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Cold-formed steel members have a wide range of possible cross-sectional profiles, aspect 
ratios and sizes. While this flexibility gives the designer almost unlimited freedom in shaping 
the members, it makes the selection of the most economical design for a particular 
application quite difficult. The situation is further aggravated by the complex rules that 
govern cold-formed member design and the combined liability of cold-formed members to 
different failure modes. This paper investigates the potential for using artificial neural 

networks to overcome these design problems, with emphasis on the most commonly used 
channel and Z members. Artificial neural networks are trained using data relating the 
members’ cross-sectional profile and size to the load carrying capacity. The networks are 
then developed into reliable design tools able to select the best cross-sectional dimensions 
for any given load. 

تتواجد القطاعات المعدنية المشكلة على البارد بأشكال وإبعاد عديدة وبينما تعطى هذه الأشكال الكثيرة حرية كبيرة للمصمم لأختيار 
طاعات اقتصاديا من بين هذه المجموعة الكبيرة من الأشكال صعب جدا. هذه القطاع الملائم من حيث الشكل. فإن اختيار أنسب الق

الصعوبة تأتى من صعوبة المعادلات الخاصة بالتصميم لمثل هذه النوعية من القطاعات نظرا لقابلية هذه القطاعات للانهيار بواسطة 
يتم دراسة مدى أمكانية استخدام الشبكات العصبية أكثر من نوع من أنواع الأنبعاج نظرا لصغر سمك هذه القطاعات.فى هذا البحث 

الاصطناعية للتغلب على مشكلات التصميم لمثل هذه القطاعات ويتم المقارنه بين أكثر الأشكال شيوعا وهى القطاعات على شكل 
(C و شكل )(Z). حمال العمودية التى يتم فى هذا البحث تدريب الشبكات العصبية المستخدمة بواسطة بيانات تغطى أكبر قدر من الأ

 يمكن أن يتحملها أى عضو ضغط. بعد تدريب الشبكات العصبية تم اختبارها وقد أعطيت قيم جيده جدا بنسب خطأ بسيطة جدا.
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1. Introduction 
 

Cold-formed steel members are finding 

increasing acceptance in the construction 

markets as primary and secondary structural 

elements. The reasons behind their increasing 

popularity include: 

 High strength:weight and stiffness:weight 
ratios compared with hot-rolled steel allowing 

better use of material and easier 

transportation, handling, and erection; 

 Ease of fabrication that allows fast and 
large-volume production. 

These advantages can result in more cost-

effective designs, when compared with hot-
rolled steel, especially in short-span applica-

tions [1,2]. 

Cold-Formed (CF) members can be 

produced in a wide variety of section profiles, 

the most commonly used of which are the 
channels and the Z sections shown in fig. 1. 

The basic shapes can be enhanced with flange 

stiffeners to improve the members’ resistance 

to both local and overall buckling [3]. The 

members can also be manufactured with a 

wide range of aspect ratios, sizes and wall 
thicknesses, with direct impact on the mem-

bers’ efficiency. 

While this freedom to modify the cross-

section of CF members provides a desirable 

flexibility to the structural designer, it makes 
arriving at the optimum design for a given 

application a difficult and lengthy process.  

 

 
Fig. 1. Some of the cold-formed sections commonly used 

in construction applications. 

The problem is compounded by the com-
plex nature of the analysis procedure - mainly 

because of the combined liability to both local 

and overall failure buckling modes [4,5]. 
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The project described in this paper seeks 

to overcome this problem by developing a new 

design methodology for CF members, which 
can: 

 Provide the most efficient cross-section, 
chosen from a wide range of profiles, aspect 

ratios and sizes; 

 Allow for varying design criteria, e.g. in one 
situation, least weight and cost may be the 

main concerns, whereas in another, member 

connectivity could be paramount; 

 Consider all possible failure modes; 

 Satisfy current design codes; 

 Enable designers to be in full control. 

The project carried out between Arab 
Academy and University of Dundee, UK, uses 

Neural Network (NN) technology to create a set 

of design tools capable of selecting the best 

cross-sectional profile and size for any given 

loading condition. This paper focuses only on 
the design with plain and lipped channel and 

Z sections under concentric compression as 

an example of the current work. After a brief 

introduction to neural networks and their 

features, the construction and assessment of 

the NN design tools are explained in detail. 
Focus has been given to finding the network 

architecture that could yield the best accuracy 

and reliability, as this should be of much 

value in future work involving use of NN tools. 

 
2. What are Neural Networks? 

 

Neural Networks (NNs) are artificial 

intelligence algorithms for cognitive tasks, 

such as learning and optimisation. They have 

four chief advantages over other artificial 
intelligence methods. They can (a) learn from 

examples and previous knowledge, (b) 

encapsulate a great deal of knowledge in a 

very efficient manner, (c) deal with complex 

design problems where it is almost impossible 
to formulate the governing rules in the form of 

a traditional mathematical model and (d) take 

account of factors that are not easily 

quantifiable. In cold-formed member design, 

they could utilise information effectively on 

the vast range of possible profiles and aspect 
ratios, and consider both quantitative factors 

(e.g. strength and weight) and qualitative 

factors (e.g. connectivity and availability). 

A neural network commonly consists of a 

number of interconnected processing units 

(called nodes), arranged in at least three layers 
[6-8]: 

 An input layer that receives input values; 

 An output layer that reports the final 
answers; and 

 One or more hidden layers between the 
input and output layers as shown in fig. 2. 

The hidden layers extract useful features 

from the input data and use them to predict 

the values of the output nodes. Fig. 2 shows 
that each node in a hidden layer is connected 

to all the nodes in the two adjacent layers 

using “weighted” links. The weight of each link 

is used as a measure of the importance of this 

particular link to the optimisation problem, 

which the network is trying to solve. 
Before using the network, it should be 

adequately trained using a large set of solved 

examples (i.e. given input and output values) 

that covers all possible problem areas. The 

network uses these examples to adjust the 
weights of its inter-node links such that the 

error in the output is minimised.  In this 

process, the weights of all links feeding into 

the same node are combined, usually by 

summation, and the resulting value is 

modified using a non-linear transfer function 
before it is passed to the output path of the 

node [9-11]. The most common transfer 

functions are the hyperbolic tangent (tanh) 

and the sigmoid functions. 
 

Hidden layer

Output layerInput layer

Input 1 Output 1

Input 2 Outnput 2

Input 3 Output 3

 
Fig. 2. Neurel network with one hidden layer. 

A technique called back-propagation is 

used in this work to train the adopted feed-

forward networks [12]. In this technique, the 
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error found in the output layer is propagated 

back through the network to the input layer, 

and this process of calculating the error and 
propagating it back is repeated until the error 

is reduced to a specific low value. Once this 

has been achieved, training is considered to be 

complete and the inter-node link weights are 

registered and kept unchanged as shown in 

the flow chart in fig. 3. Then once the network 
has been tested successfully on further data, 

it is considered ready to respond to new input 

data and predict the corresponding output. In 

this stage of operation, the network is usually 

extremely easy and fast to use. 

 

 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 

 

Fig. 3. Flow chart for the neural network training and 
operation stages. 
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Fig. 4. Neural network to choose the best section profile 

and dimensions ( = 1 for channel sections and  = 2 for Z 

sections). 

 

3. Using neural networks in CF member 

design 

 
In total, six neural networks have been 

developed in this work to design CF steel 

members with plain and lipped channel and Z 

sections under axial compression. The 

constructions of the networks are depicted in 

figs. 4 and 5. Earlier work on NN applications 
in structural engineering has helped guide the 

work presented in this paper [13-20]. The 

work by Adeli and Karim [20], which lays the 

mathematical foundation for the automated 

optimum design of cold-formed steel members, 

is particularly important. 
 

4. Training of neural networks 

 

In order to train the networks over the 

practical range of possible design problems, a 
large database of training examples was 

formed. The database covered wide variations 

of the following important parameters to 

include the great majority of design problems 

the network would be expected to handle: 

 Depth of section, h = 200, 205, 210… 700 

mm, see fig. 6; 

 Wall thickness, t = 2, 3, 4 mm; 

 Ratio of lip depth to total depth,  = 0.0, 0.1, 
0.2, and 0.3; 

 Effective buckling length of section, LE = 

2000, 3000,…, 7000mm;  

 Section aspect ratio, b/h = 0.3, 0.4,…,0.7; 

and 
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(a) Cross-sectional profile (b) Plain channel (  = 1)

(c) Plain Z section (  = 2)

(d) Lipped channel (  = 1)

(e) Lipped Z section (  = 2)  
 

Fig. 5. Neural network to predict the cross-sectional profile followed by four networks to choose the best section 
dimensions. 

 

 

(a) Plain Z section (b) Lipped Z section
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Fig. 6. Cross-sectional dimensions. 

 

 Factor  to distinguish between channel and 

Z sections,  = 1 for channel sections and 2 for 
Z sections. 

In all cases, the material yield strength, Ys, 

was taken as 280 N/mm2. All members were 

subjected only to axial compression forces. 
They would therefore be liable to the effects of 

local buckling and to failure by either flexural 

or torsional flexural buckling. 

The design loads for the members included 

in the database were calculated in accordance 

with BS5950, Part 5 [21]. The calculations 
depicted in the flow chart in fig. 7, were coded 

in a Visual Basic program so that all members 

could be analysed simultaneously. The 

program was also designed to select from this 

large number of members the “best” members, 
which were considered most suitable for 

inclusion in the training set, see fig. 8. The 

definition of the “best” members was based on 

a single efficiency criterion – either the 

strength: weight ratio (
  ρt2hλ2bh

Pd


, 

where  is the material density), or the 
strength: cost ratio. In the latter case, 

consideration is given to both the material 

content of the member as well as the number 

of folds in the section. 
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Fig. 7. Flow chart for the steps of analysis of cold-formed 
members under compression. 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
Fig. 8. Visual basic program for CF member analysis to 

BS5950-part 5. 

 

In selecting the best designs, the members 

analysed were divided into small groups 
according to their load carrying capacities, 

and from every group, the member with the 

highest efficiency was selected for inclusion in 

the training set. The size of each group, from 

which the section with the highest efficiency 

was selected, was set such that the increment 
in load capacity between groups was 10kN, 

based on earlier work by Elkassas et al. 

[22,23]. The size of the training sets resulting 

from the selection process and the range of 

strength covered in each case are given in 
table 1. 

 

5. Stages of development 

 

The objective of the research was to de-

velop reliable design tools capable of choosing 
the optimum section profile and dimensions 

for a given load. In achieving this objective, 

two strategies were trialled: 

 In the first strategy, one large network was 
built and trained using combined data related 
to the four profiles considered, see fig. 4. The 

network was trained to choose the optimum 
profile and cross-sectional dimensions that 

would satisfy the given load. 

 In the second strategy, one network was 
built to choose the cross-sectional profile that 

was mostly likely able to produce the best 

performance. This was followed by four 
separate networks, each trained to choose the 
optimum cross-sectional dimensions if a 

particular profile was chosen by the first 

network, see figs. 5 and 9. An advantage of 

this strategy is that it gives the designer more 

control to use his own judgement by allowing 
him to over-rule the choice of the first network 

and select a different profile. 

In all cases, the networks were built and 

trained using the Neural Connection software 

known for its reliability and wide use [24]. 
 

6. Parametric study 

 

The neural networks constructed in this 

work were subjected to a lengthy parametric 

study in the search for the architecture that 
could yield the best possible accuracy at least 

cost. The study covered the following 

parameters: 

 The number of hidden layers: either one or 
two; 

 The number of nodes in each hidden layer: 
between 3 and 21; and 

 The transfer function: either a tanh function 
or a sigmoid function. 

Note that in some cases, particularly for 

plain sections, it was not possible to increase 

the number of nodes in the hidden layers to 

21. This was because in these cases, the 

number of weights in the system would have 

exceeded the number of outputs × the number 
of records in the training set, resulting in the 

overfitting problem in the neural network. This 

problem is described in detail in refs. [6-8]. 

Changing the above parameters offered the 

opportunity to operate the neural networks 
with different architectures. By  assessing  the 

accuracy in each case and examining the 

significant trends in  the  network’s  reliability,   
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Table 1 
Size and strength range in training datasets 

 

Profile  Number of 
members nalysed 

Number of members 
selected for inclusion 
set 

Strength  

From To 

Plain channel 9.090 93 12.7 225.4 

Lipped channel 27.270 393 17.2 690.3 
Plain Z 9.090 159 11.1 402.0 
Lipped Z 27.270 251 26.2 767.3 
All four profiles 72.720 467 11.1 767.3 

 
 

Network to select optimum cross-sectional profile

Input problem data 

Output profile and cross-sectional dimensions

Network to predict
dimensions for

lipped Z sections

Network to predict
dimensions for

lipped C sections 

Network to predict
dimensions for
plain C sections 

Network to predict
dimensions for
plain Z sections 

 
 

Fig. 9. Flow chart for the steps to choose a profile and predict the cross-sectional dimensions.

the neural network architecture most able to 

arrive at the optimum design could be identi-

fied. The results of this work are presented in 

the following sections of the paper. 

 
7. Assessment of design neural network-  

    first strategy 

 

In the first part of this work, a large 

network was built and trained using combined 

data related to plain and lipped channel and Z 
sections. The network was trained to choose 

the optimum cross-sectional profile and 

dimensions that satisfy a given compression 

load. The accuracy of the network over a wide 
range of strength (Pd) values and while using 

different numbers of hidden layers and hidden 
nodes and different transfer functions is 

depicted in fig. 10. The errors presented in the 

figure are the mean of the absolute errors of 

the neural network’ failure load predictions 

against the failure loads predicted by BS5950: 
Part 5 (21). Overall, it is evident that the error 

levels of the network designs were high, above 

10% in all cases. This certainly casts a 

shadow on the reliability of this strategy, 

which employs a large network trained with a 

large set of training data. The discussion, 

however, continues below to see how the 

accuracy was affected by changing the 

network architecture. 

The results in fig. 10 show a gradual 

improvement in accuracy (smaller errors) with 
more hidden nodes. Initially, the effect was 

significant with 35% average improvement in 

accuracy associated with using 6 hidden 

nodes instead of 3. Increasing the number of 

nodes further - from 6 to 9 then from 9 to 12 – 

resulted in less evident gains of 10.3% and 
4.4%, respectively. Beyond 12 nodes, the 

effect on the accuracy was insignificant. 

Fig. 10 also shows a trend of accuracy 

improvement with using two hidden layers 

rather than one (The resulting average 
improvement is 10.1%). This effect was 

particularly evident in networks with a small 

number of hidden nodes (3 or 6) and reduced 

rapidly with 9 or more nodes. With more 

hidden nodes, it became successively more 

difficult to justify using two hidden layers 
especially when considering the large increase 

in training time associated with this change in 

network architecture. 

The other parameter that was studied in 

fig. 10 was the transfer function. Overall, 
there was little difference between the  results  
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(b) Comparison between the target loads and the network predictions
for the case with 9 nodes in 1 hidden layer and with the tanh function
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Fig. 10. Assessment of neural network trained to choose optimum profile and dimensions of cold-formed sections. 
 

of the two functions that could support using 

one of them over the other. 

 

8. Assessment of design neural networks  
    second strategy 

 

The inability of the first design network to 

produce accurate results demonstrated a need 

for an alternative strategy. The second 

strategy attempted herein involved two steps: 

 First, a network trained with data related to 
all four profiles was used to choose the 

optimum profile. 

 Second, one of four small networks each 
trained with data related to only one profile, 
was used to choose the optimum dimensions. 

The first network was built first and the 

accuracy of its results in choosing the 
optimum profile was assessed in fig. 11. 

Although using two hidden layers resulted in 

some improvements, the accuracy with a 

single hidden layer and with 9 or more hidden 

nodes was still at an adequate level (with 
average errors around 5%). 

The four small design networks were then 

built and assessed in the same way in fig. 12. 

Notice that the number of hidden nodes could 

not be increased beyond 9 in the plain 

channel network in order to avoid the 
overfitting problem as explained above. Again 

with 9 or more hidden nodes, the average 

errors were below 5% in all cases, except for 

the plain channel network. In this case, the 

relatively small number of members in its 
training database (93) left wider gaps in its 

training and this in turn led to less accurate 

predictions especially in the areas within the 

gaps and outside the training region. The 

distribution of the results for the four 

networks for the cases with 9 nodes in a single 
hidden layer and with the tanh function are 

also presented in fig. 13 and shown to be 

within a small error range in most cases. 

The interesting point now is to examine 

the performance of the whole design tool made 
up of all five networks as described above and 

shown in fig. 9. In this case, the assessment is 

limited to the networks with 9 nodes in a 

single hidden layer and with the tanh 

function. This architecture was found to 

represent the best compromise between 
accuracy and training cost. With these 

networks, the average error in choosing the 

optimum profile was about 5%. In the cases 

where the optimum profile was selected, the 

average error in choosing the optimum 
dimensions was below 5% (except with plain 

channel members). Then in cases where the 

optimum profile was not selected, the cross-

section chosen in the second step was in most  
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Fig. 11. Assessment of neural network trained to choose optimum profile of cold-formed sections. 
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Fig. 12. Assessment of neural network trained to choose optimum dimensions for C and Z sections.  
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Fig. 13. Assessment of neural network trained to choose optimum dimensions for C and Z sections for the case with 9 
nodes in 1 hidden layer and with the tanh function. 

 
 

 

cases quite close to the optimum section, with 

the average error again remaining below 5%. 

Inspection of cases where the optimum profile 
was not selected reveals that these cases were 

close to the boundaries between the optimum 

performance areas of different profiles, which 

might explain why the sections chosen in the 

second step were quite close in efficiency to 
the optimum sections. 

 

9. Network operation 

 

The parametric study presented above was 

intended to improve understanding of how the 
network architecture influences the accuracy. 

There is strong evidence that with more 

hidden nodes and hidden layers, the accuracy 

improves. However, this is also associated 

with an increase in the cost of training the 
network. The decision on which architecture 

to choose should be left to the users who can 

decide based on their accuracy requirements 

and perhaps hardware capabilities. In any 

case, the cost of having a complex architecture 

mainly applies to the training step, as once 
the network is trained, its operation becomes 

extremely fast and straightforward regardless 

of its architecture. 

In this work, a choice of a single hidden 

layer with 9 nodes was thought to yield a good 

compromise between accuracy and cost. The 

second strategy, with a profile network and 

four small design networks, was also preferred 
for the reasons outlined above. 

The trained networks could be used to 

choose the optimum profile and dimensions 

for a particular design problem. They could 

also be used to give an overall view of when 
each section type is expected to be most 

efficient. This problem was used in this work 

to demonstrate the power of the tool developed 

above. The researchers concentrated on the 

design of cold-formed steel members with 

length between 2m and 7m and under a 
compression load between 0 and 800kN. The 

network was trained twice, with two different 

combinations of efficiency criteria: 

a. with only the strength: weight ratio as 

before (100% Q/W), and 
b. with a combination of the strength : weight 

ratio and the strength: cost ratio (40% Q/W + 

60% Q/C). 

The same procedure for preparing the 

training database and for training the network 

as explained in this paper was followed. The 
results of the designs in these two cases are 

plotted in fig. 14. While these results 

demonstrate the usefulness of the design tool, 

they could themselves be used as design 

guides for cold-formed steel designers. 
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Fig. 14. Optimum profiles with two efficiency criteria. 
 

10. Conclusions 

 
From the work conducted and presented 

in this paper, it is evident that a reliable tool 

for the optimum design of cold-formed steel 

members can be built using neural network 

technology. By learning from a wide range of 

solved examples, the neural network tool can 
consider all practical possibilities and 

effectively arrive at the optimum section for a 

new application. The tool is easy to use and 

can produce quick and reliable designs once it 

has been trained. Further, the following 
conclusions can be drawn from the results 

presented in this paper: 

1. In designing a section, it is best to use two 

networks in a row; one to choose the profile 

that is most likely able to produce the best 

performance and another to choose the 
dimensions. This strategy is proven better 

than using one network to conduct both 

design steps. 

2. Increasing the number of the network’s 

hidden layers to two is not justifiable because 
of the resulting slight change in network 

accuracy and the subsequent slow speed of 

network training. This is particularly true in 

networks with 9 or more nodes per hidden 

layer. 

3. At least 9 nodes should be used per hidden 
layer in order to maintain a high accuracy. 

With more hidden nodes, the network 

accuracy is expected to improve gradually. 

However, there is usually little advantage 

gained in using more than 15 nodes. 
4. Changing the transfer function results in 

inconsistent effects on the network accuracy, 

and therefore no firm conclusion could be 

reached on which function should be used. 
5. It is essential that the knowledge database 

used to train neural networks cover all 

practical areas of application. Where gaps 

exist in the training set, the network accuracy 

is expected to show notable deterioration. 
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