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Other work showed how to construct a Pseudo-Random Generator (PRG), from any one-way 
function using the theory of hardcore predicates. This construction is generic and considered 
as the mapping between one-way functions and PRGs. This construction has two main 
inefficiencies. First, we can generate only a few number of bits per each computation of the 

one-way function. Second, we cannot generate the jth block of pseudo-random bits without 
generating all the j-1 previous blocks. This means that the constructed generators are not 
parallelizable. In this paper, we propose a new construction method of PRGs using a 
combination of a one-way function and a simple deterministic sequence. This method results 
in PRGs that are fully-parallelizable, i.e., the cost of generating the ith and jth blocks are the 
same for all i and j. This method also generates a large number of bits per each computation 

of the underlying one-way function. We also put conditions for the combinations of one-way 
functions and deterministic sequences to result in provably secure PRGs. Of course, not all 
combinations satisfy these conditions. Hence, this construction is not intended to replace the 
original one. It is intended to construct fully-parallelizable PRGs. Searching for combinations 
of one-way functions and deterministic sequences satisfying the stated conditions is not an 
easy job. We examined a lot of cases. Some of them are provably secure PRGs. We present 
constructions based on block ciphers and secure hashing as examples for these cases. Other 
cases are totally insecure. Other cases are conjectured to be secure PRGs. We present 
constructions based on RSA and the subset sum problem as examples of conjectured secure 
PRGs. 

إن استخدام السلاسل العشوائية في إجراء العمليات و الخوارزميات له استخدامات عديدة و تطبيقات متنوعة، ولكن الحصول على هذه 
السلاسل عن طريق بعض الظواهر الطبيعية التي تنتج العشوائية يعد أمرا بالغ الصعوبة هذا لكون هذه الظواهر نادرة التواجد و إن 

هذا ما دعا الباحثين للبحث عن وسائل مختلفة للحد من استخدام الظواهر الطبيعية  سل متحيزة و مترابطة.وجدت فإنها تنتج سلا
إليه الباحثين هو مولدات الأعداد العشوائية و هي كيانات تتلقى سلاسل عشوائية  لكمصدر للعشوائية للخوارزميات و يعد أهم ما توص

يختلف تعريف مولدات الأعداد العشوائية تبعا للتطبيق  من ينظر أليها أنها عشوائية.قصيرة و تولد سلاسل أكبر تستطيع أن توحي ل
الذي ستستخدم فيه، فمن هذه التطبيقات التطبيقات المتعلقة بالمحاكاة و هي تتطلب سلاسل ذات خواص احصائية معينة أما التطبيقات 

إن  أي متفحص لجزء منها لا يستطيع التنبؤ بأي جزء مستقبلي منها. المتعلقة بالأمن فإنها تحتاج سلاسل غير قابلة للاستنتاج أي أن
اثبات وجود مثل هذه الكيانات غير معروف حتى الآن لذا لجأ الباحثين إلى الربط بين وجودها و وجود الدوال ذات الإتجاه الواحد و 

ل و ومولدات الأعداد العشوائية ربطا نتج عنه هي دوال سهلة الحساب و صعبة الانعكاس و قد قام الباحثين بالربط بين هذه الدوا
تعد الطريقة التقليدية لتكوين مولدات الأعداد العشوائية طريقة ذات  وضع طريقة لتكوين مولد عن طريق استخدام أي من هذه الدوال.

ا حساب الدالة ذات الاتجاه ( المولدة في كل مرة يتم فيهBitsعيوب أساسية ظاهرة في أدائها تتلخص في أن عدد الأرقام الثنائية )
الواحد عددا قليلا و إن كان كثيرا في بعض الدوال فإن الطريقة غير قابلة للعمل على التوازي بمعنى أنه كي يتم توليد أي جزء من 

عض الدوال في هذا البحث نعرض طريقة لاستخدام مجموعة من التتابعات البسيطة مع ب السلسلة فيجب توليد كافة الأجزاء السابقة لها.
ذات الاتجاه الواحد للتخلص من العيوب الأساسية المذكورة للطريقة التقليدية موضحين الشروط اللازمة الواجب توفرها في كل من 
الدالة ذات الاتجاه الواحد المستخدمة و التتابع البسيط المستخدم لضمان نجاح التركيبة في تكوين مولد مثبت الأمن و قابل للعمل على 

نقوم أيضا في هذا البحث بعمل مجموعة من التجارب على تركيبات مختلفة من الدوال و التتابعات للحصول على نتائج عن  زي.التوا
إمكانية نجاح هذه الطريقة التي تبدو للوهلة الأولى بسيطة و بديهية ينتج عن هذه التجارب مجموعة من التركيبات مثبتة الأمن و 

ليست مثبتة الأمن و لكن يمكن اعتبارها آمنة إن لم يمكننا الحصول على أي طريقة  اركيبات غيرهتفشل تماما و ت ىتركيبات أخر
 لهدم أمنها.
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1. Introduction 

 

Secure Pseudo-Random Generator (PRGs) 
(or PRGs that are suitable for use in 

cryptographic applications) are generators for 

which no one (with limited resources) can 

predict even one bit of the generated sequence 

given a part of this sequence. For a good 

(practical) cryptographic PRG there are four 
main required properties: Simplicity, Effi-

ciency, Provable Security, and Parallelizability.  

 It is proven that secure PRGs exist if and 

only if one-way functions exist [9]. The proof of 

this result is constructible. This construction 
is simple. Given a one-way function, f(x), with 

some proven simultaneous hardcore predi-
cates, B(x). Apply the function, f, on a random 

input (the seed), x, and output B(x). Repeat 

the function with f(x) instead of x. This 

construction is applicable for any one-way 

function even if we cannot prove any bit of its 

input to be a hard core predicate. This is be-
cause we can construct a hardcore predicate 

for any one-way function [2]. Fig. 1 illustrates 

this original construction. 

 The main advantages of this construction 

are: 

 It maps one-way functions and PRGs: This is 

a very important theoretical result. It says that 
we can construct a PRG from any one-way 

function. 

 It is a generic construction: Any one-way 

function can be used in this construction to 

generate a pseudo-random bits string. 

 Provable security: The generated PRG is 

secure as long as the underlying function is 

one-way. 
 There are two main inefficiencies in this 

original construction: 

 Only a few number of random bits can be 
generated per each computation of the one-way 

function: most of the known one-way functions 

(mainly based on number theoretic problems 

that are assumed to be hard) generate only a 
few hardcore bits (usually O(log n) LSBs or 

MSBs where n is the size of the input of the 

one-way function) per each computation.  
The sequential nature of the construction itself: 

Namely, to generate the jth  block  of  the 
pseudo-random bits we have to generate all j-1 

previous blocks.    

 

 
Fig. 1. The original construction of the PRGs. 

 

 In [3] Impagliazzo and Naor showed a very 
efficient construction for a PRG based on the 

intractability of the subset sum problem for 
certain dimensions. The increase in efficiency 

in their construction is due to the fact that 

many bits can be generated with one 

application of the assumed one-way function 
and the efficiency in computing the one-way 
function itself. The security of this 

construction does not depend on proving 

simultaneous hardcore predicates of the 

subset sum-based one-way function. Instead, 

it depends on the proof of the pseudo-
randomness of the output of the one-way 

function. (The only known one-way function 
that is proven to simultaneously hide O(n) of 

its input bits is the discrete log modulo 

composite [4]). 

 Although the subset sum-based one-way 

function is efficient to compute and is 
parallelizable (can be implemented in Nike's 

Complexity Class NC using an optimal 

number of processors), the nature of their 
PRG is still sequential. Blum, Blum, Shub 

(BBS) generator [5] is an example of PRGs that 
are not pure sequential. An interesting feature 

in the BBS generator is that if the factorization 

of n is known, the n2 th bit can be generated 

in time polynomial in |n|. 

 Now, we can see that the first mentioned 

inefficiency is solved by the construction of 
Impagliazzo and Naor [3]. The main interesting 

point is that they did not go through the 

original construction and they did not prove 

the simultaneous hard core predicates of the 

used one-way function. Their construction is 

also not a generic one and it is suitable (and 
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proven) only for the subset sum-based one-

way function. 

 In this paper we propose a technique to 
solve the second mentioned inefficiency, 

namely, to eliminate the sequential nature of 

the original construction. Using this technique 
we can construct parallelizable pseudo-

random generators for which the cost of 

generating the jth block of the pseudo-random 
bits equals the cost of generating any other 

block. This construction also increases the 

number of output bits per each computation 

of the used one-way permutation. 

 

2. How to eliminate the sequential nature  
    of the original construction 

 

 What do we mean by eliminating the 

sequential nature of constructing PRGs? The 

answer is: we want to construct a PRG for 
which computing the jth block of pseudo-

random bits does not require the computation 

of any previous block. This PRG can generate 

any number of blocks at a time by using the 

same number of processors. Our proposed 

method for constructing such generators is as 
follows: 
- Choose x randomly and uniformly 

- Generate any "simple" "deterministic" se-
quence S0(x), S1(x),…, Sn-1(x). 

- Input this sequence to f(x) and output 

f(S0(x)), f(S1(x)),…, f(Sn-1(x)) as pseudo-random 

blocks. 
This is illustrated in fig. 2. 

Of course this is not a generic construc-

tion. One can easily show that there are many 

combinations of one-way functions and simple 

deterministic sequences that fail to produce a 

secure PRG when they are  used  in  this  way. 

 
Fig. 2. The proposed construction. 

Before going through which combination is 

successful and which is not let us first give 

conditions on the used one-way function and 
sequence that are necessary to produce a 

provably secure and fully-parallelizable PRG. 

These conditions are: 
1. The sequence Sj(x) is a deterministic 

sequence: This is obvious because the only 

input true randomness for a PRG must be in 
the seed x. 

2. O(computing Sj(x)) = O(computing Si(x)) for 

all i, j. This means that the used sequence is 

not sequential by nature. 
3. O(computing Sj(x)) ≤ O(computing f(x)). This 

is an empirical condition to guarantee the 

efficiency of generating each block. 
4. The sequence Sj(x) does not belong to some 
small set with non-negligible probability for 

non-negligible number of seeds. If this 

condition is not satisfied one can use brute 

force attacks to scan the values of this small 

set as an input for every output block and he 
will succeed in finding Sj(x) for some j and 
then x with non-negligible probability. 

5. The structure of the one-way permutation 

hides the sequence Sj(x). If x  Uk and a = 

O(|x|)  PPT Algorithm A,  polynomial Q and 

 sufficiently large k, 

 
Pr[A(f(S0(x)),  f(S1(x)), …, f(Sa(x))) = f(Sa+b(x)) , 

b>0] < 1/2+1/Q(k), 

 

where the probability is taken over the 
random coin tosses of A, and random choices 

of x of length k. This condition means that no 

one can use some relationship between the 
bits of a given portion of the output blocks to 

find some next output. 

If we look at the above conditions we will 

note that the first four conditions apply to the 

used sequence and the fifth condition is the 

one in which the combination of the sequence 
and the one-way function can succeed or fail 

to construct a PRG. As we mentioned, this 

construction is not a generic one. Not all one-

way permutations can be successfully used 

with all sequences. In fact, there may be a 
permutation which has no suitable sequence 

at all. 

In the rest of this paper we will present the 

results of the examination of some specific 

combinations of one-way permutations and 
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simple deterministic sequences. These cons-

tructions are categorized into three main cate-

gories: 

 Unsuccessful constructions: In these con-

structions although we use a sequence 
satisfying the first four conditions, the fifth 

condition is not satisfied when the sequence is 

combined with a specific one-way permuta-

tion. There are many examples of such com-

binations. 

 Successful constructions: The security of the 

resulting PRG is proven and depends on the 
security of the underlying one-way permuta-

tion. These constructions and their proofs of 

security will be discussed in section III 

 Unproven and still unbreakable construc-
tions: For these constructions we cannot find 

successful attacks on the constructed PRGs. 

On the other hand, we cannot prove their 

security or link it to the security of the 
underlying one-way permutation or any other 

secure system. These constructions will be 

discussed in section IV. 

 

3. Successful constructions 
 

The Encryption function of a block cipher 

is a function that takes as an input a message 
m, and a key k, and outputs a cipher c, that is 

random looking. If we look at this function as 

a one-way function that takes a single input  
and outputs c we can use it with the sequence 

Sj(x) = x+j  to produce a secure PRG using our 

proposed method. This construction was 

proved to be secure [6]. The following theorem 

states this result: 

Theorem 1: Let Fk(x): L|k|L },{},{},{ 101010   

where |x| = L be an encryption function of a 

block cipher and s be a random string then: 

  
G(s)=Fs(0)Fs(1) Fs (2)… Fs (n-1),  

 

is a provably secure PRG. More precisely:  

 

)n,'t(InSec)t(InSec
prf
F

prg
G

 , 

 

where )).L(n(Ot't 2   

 

 In a similar way we can prove that we can 

use a secure hash function combined with the 

same sequence Sj(x) = x+j to produce a secure 

PRG. This is stated as follows: 
Theorem 2: Let H(x) be a secure hash function 

and s be a random string then,  

 
G(s) = H(s)H(s+1)H(s+2),…,H(s+n-1),  

 

is a secure PRG. 

 

4. Unproven and still unbreakable  

    constructions 
 
4.1. RSA 

  

 If we consider the PRG constructed by 
using the RSA encryption function xe mod n 

with the modulus n=pq and p and q are strong 
primes [7] and the encryption exponent e is 

large combined with the sequence Sj(x) = x+j 

then the generated blocks will be a set of 

encrypted related messages. The only known 

attack on the RSA with related messages is 

when the encryption exponent is small [8]. No 
such attack is known on RSA with large 
encryption exponent, e. Note that when we 

implement such a system we have to avoid 

some other known attacks on the RSA 

function. For a survey of these attacks see [9].  

 If we cannot find an attack for such 
system this is by no means provide a proof for 

its security. We have to relate breaking such 

system to breaking the RSA itself. This system 

is conjectured to be a secure PRG. This 

conjecture is stated formally as follows: 
Conjecture 1: Let f(x) = xe mod n where n is a 
product of two strong primes p and q where 

|p-q| is not small, e is large (e=O(n)) and d 

> n  where )n(moded 1 . Let x be a 

randomly chosen seed of the same length of n. 

Let y0=f(x), y1=f(x+1),…, yi=f(x+i) where i is 

polynomial in |n|. Given y0,y1,…,yi there is no 

PPT that can find f(x+i+j) for some j polynomial 

in |n| without inverting the RSA function.  

A proof of this conjecture may be provided 

in the future. The report in the Appendix 
shows that this generator is only a candidate 

for a secure PRG. It does not prove its 

security. 

  
4.2. Subset sum 

 
Definition  3.4.1:  The   subset   sum   problem   
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of dimensions n and l is: given n numbers, 

a=(a1, a2,…, an), each l bits long, and a 

number T, find a subset S  {1,…,n} such that 
l

Si

i modTa 2


. 

The one-way function that is based on the 
subset sum problem is defined as: 

f:{0,1}n {0,1}l where the ith bit in the input 

decides whether to take the element ai into the 

summation or not. If the ith bit is 1 then take 

ai in the summation; otherwise do not take it. 

The output of the function is the resulting 

summation of the chosen elements. The 

Subset sum problem is one of the original 

problems that Karp [10] proved to be NP-Hard, 

(i.e., the corresponding decision problem is 

NP-Complete). We can also produce random 
instances of the subset sum problem that are 

hard on the average [11]. Hence, computing 
f(x) is easy and inverting f(x) is hard. 

Theorem 3: The constructed PRG using the 

subset sum-based one-way function combined 

with the sequence Sj(x) = x+j is not secure. 
Proof:  Given f(x),  f(x+1),  f(x+2) then we can 

find  f(x+3)  

- Either x or x+1 is even.  

- This means either LSB(x)=0 or LSB(x+1)=0.  

- This means either f(x+1)-f(x) = a0 mod N or 

f(x+2)-f(x+1) = a0 mod N. 
- If f(x+1) - f(x) = a0 then f(x+3) = f(x+2) + a0. 

The subset sum based one-way permuta-

tion has a special property that is not found in 
any other one-way permutation (specially the 

permutations that are based on number 
theoretic hard problems). This property is: the 
hard problem is to find a valid bit assignment 
to the input of the function not to invert some 
mathematical function. This property helps in 
using the sequence jx mod n as an input 

sequence to this function. An interesting 
property of the sequence jx mod n is: If x is 

uniformly chosen then the jth element of the 
sequence differs from the (j+1)st element by 

O(|x|) bits (i.e., O(|x|) bits will be converted 

from 0 to 1 or from 1 to 0.) Hence, to gain any 
information about x using the values of two 

successively generated blocks it is required 

from the attacker to decide which bits are 

inverted. Intuitively, it is required from the 

attacker to solve another subset sum problem. 

We tried to map the security of this RPG to 

the security of the subset sum itself. All our 

attempts have unfortunately failed. We also 

tried to find attacks on this system but could 

find none. The security of this system is an 
open problem and may be solved in the future. 

The following conjecture states this result: 
Conjecture 2: Let f(x) be the subset sum-based 

one-way function and s be a random string. 

Given the sequence f(s)f(2s)f(3s)…f(is) where i 
is a polynomial in |s| there is no PPT algo-

rithm that can find f((i+j)s) where j is a 

polynomial in |s| without  inverting f(x).  

A proof of this conjecture may be found in 

the future. The report in the Appendix shows 

that this generator is only a candidate for a 

secure PRG. It does not prove its security. 

 

5. Conclusions 
 

 The original method of constructing a PRG 

from any one-way function has a sequential 

nature. One approach to eliminate this 

sequential nature is to search for suitable 

deterministic sequences for specific one-way 
permutations  for which there is no PPT that 
can find f(Sn+a(x)),a>0 and a is a polynomial in 

|n| by knowing f(S0(x)), f(S1(x)),…,f(Sn(x)). If we 

use a suitable deterministic sequence with 

some one-way permutation then we can 

construct a PRG where the cost of computing 
the jth block of the pseudo-random sequence is 

exactly the same as the cost for computing the 

next block of this sequence. This PRG is 
Simple, Efficient, Provably Secure and 

Parallelizable. We presented examples for 

provably secure PRGs constructed using the 

proposed method.  
In two of the constructions given the 

resulting PRGs are conjectured to be secure. 

We encourage efforts to try to prove the 

security of these generators. We also 

encourage efforts to search for other examples 
of successful combinations or to introduce 

new solutions to produce provably secure and 

fully-parallelizable generators.  

An open question is how to generalize this 

approach. Reaching a generalization of this 

approach will be a valuable result. By 
generalization we mean finding a secure 

sequence for every one-way function. 
 

Appendix 
 

This appendix presents the  results  of  our  
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implementations of the block ciphers, hash 

functions, RSA and subset sum-based 

constructions. The implementation is written 
in Java and run on Intel Pentium II 400 MHz 

machine with windows 2000 professional 

platform. The generated reports describe the 

results of experiments in which we 

sequentially generate 20000 random bits 

using the examined generator and measure 
the performance and randomness of this 

generator. Performance is measured by the 

time needed to generate the 20000 bits. 

Randomness is tested using (FIPS 140-1 
statistical tests for randomness). If the 

generator passes these tests then it is a 
candidate to be a secure PRG. But, passing 

the tests does not prove the security of the 

generator. If the generator fails to pass one of 

these tests then it is completely insecure. 

 
Testing Generator: AES_PRG 

 

------------------------Initialization------------------ 

Key size: 16 bytes = 128 bits 

Key: 

5A920547BEECA6BA9B7B5773D0DBCB2F 

Block size: 16 bytes = 128 bits 

Initialization time: 37 milliseconds 

------------------------------------------Sequential 

generation------------------------------------------ 

Number of generated bits: 20000 

Number of random bits per calculation of the 

one way function: 128 

Generation time: 42 milliseconds 

Sample bits:  

000010000101111001110001011101100111

011001101111111000000000010100000011
0000101001100110010111000000 

Monobit test 
Number of 1s: 9915 passed 

Poker test 
X3: 30.6496 passed 

Run test 
Gap   1: 2543 

Gap   2: 1291 

Gap   3: 583 

Gap   4: 284 

Gap   5: 180 

Gap   6: 169 

Block 1: 2601 

Block 2: 1220 

Block 3: 643 

Block 4: 281 

Block 5: 148 

Block 6: 157 

passed 
Long run test 
Max run length: 16 passed 
The generator passes all tests 

Testing Generator: MD5_PRG 

 
--------------------Initialization---------------------- 

Initialization time: 3 milliseconds 

------------------Sequential generation------------ 

Number of generated bits: 20000 

Number of random bits per calculation of the 

one way function: 128 

Generation time: 27 milliseconds 

Sample bits: 

001010011100000010000110000101110110

011111110101100011010110101010001101

0001011101100011110011110100 
Monobit test 
Number of 1s: 10037 passed 
Poker test 

X3: 13.1648 passed 
Run test 

Gap   1: 2521 

Gap   2: 1232 

Gap   3: 642 

Gap   4: 301 

Gap   5: 154 

Gap   6: 154 

Block 1: 2510 

Block 2: 1257 

Block 3: 612 

Block 4: 283 

Block 5: 184 

Block 6: 157 

passed 
Long run test 

Max run length: 12 passed 

The generator passes all tests 

Testing Generator: SHA_PRG 

 
------------------------Initialization------------------ 

Initialization time: 2 milliseconds 

--------------------Sequential generation---------- 

Number of generated bits: 20000 

Number of random bits per calculation of the 

one way function: 160 
Generation time: 27 milliseconds 

Sample bits: 

001001010101111011101010001000000110
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110111000111000101111011101000110111

1111010100100110010111011110 

Monobit test 
Number of 1s: 10025 passed 
Poker test 

X3: 9.7856 passed 
Run test 

Gap   1: 2511 

Gap   2: 1209 

Gap   3: 609 

Gap   4: 317 

Gap   5: 163 

Gap   6: 167 

Block 1: 2475 

Block 2: 1215 

Block 3: 663 

Block 4: 307 

Block 5: 150 

Block 6: 166 

passed 
Long run test 
Max run length: 14 passed 

The generator passes all tests 

Generator: RSA_PRG 

 

--------------------Initialization---------------------- 
number of bits of primes: 128 

p: 

282855661594162267458257527374267569

683 

q: 

242167371823603717744560872026395653
777 

n:68498412173684919731814524679108480

369888665215009283247770510244311689

642691 

phi(n):6849841217368491973181452467910
848036936364218159151726256769184491

1026419232 

e:68179491434253140789418757909056244

898518028569049219575958234216735296

410293 

d:10626953821672408370849853271694723
970171323470866303210964508803483007

437661 

Seed:09039126843727307931997759994436

360333988878824597130670571885285297

154805598 
Initialization time: 481 milliseconds 

--------------------Sequential Generation---------- 

Number of generated bits: 20000 

 

Number of random bits per calculation of the 

one way function: 256 

Generation time:894 milliseconds 
Sample bits: 

101110101101000100010111111011011011

100010110101001010011101011110011000

1111100001010111110101010000 

Monobit test 
Number of 1s: 9760 passed 
Poker test 
X3 : 36.1664 passed 

Run test 

Gap   1: 2427 

Gap   2: 1197 

Gap   3: 658 
Gap   4: 300 

Gap   5: 174 

Gap   6: 195 

Block 1: 2482 

Block 2: 1276   

Block 3: 615 
Block 4: 307 

Block 5: 127 

Block 6: 145 
passed 

Long run test 
Max run length: 14 passed 

The generator passes all tests 

Testing Generator: SSS_PRG 
 

--------------------------Initialization---------------- 

|S|: 128 

l(|S|): 128 

Seed: 

303974519955064967531450883017475967

940 

Initialization time: 8 milliseconds 

-----------------------Sequential generation------- 

Number of generated bits: 20000 

Number of random bits per calculation of the 

one way function: 128 

Generation time: 783 milliseconds 

Sample bits: 

010011101001011111111011000000000101
110100101000111001000111010010111101

0101000110100010110001001000 

Monobit test 

Number of 1s: 10028 passed 
Poker test 

X3: 19.9424 passed 
Run test 
Gap   1: 2461 
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Gap   2: 1273 

Gap   3: 632 

Gap   4: 305 

Gap   5: 152 

Gap   6: 154 

Block 1: 2536 

Block 2: 1163 

Block 3: 630 

Block 4: 319 

Block 5: 156 

Block 6: 173 
passed 
Long run test 
Max run length: 12 passed 
The generator passes all tests 
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