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In this study, a similarity analysis for the problem of time dependent vertical temperature
distribution in a stagnant lake when there is a complete reflection of residual radiation from
the bottom has been presented. The similarity method of the analysis is the transformation
group theoretic approach. Under the one-parameter transformation group, the governing
partial differential equation with the boundary, and initial conditions is reduced to an
ordinary differential equation with the appropriate corresponding conditions. The obtained
differential equation is solved analytically, whenever possible, and in some other cases
numerically using the shooting method. The temperature distribution is plotted against the
lake depth.
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1. Introduction

The lakes provide a convenient source of
cooling water supply to electric generating
power plants. This importance of the lakes
attracted the attention of a lot of research
workers to study the variation of temperature
across the lake depth. The cold water available
at depth in lakes is used in the stream
condensers and then returned back to the lake
[1]. The thermal pollution problem, which is
caused by the discharge of waste heat from
electric generating plants into bodies of water
and the subsequent degradation of the quality
of these water, attracted the attention of the
researchers to study the thermal structure of
lakes [2]. That is why this type of problems
has received considerable attention
throughout the history of variation of
temperature across the lake depth and the
literature of the topic is very rich. For a

comprehensive survey, see Dake and
Harleman [1] and Ou et al. [3].
The principal natural heat source

considered is the sun, whose ultraviolet and
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infrared radiations are largely absorbed within
a few centimeters from the water surface of
the lake. On the other hand, the visible
radiation penetrates more deeply, carrying
significant energy to depths of the order of
tens of meters thereby causing vertical
variations in density [4].

In 1969, Dake and Harleman [1]
considered some special cases of simple time
dependent functions for insolation and heat
losses on the surface.They assumed these
special functions after they have remarked
that the nature of the heat source term in the
governing differential equation appears to
make it impossible for a suitable solution to
evolve, which also satisfies the surface
condition.

In 1975,Snider and Viskanta [5] applied a
finite difference method to obtain a numerical
solution. They did their work after suggesting
that an analytical solution in closed form is
not possible.

In 1980, Girgis and Smith [4] found exact
analytical solution for the vertical temperature
distribution in a stagnant lake assuming an
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exponentially decaying heat source
distribution caused by absorbed radiation.
They found their exact analytical solution
using the method of variation of parameters.

In 1997, Abd-el-Malek [6] applied group
methods to find the nonlinear temperature
variation across the depth in a deep lake
assuming that the incoming solar radiation is
completely absorbed in a negligibly small layer
at the top of the lake well as considering the
density and the molecular diffusivity are
functions of the position and time.

In 1999, Boutros et al. [7] applied the
group method analysis to find the vertical
temperature distribution in a thermally
stagnant lake assuming an exponentially
decaying heat source distribution caused by
the absorbed radiation. They obtained exact
analytical solutions for some forms of the
density of the water and the thermal
conductivity.

In 1952, Morgan [8] presented a theory
which has led to improvements over earlier
similarity methods. The group methods, as a
class of methods which lead to a reduction of
the number of independent variables, were
first introduced in 1948 by Birkhoff [9] where
he made use of one-parameter transformation
groups. In 1952, Michal [10] extended
Morgan’s theory. In 1990 and 1991, Abd-el-
Malek et al. [11-13] applied the group method
analysis intensively, to study some problems
in free-convective laminar boundary layer flow
on a non-isothermal bodies. Detailed calcula-
tions can be found in Ames [14] and
Ovsiannikov [15].

In this work, we extend the work of
Boutros et al. [7] to include the case when
there is a complete reflection of residual

radiation from the bottom. Under the
transformation group, the partial differential
equation with the boundary, and initial
conditions is reduced to an ordinary

differential equation with the appropriate
corresponding conditions. The equation is
then solved analytically for some forms of the
molecular diffusivity and density of the water.

2. Mathematical formulation
Consider the one-dimensional heat

transfer equation in the vertical direction,
neglecting the convective motion of the fluid

and assuming that the absolute value of the
specific heat of water is sensibly constant
within the range of temperature considered,
take it unity. The vertical transfer of heat in a
deep lake, when there is a complete reflection
of residual radiation from the bottom, is
modeled by; see Girgis and Smith [4]:

o(T) % - %{km%} irmt) ra(nt)
0<z<h , t>0 , (1)

where “T” is the temperature; ri(zt) is the
absorbed radiation resulting from reflection;
r2(z,t) is the rate at which solar radiation is
absorbed by the water; “t” is the time; “z” is
the distance measured downwards from the
lake surface; “p” is the density; “K” is the
thermal conductivity and “h” is the depth of
the lake.

2.1. Boundary and initial conditions

During early spring, most of the lakes
exhibit a nearly homothermal temperature
distribution with a low degree of temperature
(which is the temperature of maximum density
for water ) extending all the way to the bottom,
see Sundaram and Rehm [2]. In all of the
calculations presented here; the initial
condition will be taken as that corresponding
to the end of spring homothermy, i.e.

T (z,0) = To, (2.1)

where To is the temperature of the lake at
maximum spring homothermy.

When there is a complete reflection of
residual radiation from the bottom which is
considered to be an insulator, the boundary
conditions are as follows, see Girgis and Smith
[4]:

%(o,t)w(t) ; t>0, (2.2)

Z—Z(h,t)=0; t>0, (2.3)
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where xt) is an arbitrary function to be
determined later on.

Write
T(z,t) = w(z,t) + To, (3)

then the differential eq. (1) takes the from:

p(w)% - é[k(w) %} @)+ o (2 1)
0<z<h ,t>0, (4)

and the initial and boundary conditions take
the from:

initial condition:
w(z,0) = 0, (5.1)

boundary conditions:

%(o,t):ﬂt); t>0, (5.2)
%(h,t)=0; t>0. (5.3)

In our analysis we restricted ourselves to
study the two cases discussed by Boutros et
al. [7] for the form of the density of the water
and the thermal conductivity, namely:
case (1):p=aqlz)w" , k=pg(z),
case 2):p=aqzzw", k=p,
where «, f and m are positive constants, and
q(z) and ¢g(z) are arbitrary functions to be
determined later on.

3. Case (1)

In this case the differential eq. (4) takes
the form

2
a w_l,_ﬂ@'@_aq(zjwm@
2 Lz o ot

Pa(z)

=-ri(zt)-ro(zt); 0<z<h, t>O0. (6)

3.1. Solution of the problem

3.1.1. The group systematic formulation

The procedure is initiated with group G, a
class of transformations of one-parameter “a”
of the form:

G:0=C%a)0+P%a), (7)

where Q stands for z, ¢, r1, 2, w, k, p, y and the
C’s and P’s are real-valued functions and at
least differentiable in the real argument “a”.

3.1.2. The invariance analysis

To transform the differential equation,
transformations of the derivatives are obtained
from G via chain-rule operations :

si=lcSici)s | sij=(cS/cich)s; (8)

where S stands for w, k, p and i,j stand for z,t.
Eq. (6) is said to be invariantly transformed
whenever

BGwzz +Pgzwz —aq (W) " wy +7;+7o =
H{a)[ fgwy, + Pgzw, —aqu™ wy + 11 +12],  (9)
for some function Hfa) which may be a
constant.

Substitution from eq. (7) into eq. (9) for the

independent variables, the functions and their
partial derivatives yields:

ﬂ(Cng /(cz)z)ngz + ﬁ(cgcw /(CZ)Q)gzwz
—aw™cc® )™ st lqw, + CTry +C21y

+R(a)= H{a) [ﬂngz + fg W, —aquwy + 1y + r2] s

(10)
where,

Rle) = (BP9C*/(C?)? hw,,
~(@P(C*w+ PY)mC¥/Ct
~a(Ciglcr/ct hw, gl(z")(c%u)m‘k (P )

+ P+ P2,
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The invariance of eq. (9) implies that R(a) = 0.
This is satisfied by putting:

Pt =p2 =p9 =-p¥ -pY -, (11)
and

C=C"2 =[cicw)™ /ct = [cICY/C?)? ] = H(q).
(12)
Moreover, the boundary conditions (5.2)

and (5.3) and initial condition (5.1) are also
invariant in form; this implies that,

P=PF=p=0, C#=1 and Cw=C. (13)

Combining eqs (12) and invoking the result
(13), we get:

Ch=Cz = cq(cw)m+l/ct _ cgcw,

which yields c4c¥)™/ct =c9. (14)

Finally, we get the one-parameter group G
which transforms invariantly the differential

eq. (6) and the boundary and initial conditions
(5). The group G is of the form:

z=z, t=C%, g=CYq,
. = (CUCy ) Chn,
Fp = (CUCW )™ /Cl)ry
w=C%w, g=(C4c¥)"/Cl)g,y=C".

(15)

3.1.3. The complete set of absolute invariants
If n = 75 (z,t) is the absolute invariant of the
independent variables, then,

giz, t; w, 11, 12, Kk, p, y) = Fi [n(z,Y)] ;
j=1:2;3:4;5:6: (16)

are the six absolute invariants corresponding
to w, r1, r2, k, p and y. The application of a
basic theorem in group theory, see [8], states
that: a function g(z, t; w, ri, r2, k, p, y) is an
absolute invariant of a one-parameter group if

it satisfies the following first-order linear
differential equation,
8
12,
> (@0; + pi) =2 =0, (17)

= Q;

where Q; stands for z, t, w, ri, r2, k, p and y,
respectively, and

o) o)
X7 40), B; P @0)iz12,..8,(18)

a; =
oa oa

where a° denotes the value of “a” which yields
the identity element of the group.

At first, we seek the absolute invariant of
the independent variables. Owing to eq. (17),
n(z,t) is an absolute invariant if it satisfies the
first order partial differential equation,

(a1z + B1) nz + (a2t + f2) e = 0. (19)
From group (15), we get:
ar=pi1=p2=0, (20)

and hence from eqgs. (19) and (20), we get:

=0 (21)

which gives:

n(z t) = flz). (22)

Without loss of generality, we can use the
identity function

nz t)=z. (23)

The second step is to obtain the absolute
invariants of the dependent variables w, ri, 1o,
k, p and y. By a similar analysis, using eqs.
(15, 17, 18), we have

w(z,t)=1(t)E(n), ri(zt)=A,(t)0;(n),
r2(z,t) =Ajs(t)05(n)
a(z) =B(t)¢(n) , 9(2)
r(t)=V({t)E(n) .

(24)
=Y({t)y(n) ,
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Since q(z) and ¢(n) depend on "z”, while B(t)
does not, then B(t)=constant, say B(t)=1. Then:

a(z) = ¢(n)- (295)
Similarly,

9(z) = y(n), (26.1)
v(t) = V() . (26.2)

At t=0:w(z0) =1I(0)F(n), F(n) =0, leads to
7(0)=0.

3.2. The reduction to ordinary differential
equation

As the general analysis proceeds, the
established forms of the dependent and
independent absolute invariants are used to
obtain the ordinary differential equation.
Generally, the absolute invariant 7(z,t) has the
form given in eq. (23).

Substituting from eq. (24) into eq. (6) and
dividing by 7, we get:

d2F dl// E B a¢]"m—1Fm+1 dl = M

+ B =7
ﬂ‘”d,ﬁ P an an dt r

_As(tha(n)

= (27)

For eq. (27) to be reduced to an expression in
a single independent invariant 7, it is
necessary that the coefficients should be
constants or functions of 7 alone. Thus:

r™lr=c;,A/t)/T=Cs,As(t)/=Csy.
(28)

If we take C; = 1, we can obtain

1
I(t)=(mt)m, m=0 (29)

which satisfies the condition 7{0) = 0.
From eqgs. (28) and (29) we have:

1 1
Aj(t)=Cs(mt)m, Ag(t) = Co(mt)™;m=0 . (30)

It follows, then, that eq. (27) may be rewritten
as:

d°F dy dF m+
+ﬁlf-a¢F 1=‘C391(77)_C292(77)' (31)

by dn? dn dn

Following Girgis and Smith [13], we assume
an exponentially decaying solar heat source
distribution caused by the absorbed radiation,
i.e.,

62(n) = e, (32.1)

where ¢ is the absorption coefficient.
Also; following Girgis and Smith [4; p.75], we
can use

Oi(n) = e (32.2)

Following Boutros et al. [7], we use

¢(n)=%, w(n)=e "7 ; F(n)#0 , 0<y<h

(33)

where u is a constant, then eq. (31) becomes:

2
d°F A g P o6 &emum}
dn dn p Vit B

(34)

The requirement that the boundary conditions
will be reduced to an expression on “7” leads
us to:

1
V(t)=C4(mt)™; Casis a constant.

Thus, we have the following boundary
conditions:

F' (0) = Cs4, (35)
F'(h)=0. (36)
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3.3. Analytical solution for different forms of
the parameter

Differential eq. (34) is intractable, and
apparently can only be solved by approximate
or numerical methods. We restricted ourselves
to find the exact solution for some possible
forms of the parameter m.

For m = 1, differential eq. (34) becomes:

2
arF . dF_JQF__{CQeM—#)n +C3€(é'+/1)’7:| ,
B

an? "dn ]
(37)

where,
o’ =2, (38)

B
and the boundary conditions become:
F' (0) = C4, (39)
F'(h)=0. (40)

It has the exact solution:

Fm)=a;e™" +aze™" +a3g(§_”m+a4e@+um;

2 52
il i (41)
¢
where,
B :
m;, = 2 ,mi for (+) sign and mz
for (-) sign, (42)

T Blu-CP —uBlu-C)-a’

=- C3
Bu+9° -uBu+g-a

(43)

Since the first term in eq. (41) possesses very
large values for large “h”, then the constant a:
must vanish. Hence, the temperature

distribution across the lake

corresponding to case (1) is:

depth

Citaz((—W-asl+1 Mm%

my
T(zt)=T, +t
+ Co e
a+uBu-9-Bu-9
N Cs el |,
a+uBu+9-Bu+g
(44)
Following Girgis and Smith [4], we use
Az (t)=Ag(t)e M. (45)
Hence, from eq. (30), we get:
C3=Che 2. (46)
Introduction of eq. (46) into eq. (44) yields:
T(z,t)=T, +t
Cy +a58 1) = AslC +1) m,s
my
+ Co e
a+uBu-9- Bu-9
. Co . e 21z | (47)
a+uBu+9-Bu+g
where as and a4 are:
C
az =- 2 2 > (48)
Bp-9° -mBn-9-«a
Coe 2N
ay = 2° (49)

CBu+C)2 - uB(u+C)-a

The obtained results are plotted in fig. 1 for
different values of the parameter “o” and at
time “¢” (in days).

Fig. 2 shows the effect of the total lake
depth “h” on the computed values of
temperature for constant “” and at time “t” (in
days).
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To obtain the distribution of temperature
when there is no reflection of residual
radiation from the bottom, one can use
ri(z,t)=0. The solution corresponding to this
case can be concluded from eq. (44) by taking
Cs=0. Hence, we get:

c4 + a3(§ — li) emZZ

my
T(z,t)=T, + ¢

N G, o @we |
a+uBu-9-Bu-9
(50)

where aszis given in eq. (48).

Fig. 3 shows the effect of existence and
absence of reflection on the computed values
of temperatures corresponding to case (1) for
constant a.

Finally, we can obtain the solution of
Boutros et al. [7] from eq. (44) by taking Cs3=0
(i.e. ri(z,t) = 0) and C+=0 (i.e. T,(0,t)=0). Hence,
we have:

as (g B ﬂ) emgz

my
T(z,t)=T, +t s
. Co o1z
a+uBu-9- Bu-9°
(51)
where as is given in eq. (48).
4. Case (2)
Differential eq. (4) takes the form:

52—w—0'2 (z) w™ @=—i[r (z,t)+1o(zt)];
&2 q a ﬁ 1(%s 2% )
0<z<h , t>0. (52)

Following the same analysis as in case (1), we
get the following group G:

G z=z, t=C4(C¥)"t, g=CYq,
r1=C%y, 715=C%y, 7=C%%, w=C"%w,

(53)

and

n=z w(zt)=I(t)Fn), n(zt)/B=A,t)6,n) ,

2(z,t)/B=As(t)02(n), a(z) = B(t) o(n) , v(t)= V(t)Ef) .
(54)

Again, it is clear that f(t)=1, and from which
we get:

qa(z) = ¢(n). (595)
Temperature distribution at time =40 days
4 6 8 10 12 14 16 18 20 22
0 °c

20 A

40 A

60 -

80

100 A

120

140

160
meter

Fig. 1. Distribution of temperature T against the lake
depth z in meters, corresponding to case: p=a q(z)w,
k =fg(z) for different values of parameter «a.

Temperature distribution at time = 40 days

4 6 8 10 12 14 16 18 20 22

meter

Fig. 2. Effect of the total lake depth “h” on the computed
values of temperatures for constant « corresponding to
the case: p=a q(z)w, k =f g(z).
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Temperature distribution at time = 120 days

4 6 8 10 12 14 16 18 20 2 24 26 28 30

°c

T I(zh)=0
— Ii(z,t)=0

120 4

160 -
meter

Fig. 3. Effect of existence and absence of reflection on the
computed values of temperatures corresponding to the
case: p=a q (z) )Jw and k =p g(z), for a constant a.

Similarly;
nY=Vvi(t).
Following Boutros et al. [7], we take:

#(n)=—1— Fin)=0,0<n<h. (56)

F(n)’

Following the same analysis as in section

(3.2), we reach to the following ordinary
differential equation:

2
d_f;‘ ~0° FM = |cpe ¥+ ¢3¢, (57)
dn

and the corresponding boundary conditions
are:

F' (0)=Cs (58)

F'(h=0. (59)

For the case m=1, eq. (57) takes the form:

2
d—g -0° F =-lcoe™ M4 c5e%|, (60)
dn

which has the solution:

Fm)=a;e°m +aze " +

+S8 _ln {#o0. (61)

For finite temperature, a:;=0. Hence, the
temperature distribution across the lake
depth, corresponding to case (2), with m=1 is:

ez —c2) _C_4 o~ 07
ofc?-7%) ©

Cc2 -z c3 Lz
2_§26 * 2_§Qe

T(zt)=Tp +t (

+

o o

(62)

Using eq. (46), but with c2 and csinstead of
Cz and Cs; respectively. Hence, we get:

2§C2 5 (62§h_1)_c_4]eoz
T(z.t)=Ty +t] 0" ~¢7) °
. 202 . (e T 4 o U2M2))
0” -¢
(63)
Again, one can obtain the solution of

Boutros et al. [7] from the solution (62) by
taking c3=C4=0. Hence, we have:

t _ _
T(z.t)=:ro+%{e z_S, "Z] (64)
o -¢ o
Fig. 4 shows a comparison of our

computed temperatures with those obtained
by Boutros et al. [7] for a constant « and at
time= 150 days.
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Fig. 5 shows the effect of small changes in
the surface boundary condition on the
computed values of temperatures.

If we take m=2 and

#(n)=1, (65)

we use the following values of the parameters,
see Boutros et al. [7]:

c2=0.15, 0?2 =0.05, ¢=0.048,

h=400 meter, To=4°C,

we get the following ordinary differential
equation:

d’F 3 ~0.04 ~0.048800-
& 0.05F3%=-0.15|e0-0%81 , ~0-048800-n)
d772 ’
(66)

and the corresponding boundary conditions
are

F' (0) = C4, (67)
F'(h)=0. (68)
Applying the shooting method, see
Hornbeck [16], the obtained results are plotted
in fig. 6 for different values of time “¢’ in days.

Temperature distribution at time = 150 days

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

0 °c
20 4

40

%07 —Boutros et al. [7]

——our results

80 A

100 4

120

140

160 -
meter

Fig. 4. Comparison of the temperature distribution
obtained by our calculations with those obtained by
Boutros et al. [7] corresponding to the case: p=a q(z)w,
k=g for constant «.

Temperature distribution at time = 40 days

4 6 8 10 12 14 16 18 20 22

20 -

40

60

80 -

100 §

C4=0.05

C4=0.00
04 | C4=-0.05

140

160
meter

Fig. 5. Sensitivity of computed values of temperatures to
small changes in the surface boundary condition
corresponding to the case: p=a q(z)w, k= for constant «.

Temperature distribution

20

40

60

80

120 days

— 5 days

100

120

140

160
meter

Fig. 6. Distribution of temperature T against the lake
depth z in meters, corresponding to case: p=a q(z)u?,
k = pand ¢(n)=1 for different values of time ¢

5. Conclusions

The most widely applicable method for
determining analytical solution of partial dif-
ferential equation that utilizes the underlying
group structure has been applied to the
problem of nonlinear temperature variation, in
a stagnant lake or tank, with the effect of
external heat source when there is a complete
reflection of residual radiation from the
bottom. We obtained exact analytical solu-

Alexandria Engineering Journal, Vol. 43, No. 5, September 2004 715



M.I. Hossam , S.M. A. EL-Mansi / Temperature variation

tions, believed to be new, for some possible
forms for density of water and thermal
conductivity. For other forms of the

parameters, where the obtained ordinary
differential equation can mnot be solved
analytically, numerical solution via the

shooting method can be obtained. Also, we
obtained the solutions of Boutros et al. [7] as a
special case from our final solutions. This
emphasizes that we have discussed a
generalized problem to the simpler one of
Boutros et al. [7].

To study the variation of temperatures
with the depth “z” for various values of time
“’, we consider different cases of the
parameter « The obtained results are
presented in fig.1.

The solutions presented here are well
posed. This is verified by evaluating the
solution for small changes in the surface
boundary condition. We achieved this by
changing the value of “C4”. The corresponding
results are plotted in fig. 5 from which it is
clear that the solution also changes by a small
amount near the surface only.

To study the effect of the total lake depth
“h” on the computed values of temperature 7,
we consider different cases of the lake depth
“h” and the obtained results are plotted in fig.
2 from which it is clear that the temperature
distribution T increases for all the values of “z”
as the lake depth “h” decreases. The reason
behind this is that the last term in the
solution (47) possesses greater values for the
same value of “z2” as “h” decreases. Hence, it
can be emphasized that the smaller the depth,
the greater temperature we have.

The problem considered here produces
greater temperatures than that of Boutros et
al. [7] near the top and near the bottom of the
lake, see fig. 4. The difference between the
temperatures of the two problems increases as
“h” and/or “C4’ decrease and consequently, a
small zone of coincidence of temperatures is
obtained.

To study the effect of the reflected
radiation on the computed values of
temperatures, we considered ri(z,t) = O and the
obtained values are presented in fig. 3. We
conclude that a small effect on temperature is
obtained for large values of lake depth “h”, but

this effect increases as the lake depth

decreases.
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