Now, we can see that the first mentioned

inefficiency is solved by the construction of
Impagliazzo and Naor [3]. The main interesting

point is that they did not go through the

original construction and they did not prove

the simultaneous hard core predicates of the

used one-way function. Their construction is

also not a generic one and it is suitable (and

A.M. Kourah, A.A. Belal / Pseudo-random generators

 Alexandria Engineering Journal, Vol. 43, No. 6, November 2004 767

proven) only for the subset sum-based one-

way function.

 In this paper we propose a technique to
solve the second mentioned inefficiency,

namely, to eliminate the sequential nature of

the original construction. Using this technique
we can construct parallelizable pseudo-

random generators for which the cost of

generating the jth block of the pseudo-random
bits equals the cost of generating any other

block. This construction also increases the

number of output bits per each computation

of the used one-way permutation.

2. How to eliminate the sequential nature
 of the original construction

 What do we mean by eliminating the

sequential nature of constructing PRGs? The

answer is: we want to construct a PRG for
which computing the jth block of pseudo-

random bits does not require the computation

of any previous block. This PRG can generate

any number of blocks at a time by using the

same number of processors. Our proposed

method for constructing such generators is as
follows:
- Choose x randomly and uniformly

- Generate any "simple" "deterministic" se-
quence S0(x), S1(x),…, Sn-1(x).

- Input this sequence to f(x) and output

f(S0(x)), f(S1(x)),…, f(Sn-1(x)) as pseudo-random

blocks.
This is illustrated in fig. 2.

Of course this is not a generic construc-

tion. One can easily show that there are many

combinations of one-way functions and simple

deterministic sequences that fail to produce a

secure PRG when they are used in this way.

Fig. 2. The proposed construction.

Before going through which combination is

successful and which is not let us first give

conditions on the used one-way function and
sequence that are necessary to produce a

provably secure and fully-parallelizable PRG.

These conditions are:
1. The sequence Sj(x) is a deterministic

sequence: This is obvious because the only

input true randomness for a PRG must be in
the seed x.

2. O(computing Sj(x)) = O(computing Si(x)) for

all i, j. This means that the used sequence is

not sequential by nature.
3. O(computing Sj(x)) ≤ O(computing f(x)). This

is an empirical condition to guarantee the

efficiency of generating each block.
4. The sequence Sj(x) does not belong to some
small set with non-negligible probability for

non-negligible number of seeds. If this

condition is not satisfied one can use brute

force attacks to scan the values of this small

set as an input for every output block and he
will succeed in finding Sj(x) for some j and
then x with non-negligible probability.

5. The structure of the one-way permutation

hides the sequence Sj(x). If x Uk and a =

O(|x|) PPT Algorithm A, polynomial Q and

 sufficiently large k,

Pr[A(f(S0(x)), f(S1(x)), …, f(Sa(x))) = f(Sa+b(x)) ,

b>0] < 1/2+1/Q(k),

where the probability is taken over the
random coin tosses of A, and random choices

of x of length k. This condition means that no

one can use some relationship between the
bits of a given portion of the output blocks to

find some next output.

If we look at the above conditions we will

note that the first four conditions apply to the

used sequence and the fifth condition is the

one in which the combination of the sequence
and the one-way function can succeed or fail

to construct a PRG. As we mentioned, this

construction is not a generic one. Not all one-

way permutations can be successfully used

with all sequences. In fact, there may be a
permutation which has no suitable sequence

at all.

In the rest of this paper we will present the

results of the examination of some specific

combinations of one-way permutations and

A.M. Kourah, A.A. Belal / Pseudo-random generators

768 Alexandria Engineering Journal, Vol. 43, No. 6, November 2004

simple deterministic sequences. These cons-

tructions are categorized into three main cate-

gories:

 Unsuccessful constructions: In these con-

structions although we use a sequence
satisfying the first four conditions, the fifth

condition is not satisfied when the sequence is

combined with a specific one-way permuta-

tion. There are many examples of such com-

binations.

 Successful constructions: The security of the

resulting PRG is proven and depends on the
security of the underlying one-way permuta-

tion. These constructions and their proofs of

security will be discussed in section III

 Unproven and still unbreakable construc-
tions: For these constructions we cannot find

successful attacks on the constructed PRGs.

On the other hand, we cannot prove their

security or link it to the security of the
underlying one-way permutation or any other

secure system. These constructions will be

discussed in section IV.

3. Successful constructions

The Encryption function of a block cipher

is a function that takes as an input a message
m, and a key k, and outputs a cipher c, that is

random looking. If we look at this function as

a one-way function that takes a single input
and outputs c we can use it with the sequence

Sj(x) = x+j to produce a secure PRG using our

proposed method. This construction was

proved to be secure [6]. The following theorem

states this result:

Theorem 1: Let Fk(x): L|k|L },{},{},{ 101010

where |x| = L be an encryption function of a

block cipher and s be a random string then:

G(s)=Fs(0)Fs(1) Fs (2)… Fs (n-1),

is a provably secure PRG. More precisely:

)n,'t(InSec)t(InSec
prf
F

prg
G

 ,

where)).L(n(Ot't 2

 In a similar way we can prove that we can

use a secure hash function combined with the

same sequence Sj(x) = x+j to produce a secure

PRG. This is stated as follows:
Theorem 2: Let H(x) be a secure hash function

and s be a random string then,

G(s) = H(s)H(s+1)H(s+2),…,H(s+n-1),

is a secure PRG.

4. Unproven and still unbreakable

 constructions

4.1. RSA

 If we consider the PRG constructed by
using the RSA encryption function xe mod n

with the modulus n=pq and p and q are strong
primes [7] and the encryption exponent e is

large combined with the sequence Sj(x) = x+j

then the generated blocks will be a set of

encrypted related messages. The only known

attack on the RSA with related messages is

when the encryption exponent is small [8]. No
such attack is known on RSA with large
encryption exponent, e. Note that when we

implement such a system we have to avoid

some other known attacks on the RSA

function. For a survey of these attacks see [9].

 If we cannot find an attack for such
system this is by no means provide a proof for

its security. We have to relate breaking such

system to breaking the RSA itself. This system

is conjectured to be a secure PRG. This

conjecture is stated formally as follows:
Conjecture 1: Let f(x) = xe mod n where n is a
product of two strong primes p and q where

|p-q| is not small, e is large (e=O(n)) and d

> n where)n(moded 1 . Let x be a

randomly chosen seed of the same length of n.

Let y0=f(x), y1=f(x+1),…, yi=f(x+i) where i is

polynomial in |n|. Given y0,y1,…,yi there is no

PPT that can find f(x+i+j) for some j polynomial

in |n| without inverting the RSA function.

A proof of this conjecture may be provided

in the future. The report in the Appendix
shows that this generator is only a candidate

for a secure PRG. It does not prove its

security.

4.2. Subset sum

Definition 3.4.1: The subset sum problem

A.M. Kourah, A.A. Belal / Pseudo-random generators

 Alexandria Engineering Journal, Vol. 43, No. 6, November 2004 769

of dimensions n and l is: given n numbers,

a=(a1, a2,…, an), each l bits long, and a

number T, find a subset S {1,…,n} such that
l

Si

i modTa 2

.

The one-way function that is based on the
subset sum problem is defined as:

f:{0,1}n {0,1}l where the ith bit in the input

decides whether to take the element ai into the

summation or not. If the ith bit is 1 then take

ai in the summation; otherwise do not take it.

The output of the function is the resulting

summation of the chosen elements. The

Subset sum problem is one of the original

problems that Karp [10] proved to be NP-Hard,

(i.e., the corresponding decision problem is

NP-Complete). We can also produce random
instances of the subset sum problem that are

hard on the average [11]. Hence, computing
f(x) is easy and inverting f(x) is hard.

Theorem 3: The constructed PRG using the

subset sum-based one-way function combined

with the sequence Sj(x) = x+j is not secure.
Proof: Given f(x), f(x+1), f(x+2) then we can

find f(x+3)

- Either x or x+1 is even.

- This means either LSB(x)=0 or LSB(x+1)=0.

- This means either f(x+1)-f(x) = a0 mod N or

f(x+2)-f(x+1) = a0 mod N.
- If f(x+1) - f(x) = a0 then f(x+3) = f(x+2) + a0.

The subset sum based one-way permuta-

tion has a special property that is not found in
any other one-way permutation (specially the

permutations that are based on number
theoretic hard problems). This property is: the
hard problem is to find a valid bit assignment
to the input of the function not to invert some
mathematical function. This property helps in
using the sequence jx mod n as an input

sequence to this function. An interesting
property of the sequence jx mod n is: If x is

uniformly chosen then the jth element of the
sequence differs from the (j+1)st element by

O(|x|) bits (i.e., O(|x|) bits will be converted

from 0 to 1 or from 1 to 0.) Hence, to gain any
information about x using the values of two

successively generated blocks it is required

from the attacker to decide which bits are

inverted. Intuitively, it is required from the

attacker to solve another subset sum problem.

We tried to map the security of this RPG to

the security of the subset sum itself. All our

attempts have unfortunately failed. We also

tried to find attacks on this system but could

find none. The security of this system is an
open problem and may be solved in the future.

The following conjecture states this result:
Conjecture 2: Let f(x) be the subset sum-based

one-way function and s be a random string.

Given the sequence f(s)f(2s)f(3s)…f(is) where i
is a polynomial in |s| there is no PPT algo-

rithm that can find f((i+j)s) where j is a

polynomial in |s| without inverting f(x).

A proof of this conjecture may be found in

the future. The report in the Appendix shows

that this generator is only a candidate for a

secure PRG. It does not prove its security.

5. Conclusions

 The original method of constructing a PRG

from any one-way function has a sequential

nature. One approach to eliminate this

sequential nature is to search for suitable

deterministic sequences for specific one-way
permutations for which there is no PPT that
can find f(Sn+a(x)),a>0 and a is a polynomial in

|n| by knowing f(S0(x)), f(S1(x)),…,f(Sn(x)). If we

use a suitable deterministic sequence with

some one-way permutation then we can

construct a PRG where the cost of computing
the jth block of the pseudo-random sequence is

exactly the same as the cost for computing the

next block of this sequence. This PRG is
Simple, Efficient, Provably Secure and

Parallelizable. We presented examples for

provably secure PRGs constructed using the

proposed method.
In two of the constructions given the

resulting PRGs are conjectured to be secure.

We encourage efforts to try to prove the

security of these generators. We also

encourage efforts to search for other examples
of successful combinations or to introduce

new solutions to produce provably secure and

fully-parallelizable generators.

An open question is how to generalize this

approach. Reaching a generalization of this

approach will be a valuable result. By
generalization we mean finding a secure

sequence for every one-way function.

Appendix

This appendix presents the results of our

A.M. Kourah, A.A. Belal / Pseudo-random generators

770 Alexandria Engineering Journal, Vol. 43, No. 6, November 2004

implementations of the block ciphers, hash

functions, RSA and subset sum-based

constructions. The implementation is written
in Java and run on Intel Pentium II 400 MHz

machine with windows 2000 professional

platform. The generated reports describe the

results of experiments in which we

sequentially generate 20000 random bits

using the examined generator and measure
the performance and randomness of this

generator. Performance is measured by the

time needed to generate the 20000 bits.

Randomness is tested using (FIPS 140-1
statistical tests for randomness). If the

generator passes these tests then it is a
candidate to be a secure PRG. But, passing

the tests does not prove the security of the

generator. If the generator fails to pass one of

these tests then it is completely insecure.

Testing Generator: AES_PRG

------------------------Initialization------------------

Key size: 16 bytes = 128 bits

Key:

5A920547BEECA6BA9B7B5773D0DBCB2F

Block size: 16 bytes = 128 bits

Initialization time: 37 milliseconds

--Sequential

generation--

Number of generated bits: 20000

Number of random bits per calculation of the

one way function: 128

Generation time: 42 milliseconds

Sample bits:

000010000101111001110001011101100111

011001101111111000000000010100000011
0000101001100110010111000000

Monobit test
Number of 1s: 9915 passed

Poker test
X3: 30.6496 passed

Run test
Gap 1: 2543

Gap 2: 1291

Gap 3: 583

Gap 4: 284

Gap 5: 180

Gap 6: 169

Block 1: 2601

Block 2: 1220

Block 3: 643

Block 4: 281

Block 5: 148

Block 6: 157

passed
Long run test
Max run length: 16 passed
The generator passes all tests

Testing Generator: MD5_PRG

--------------------Initialization----------------------

Initialization time: 3 milliseconds

------------------Sequential generation------------

Number of generated bits: 20000

Number of random bits per calculation of the

one way function: 128

Generation time: 27 milliseconds

Sample bits:

001010011100000010000110000101110110

011111110101100011010110101010001101

0001011101100011110011110100
Monobit test
Number of 1s: 10037 passed
Poker test

X3: 13.1648 passed
Run test

Gap 1: 2521

Gap 2: 1232

Gap 3: 642

Gap 4: 301

Gap 5: 154

Gap 6: 154

Block 1: 2510

Block 2: 1257

Block 3: 612

Block 4: 283

Block 5: 184

Block 6: 157

passed
Long run test

Max run length: 12 passed

The generator passes all tests

Testing Generator: SHA_PRG

------------------------Initialization------------------

Initialization time: 2 milliseconds

--------------------Sequential generation----------

Number of generated bits: 20000

Number of random bits per calculation of the

one way function: 160
Generation time: 27 milliseconds

Sample bits:

001001010101111011101010001000000110

A.M. Kourah, A.A. Belal / Pseudo-random generators

 Alexandria Engineering Journal, Vol. 43, No. 6, November 2004 771

110111000111000101111011101000110111

1111010100100110010111011110

Monobit test
Number of 1s: 10025 passed
Poker test

X3: 9.7856 passed
Run test

Gap 1: 2511

Gap 2: 1209

Gap 3: 609

Gap 4: 317

Gap 5: 163

Gap 6: 167

Block 1: 2475

Block 2: 1215

Block 3: 663

Block 4: 307

Block 5: 150

Block 6: 166

passed
Long run test
Max run length: 14 passed

The generator passes all tests

Generator: RSA_PRG

--------------------Initialization----------------------
number of bits of primes: 128

p:

282855661594162267458257527374267569

683

q:

242167371823603717744560872026395653
777

n:68498412173684919731814524679108480

369888665215009283247770510244311689

642691

phi(n):6849841217368491973181452467910
848036936364218159151726256769184491

1026419232

e:68179491434253140789418757909056244

898518028569049219575958234216735296

410293

d:10626953821672408370849853271694723
970171323470866303210964508803483007

437661

Seed:09039126843727307931997759994436

360333988878824597130670571885285297

154805598
Initialization time: 481 milliseconds

--------------------Sequential Generation----------

Number of generated bits: 20000

Number of random bits per calculation of the

one way function: 256

Generation time:894 milliseconds
Sample bits:

101110101101000100010111111011011011

100010110101001010011101011110011000

1111100001010111110101010000

Monobit test
Number of 1s: 9760 passed
Poker test
X3 : 36.1664 passed

Run test

Gap 1: 2427

Gap 2: 1197

Gap 3: 658
Gap 4: 300

Gap 5: 174

Gap 6: 195

Block 1: 2482

Block 2: 1276

Block 3: 615
Block 4: 307

Block 5: 127

Block 6: 145
passed

Long run test
Max run length: 14 passed

The generator passes all tests

Testing Generator: SSS_PRG

--------------------------Initialization----------------

|S|: 128

l(|S|): 128

Seed:

303974519955064967531450883017475967

940

Initialization time: 8 milliseconds

-----------------------Sequential generation-------

Number of generated bits: 20000

Number of random bits per calculation of the

one way function: 128

Generation time: 783 milliseconds

Sample bits:

010011101001011111111011000000000101
110100101000111001000111010010111101

0101000110100010110001001000

Monobit test

Number of 1s: 10028 passed
Poker test

X3: 19.9424 passed
Run test
Gap 1: 2461

A.M. Kourah, A.A. Belal / Pseudo-random generators

772 Alexandria Engineering Journal, Vol. 43, No. 6, November 2004

Gap 2: 1273

Gap 3: 632

Gap 4: 305

Gap 5: 152

Gap 6: 154

Block 1: 2536

Block 2: 1163

Block 3: 630

Block 4: 319

Block 5: 156

Block 6: 173
passed
Long run test
Max run length: 12 passed
The generator passes all tests

References

[1] R. Impagliazzo, Leonid A. Levin, and

Michael Luby, “Pseudo-random
generation from one-way functions,”

Proc. (21)st ACM Symp. on Theory of

Computing, Seattle, ACM. pp. 12-24

(1989).

[2] O. Goldreich and L. Levin, “A hard-core

predicate for all one-way functions,” In
21st ACM Symposium on Theory of

Computing (1989).

[3] R. Impagliazzo, M. Naor, “Efficient

Cryptographic Schemes Provably Secure

as Subset Sum,” Proc. 30th FOCS, pp.
236-241 (1989).

[4] J. Hastad, A.W. Schrift, and A. Shamir,

“The discrete logarithm modulo a

composite hides O(n) bits,” Journal of

Computer and Systems Sciences, Vol.

47, pp. 376-404 (1993).
[5] L. Blum, M. Blum and M. Shub, “A

Simple Unpredictable Pseudo-Random

Number Generator,” SIAM J. Computing,

Vol. 15 (2), pp. 364-383 (1986).

[6] S. Goldwasser, and M. Bellare, “Lecture

notes in cryptography,” MIT, pp. 42-45
(1996).

[7] J. Gordon, “Strong primes are easy to

find, In LNCS 209,” Eurocrypt 84, pp.

216-223 (1984).

[8] M.K. Franklin and M.K. Reiter, “A linear
protocol failure for RSA with exponent

three,” Presented at the CRYPTO'95

Rump session (1995).

[9] D. Boneh, “Twenty years of attacks on

the RSA cryptosystem,” Notices Amer.

Math. Soc. 46 (2), pp. 203-213 (1999).
[10] R.M. Karp, Reducibility among

Combinatorial Problems, in Complexity

of Computer Computation, ed. R.E.

Miller and J.W. Thatcher, New York:

Plenum Press (1972).
[11] M. Ajtai, “Generating hard instances of

the lattice problem,” Proceedings of the

twenty-eighth annual ACM symposium

on Theory of computing, pp. 99-108,

(1996).

Received February 14, 2004

Accepted August 12, 2004

