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This paper presents an evaluation of robust large-vocabulary Automatic Speech Recognition 
(ASR) in the presence of highly interfering car noise using a pre-processing approach based 
on wavelet-thresholding speech enhancement algorithm that does not require an explicit 
estimation of the noise level or of the a-priori knowledge of the Speech Noise Ratio (SNR). 
This algorithm adapts the thresholds in both space and time which allows the removal of 
various environmental noises. This Time-Space Adapted (TSA) wavelet de-noising algorithm 
is integrated in the front-end of an ASR system in order to evaluate its robustness in severe 
interfering car noise environments. The Hidden Markov Model Toolkit (HTK) was used 

throughout our experiments. Results show that the proposed approach, when included in 
the front-end of an HTK-based ASR system, outperforms that of the conventional recognition 
process in severe interfering car noise environments for a wide range of SNRs varying down 
to 0 dB using a noisy version of the TIMIT database. 

ظمة التعرف الأوتوماتيكي علي الكلام عن طريق تحسين إشارة الكلام وذلك قبل بدء عملية هذا البحث يعرض مشكلة كفاءة أن
التعرف علي الكلام. وذلك باستخدام خوارزميات لا تحتاج إلي معرفة مسبقة بخصائص الضوضاء الموجودة مع الكلام المراد 

من قيم العتبات في كل من الزمان والمكان مما يتيح  تغير  Waveletsالتعرف عليه. هذه الخوارزميات المبنية علي استخدام ال 
زم تم إضافته إلي مقدمة النظام المستخدم للتعرف الأوتوماتيكي علي الكلام كبر كم  من الضوضاء. هذا الخوارتنظيف الإشارة من أ

مقترح للتعرف علي الأصوات, المعروفة لبناء النظام ال  HTK. تم استخدام أدوات أجواء السيارات العالية الضوضاء المنطوق في
 .النتائج بينت أن النظام المقترح يفوق الأنظمة العادية وذلك في الأجواء العالية الضوضاء
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1. Introduction 

 
The performance of speech recognition 

systems dramatically decreases when they are 

trained (in noise-free) and used in different 

(noisy) environments. A recognizer can provide 

good performance even in very noisy back-

ground conditions if the exact same (or 
approximate) testing condition is used to 

provide the training material from which the 

reference patterns of the vocabulary are ob-

tained. One of the major challenges of the 

speech recognition problem is to make the 
system robust to background noise [1].  

A robust Anosmatic Speech Recogritim 

(ASR) system can be described as a system 

which can deal with a broad range of 

applications and adapt to unknown condi-

tions. In general, the performance of existing 
speech recognition systems, whose designs are 

predicated on relatively noise-free conditions, 

degrades rapidly in the presence of a high 

level of adverse conditions. However, a recog-

nizer can provide good performance even in 

very noisy background conditions if the exact 
(same or approximate) testing condition is 

used to provide the training material from 

which the reference patterns of the vocabulary 

are obtained, which is practically not always 

the case. In order to cope with the mis-

matched (adverse) conditions, different ap-
proaches could be used. Two main approaches 

to the problem of achieving robust speech 

recognition in noise can be defined: com-

pensation during the data preprocessing 

stage, or compensation during the recognition 
stage. The first approach is classified into two 

classes. One suppresses the noise component 

in the speech signal before it is compared with 

the existing reference patterns in the 

recognizer. Well-known procedures of this type 

include Spectral Subtraction or Wiener filter-
ing to remove an estimate of noise from noisy 

speech observation parameters. The other one 

is focused on the development of distance 

measures that are robust to noise contamina-
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tion. In this case, there will be no need to 

create noisy patterns or to process the signal 

before recognition. The second approach 
adapts the clean speech models to noise.  

In this paper, the first approach of 

robustness of ASR systems is adopted. The 

speech enhancement approach that is used to 

pre-process the speech is based on the TSA 

wavelet de-noising algorithm that was 
proposed in [2]. This wavelet thresholding 

algorithm, which does not require an explicit 

estimation of the noise level or of the a-priori 

knowledge of the SNR, adapts the thresholds 

in both space and time. Such an adaptation 
allows the removal of various environmental 

noises and avoids the degradation of speech 

quality during the thresholding process [2]. 

This paper is organized as follows. In 

sections 2 and 3 we describe the basis of the 

enhancement pre-processing approach that 
will be integrated in the front-end of our ASR 

system. Then, we proceed in section 4 with the 

description of the database, the platform used 

in our experiments and the evaluation of the 

recognizer that we are proposing in this paper 
when used in a noisy car environment, and 

the comparison of such a recognizer to the 

baseline recognizer in order to evaluate its 

performance. Finally, in section 5 we conclude 

and discuss our results. 

 
2. Denoising by soft thresholding  

 
2.1. Wavelet transform  

 

During the past decade, the Wavelet 
Transform (WT) has been applied to various 

research areas. Their applications include 

signal and image de-noising, compression, 

detection, and pattern recognition. The WT 

has recently emerged as a powerful tool for 

noise reduction [3]. The Wavelet Packet 
Transform (WPT) [4], which is an extension of 

the WT, decomposes the signal corrupted with 
white noise y(n) into 2j subbands correspond-

ing to the wavelet coefficient sets
j

mk , , where j 

is a given level. 
 

  N,...,,n,j),n(yWPT
j
m,k

21 ,                    (1) 

j
m,k  defines the mth coefficient of the kth 

subband, where .,..,,k,N,...,,m jj 221221   

 
2.2. Wavelet shrinkage 
 

The wavelet shrinkage is a simple de-

noising technique based on the thresholding 

of the wavelet coefficients [5]. Assuming that 
x(n) is the noise-free signal and y(n) is the 

signal corrupted with noise d(n), that is: 

 

,N,...,,n),n(d)n(x)n(y 21                   (2) 

 
where N is the signal length, we can 

summarize the de-noising algorithm described 

by Donoho and Johnston [5,6] as follows: 

 WPT of the noisy signal:  j),n(yWPT
j
k  . 

 Thresholding the resulting wavelet 
coefficients, to have their shrunken versions 

 jks
j

k T'   . 

 Inverse Wavelet Packet Transform to obtain 

the enhanced signal, 1WPT)n('x    j,'
j

k
 . 

In [6], the soft thresholding functions sT , 

that have been shown asymptotically near 

optimal for a wide class of signals corrupted 

by additive white Gaussian noise, were defined 
as follows: 

 












 


||

||

0

)|)(|sgn(
),(T

k

kkk
ks ,      (3) 

 

where k represents the wavelet coefficients 

and   is a universal threshold defined as 

follows: 

 

)Nlog(2  ,                               (4) 

 

where  = MAD/0.6745 is the noise level and 

MAD represents the Median Absolute 
Deviation (MAD) estimated on the first scale. 

The space-adapted version of this threshold 

was introduced in [7]. For a given WPT 
subband k, the corresponding threshold is 

defined by: 

 

,,...,,k,)Nlog( j
kk 2212               (5) 
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where k  =MADk/0.6745 is the noise level 

and N is the length of the signal. MADk 

represents the MAD estimated on the subband 
k. 

 
3. Time-Space Adaptation (TSA) using the  

   wavelet transform  

 

In the wavelet shrinkage algorithm pro-

posed by Donoho and Johnston [6,7], the 

estimated threshold is supposed to define the 
limit between the wavelet coefficients of the 

noise and those of the target signal. Unfortu-

nately, it is not always possible to separate the 

components corresponding to the target signal 

from those of noise by a simple thresholding. 
For noisy speech, energies of unvoiced 

segments are comparable to those of noise. 

Applying thresholding uniformly to all wavelet 

coefficients suppresses not only additional 

noise but also some speech components, such 

as unvoiced ones. Consequently, the percep-
tive quality of the filtered speech will be 

greatly affected. 

To prevent speech quality deterioration 

during the thresholding process, Bahoura and 

Rouat proposed a new TSA approach for 
speech enhancement in the wavelet transform 

domain [2]. Unlike conventional de-noising 

wavelet methods, the discriminative threshold 

in various scales is time-adapted as a function 

of speech components using the Teager En-

ergy Operator (TEO). 
 
3.1. Teager energy approximation 

 

The application of the TEO to the resulting 

wavelet coefficients
j

m,k , for a given WPT 

subband k, led to [2]: 

 
j

1m,k
j

1m,k
2j

m,k
j

m,k ][t   .                  (6) 

 

This operation enhances the ability to 

discriminate wavelet coefficients of the speech 

from those of the noise. Then, an initial mask 
for each subband k is constructed by 

smoothing the corresponding TEO coefficients 
as follows: 

 

)m(htM k
j

m,k
j

m,k  ,                              (7) 

where kh  is a second-order IIR lowpass filter. 

 
3.2. Time-space adapted thresholding 

 
The space-adapted threshold for a given 

WPT subband k, k , is time-adapted only for 

speech frames and kept unchanged for non-

speech ones. The speech presence is 

interpreted by significant contrast between 

peaks and valleys of j
kM , while its absence is 

observed with a weak contrast. For each 
subband k, the time-space adapted threshold 

is obtained by adapting the corresponding 

threshold in the time domain according to the 
following formula: 

 

),'M1(
j

m,kkm,k                                 (8) 

 

where k  is the space-adapted threshold in 

(5),   is an adjustment parameter, 
j

kS  is an 

offset that estimates the valley level to 

distinguish between speech and non-speech 

frames and is given by: 
 

)],M(H[max(abscissaS
j
m,k

j
k
                        (9) 

 
where H is the amplitude distribution of the 

corresponding mask 
j

m,kM , and 
j

m,k'M  is 

defined as follows [2]: 
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The soft thresholding is then applied to the 

WPT coefficients, 

 

),,(T'
j

m,kas
j

m,k                               (11) 

 

where a  is the threshold corresponding to 

the analyzed frame. That is, 
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Finally, the enhanced signal )n('x  is synthe-

sized with the inverse WPT of the processed 

wavelet coefficients as follows [2]: 

 

 j,'WPT)n('x
j

m,k
1  .                           (13) 

 

4. Experiments and results  

 
4.1. Database 

 
In the following experiments the TIMIT 

database was used. The TIMIT corpus of read 

speech has been designed for the development 

and evaluation of ASR systems. TIMIT resulted 

from the joint efforts of several sites under 

sponsorship from the Defense Advanced 
Research Projects Agency-Information Science 

and Technology Office (DARPA-ISTO). Text 

corpus design was a joint effort among MIT, 

SRI, and TI. The speech was recorded at TI, 

transcribed at MIT, and has been verified and 
prepared for CD-ROM production by the NIST. 

TIMIT contains a total of 6300 sentences, 10 

sentences spoken by each of 630 speakers 

from 8 major dialect regions of the United 

States (dr1,dr2,..,dr8). The text material in the 

TIMIT database consists of 2 dialect sentences 
designed at SRI, 450 phonetically-compact 

sentences designed at MIT, and 1890 

phonetically-diverse sentences selected at TI. 

The phonetically-compact sentences were 

designed to provide a good coverage of pairs of 
phones, with extra occurrences of phonetic 

contexts thought to be either difficult or of 

particular interest. Each speaker read 5 of 

these sentences and each text was spoken by 

7 different speakers. The phonetically-diverse 

sentences were selected to add diversity in 
sentence types and phonetic contexts. The 

selection criteria maximized the variety of 

allophonic contexts found in the texts. Each 

speaker read 3 of these sentences, with each 

sentence being read only by a single speaker. 
The speech material has been divided into 

portions for training and testing. The test data 

has a core portion containing 24 speakers, 2 

male and 1 female from each dialect region, 

and 192 sentences. The complete test set 

contains a total of 168 speakers and 1344 
utterances, accounting for about 27% of the 

total speech material. A Full description of the 

TIMIT database can be found in [8]. 

To simulate a noisy environment, car noise 
was added artificially to the clean speech. To 

study the effect of such noise on the 

recognition accuracy of the ASR system that 

we proposed, the reference templates for all 

tests were taken from clean speech.  

To evaluate the front-end of the HMM-
based recognizer that we propose in this 

paper, the dr1 subset of the TIMIT database, 

which consists of about 100 sentences uttered 

by 10 different speakers (males & females), 

was chosen from the available database to test 
the recognition system. 

 
4.2. Recognition platform 

 

In order to recognize the continuous 

speech data that has been enhanced as 
mentioned above, the HTK-based speech reco-

gnition system described in [9] has been used 

throughout all the experiments mentioned in 

this paper. The HTK toolkit can be used for 

isolated or continuous whole-word-based rec-
ognition systems. The HTK toolkit is an 

integrated suite of software tools for building 

and manipulating continuous density Hidden 

Markov Models (HMMs). A HMM can model a 

specific speech unit such as a subword, a 

word or a complete sentence. In small-vocabu-
lary recognition systems, HMMs are used to 

model words. However, in large-vocabulary 

recognition systems, HMMs usually represent 

subword units either context-independent 

(phones) or context-dependent (biphones or 
triphones), to limit the amount of training 

data and storage required for modeling words. 

HMMs constitute the most successful 

approach developed for modeling the statisti-

cal variations of speech. Each individual 

phone (or word) is represented by a HMM. 
HTK uses typically left-to-right HMMs, which 
consist of an arbitrary number of states N. 

The number of states, N, can be 5-20 for word 

models and 5 states for sub-word models in 

which  the entry and the exit states are non-

emitting states (i.e., null-states). The output 
distribution associated with each state is 

dependent on one or more statistically inde-

pendent streams. 
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This toolkit was designed to support 

continuous-density HMMs with any numbers 

of state and mixture components. It also 
implements a general parameter-tying mecha-

nism which allows the creation of complex 

model topologies to suit a variety of speech 

recognition applications. It consists of a 

number of utilities and a comprehensive set of 

library interface modules. For more details 
about the HTK toolkit see [9]. 

The block diagram of the whole recognizer 

used in the experiments is illustrated in fig. 1 

As shown in this figure, the TSA speech 

enhancing module is also applied to the 
speech training data before training the 

HMMs. By training the HMMs of the ASR 
system with these modified speech signals, the 

HMMs are adapted to the TSA algorithm and 

therefore some of the distortions due to 

algorithm can be suppressed. The TSA-
adapted version of the clean speech is 

obtained by simply applying the TSA algorithm 

to the original clean speech from one of the 

TIMIT testing sets (dr1) as shown in fig. 1. To 

construct the noisy speech, the car noise 

signal is added artificially to the original clean 
speech at different SNR levels. The enhanced 

speech is then obtained by enhancing the 

noisy speech using the TSA algorithm. Finally, 

the TSA-adapted clean speech and the 

enhanced speech are tested with the ASR 
system. 
 

4.3. Test sand results 
 

In all the experiments, 12 MFCCs were 

calculated on a 30-msec Hamming window 
advanced by 10 msec each frame. Then, an 

FFT is performed to calculate a magnitude 

spectrum for the frame, which is averaged into 

20 triangular bins arranged at equal Mel-

frequency intervals. Finally, a cosine 
transform is applied to such data to calculate 

the 12 MFCCs. Moreover, the normalized log 

energy is also found, which is added to the 12 

MFCCs to form a 13-dimensional (static) 

vector. This static vector is then expanded to 

produce a 39-dimensional vector (including 13 
static coefficients, 13 delta coefficients and 13 

acceleration coefficients) upon which the 

hidden Markov models (HMMs), that model 

the speech subword units, were trained. The 

baseline system used for the recognition task 

uses triphone Gaussian mixture HMM system. 

Applying the overall proposed recognizer to 
the noisy version of the TIMIT database under 

different SNRs, which vary between almost 0 

and 20 dB, and carrying on some experiments 

proved that the recognition accuracy has 

increased significantly. In order to evaluate 

the performance of our proposed ASR system, 
we compared the performance of the wavelet-

based HTK recognizer to the baseline HTK 

recognition system. Table 1 shows a 

comparison of the percent word correctness 

rate %C_wrd, recognition accuracy %A_wrd 
and the degradations in the recognition 

performance represented by the deletion 

%E_del, substitution %E_sub and insertion 

%E_ins percentage errors of the TSA-based 

HTK ASR system to the baseline HTK using 

single mixture triphones and the dr1 subset of 
the TIMIT database when contaminated by 

additive car noise for different values of SNR. 

Fig. 2 illustrates the word recognition correct-

ness rates obtained in these ASR tests and 

table 1 gives some other detailed results. in 
fig. 2, the dashed line at the top denotes the 

word recognition correctness rate 95.54% of 

the clean speech. This can be considered as a 

baseline compared with that of the noisy 

speech and the enhanced speech. The second 

dashed line on the top denotes the word 
recognition correctness rate 91.98% of the 

clean speech, when both the training data and 

testing data have been processed using the 

TSA algorithm. The lowest dashed line denotes 

the recognition correctness rates of the noisy 
speech. It decreases rapidly as the SNR level 

decreases and shows that ASR performance is 

sensitive to additive noise. The solid line gives 

the word recognition correctness rates of the 

enhanced speech. It is clear from table 1 that 

the inclusion of the TSA-based wavelet de-
noising algorithm in the front-end of our ASR 

system in noisy car environments reduces the 

word error rate for a wide range of SNR values 

down to 0 dB. However, it should be noted 

that there were   no   improvement   for   SNR 
values greater than 16 dB. This is due to the 

fact that the parameters that the recognizer 

uses to recognize the speech signal are altered 

due to the thresholding process of the wavelet 

coefficients much greater for high values of  

Fig. 2 Fig. 2 
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Fig. 1. ASR system for speech enhanced using TSA. 
 

SNR than for low SNR values. Indeed this 

limits the use of the TSA-based speech 

enhancement algorithm to low SNR values.

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 
Fig. 2. ASR result s of speech corrupted by car noise and 

then enhanced using the TSA algorithm. 

 

5. Conclusions 

 

In this paper, the problem of noise 
robustness of ASR systems using a wavelet-

thresholding pre-processing speech enhance-

ment approach was addressed. Preliminary 

results showed that the inclusion  of  the  TSA  
 

 

 
Table 1 

Comparison of the percent word recognition performance recognition (%C_wrd), accuracy (%A_wrd),  deletion 
(%E_del), substitution (%E_sub), and insertion  (%E_ins) percentage errors of the TSA-based HTK ASR system to 
the baseline HTK using a noisy version of the TIMIT database when contaminated by additive car noise for  

different values of SNR 
 

 
 

 
 
 
Noisy 

 0dB 4dB 8dB 12dB 16dB 20dB 

%C_wrd 42.08 60.73 73.02 80.21 88.02 90.83 

%A_wrd 7.71 31.46 51.25 65.42 78.23 85.21 

%E_del 3.54 3.02 1.98 1.25 1.15 0.83 

%E_sub 54.37 36.25 25.0 18.54 10.83 8.33 

%E_ins 34.37 29.27 21.77 14.79 9.79 5.63 

 
 

 
TSA-Based 

%C_wrd 54.14 71.03 76.85 84.39 83.48 87.61 

%A_wrd 42.36 61.21 68.98 78.67 77.94 83.93 

%E_del 3.96 3.65 1.56 1.88 1.67 0.94 

%E_sub 13.54 11.98 12.08 13.65 10.62 7.08 

%E_ins 5.94 5.31 5.00 5.21 3.65 2.08 
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wavelet Thresholding algorithm leads to an 

improvement in the performance of the ASR 

process in highly interfering car noise 
environments for a wide range of SNRs down 

to 0 dB using a noisy version of the TIMIT 

database. The efforts to improve the perform-

ance of the algorithm and to investigate its 

effects on ASR systems are currently continu-

ing. Although the algorithm is in its 
preliminary stage, the fact that it requires 

almost no a-priori knowledge of the noise will 

certainly lead to an optimistic future. 
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