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The effects of Prandtl number on the laminar natural convection in annular fluid layers 
between concentric horizontal isothermal cylinders are numerically investigated . The study 

covered a wide range of the parameters in the ranges  0.01  Pr  103 , 2  RR  10 and 102 

 Ra  106. A computer program is developed to solve the mass, momentum and thermal 
energy equations with their boundary conditions. The different flow regimes are explained 

from the generated streamlines and isotherms for different values of the parameters. Local 
and average Nusselt numbers are given and the distributions of angular velocity and 
temperature are used to explain the flow regimes. A heat transfer correlation is given which 

represents all numerical data to within  3.4 .  
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1. Introduction  

 

The laminar free convection in fluid 

annular cavities between two horizontal and 
isothermal concentric cylinders is an 

important problem in heat transfer. It is used 

to simulate a wide range of engineering 

problems as well as provide a better insight 

into more complex systems of heat transfer. 
Numerous applications are found in energy 

storage, pressurized-gas underground electric 

transmission cables, liquid metal fast breeder 

reactors, passive solar systems, cooling of 

electronic equipment and reactor waste 

transport and storage.  
 Several authors have studied the problem. 

Kuehn and Goldstein [1-3] have reviewed the 

literature thoroughly. They examined 

numerically and experimentally the local and 

average heat transfer coefficients for both 
concentric and eccentric cylinders. Results 

were obtained using water and air at 
atmospheric pressure with a radius ratio (RR= 

ro /ri) of 1.25. A Mach-Zehnder interferometer 

was used to determine temperature 

distributions and local heat transfer coeffi-

cients experimentally. Kuehn and Goldstein 

[3] presented correlating equations for heat 

transfer using a conduction boundary layer 
model. The natural convection in concentric 

and eccentric horizontal annuli was also 

investigated numerically by Cho et al. [4] for 

Ra < 105 and 1.25  RR  5. Grigull and Hauf 

[5], using a Mach –Zehnder interferometer, 

presented experimental results of Nusselt 

number as a function of Grashof and the ratio 
of the gap width to the diameter of the inner 

cylinder. They also presented, using smoke 

dispersion, two-dimensional photographs of 

the streamlines of the flow fields. Lis [6] 

pressurized the annulus fluid to achieve 
turbulent heat transfer. Farouk and Güceri 

[7] studied both laminar and turbulent flows 

in annuli of RR =2.6 up to Ra = 2107. The 

effects of the variation of the fluid properties 

in the horizontal annulus with temperature 

were investigated  numerically by Hessami et  

al [8] for  air  and glycerin   in  the  range  (0-
50o C). For air, the effects were negligible but 

for glycerin, the results indicated a significant 
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difference in temperature failed between the 

constant and variable fluid properties 

assumptions. An experimental study was 
performed by Hessami et al. [9] for  air, 

glycerin  and  mercury  in the  ranges of  

0.023  Pr  104  and  0.03  Gr  3106. The 

experimental results confirmed the numerical 

results given in [8]. A parametric study of 

Prandtl number and diameter ratio effects on 

natural convection heat transfer in horizontal 
cylindrical annuli was investigated by Kuehn 

and Goldstein [2]. They covered the ranges 

(0.001  Pr  103) and (1  RR  ) to deter-

mine their  influence  on  the flow and local 

and  mean  heat transfer in  the  annulus. As 

Pr  0, the temperature distribution ap-

proached the pure conduction limit. For Pr  

1, the temperature profiles are almost 
independent of Pr with thermal boundary 

layers adjacent to both cylinders. The 
distribution of the local Nu on the inner 

cylinder at large Pr resembles that on a single 
horizontal cylinder in boundary layer flow. 

Boyd [10] presented a correlation theory for 

natural convection data for horizontal annuli 

of arbitrary cross-section with application to 

concentric circular cylinders. It predicts local 

and mean heat transfer for 1.5  RR  3 and 

0.7  Pr  3100. Mahony et al. [11] numeri-

cally investigated the variable property effects 
of gases in horizontal annuli in the range 1.5 

 RR  5. Velocity and temperature profiles as 

well as heat transfer rates have been reported 
for temperature difference ratios (Th –Tc) / Tc  

from 0.2 to 0.3. They found that the 

Boussinesq approximation is valid for 

temperature difference ratios up to 0.2. The 

stability of the natural convection flow in the 
horizontal annulus was numerically studied 

by Cho and Kim [12]. For 1.2  RR  1.95, the 

basic two –dimensional flow was found to be 

unstable with respect to three-dimensional 

disturbances and instability was mainly due 

to buoyancy effects. Rao et al. [13] investi-

gated both numerically and experimentally 
the various flow patterns of natural 

convection in horizontal cylindrical annuli for 
Pr = 0.7 and 5000. They found different types 

of flow (stable or oscillatory) according to the 
values of Ra  and RR. Yoo et al. [14] studied 

the flow patterns in a wide range of gap 
widths for Pr = 0.02. For low Gr, a steady 

unicellular flow was obtained. Above a 
transition value of Gr depending on the value 

of RR, a steady bicellular flow occurred. Yoo 

[15] extended the work for Pr  0.3 where 

steady or oscillatory flows consisting of 
multiple like-rotating cells were found for   Pr 

 0.2. For  Pr = 0.3, a counter-rotating cell on 

the top of  the annulus was observed. For  Pr 

 0 , the multiple cells were distributed 
uniformly in the lower and upper parts of the 

annulus. Bifurcation phenomena and 

existence of dual solutions in the annulus 

were numerically investigated by Yoo [16] for 

fluids of 0.3  Pr  1. When the Rayleigh 

number exceeded a critical value, two kinds of 

flow patterns were realized: the first is the 

crescent-shaped eddy patterns in which the 
fluid in the top of the annulus ascends, and 

the second is the flow in which the fluid 

descends by forming two counter-rotating 

eddies in a half annulus.  

 
2. Mathematical analysis 

 

The steady-state dimensionless equations 

for the two-dimensional laminar free convec-

tion in cylindrical coordinates (r,) including 

the Boussinesq approximation are given by:  
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 The following dimensionless variables are 

used: 
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The above equations are subjected to the 

following boundary conditions: 

 

at R =1 and 0     ,Vr =0, V=0,   =1 ,     (6-a) 

 

at R =RR and 0   , Vr=0, V=0,   =0,    (6-b) 
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 The solution is obtained for only half of 

the annular gap because of the symmetry 

condition about the vertical axis. The solution 

domain and boundary conditions are shown 

in fig. 1.  

 
2.1. Nusselt number calculation 
 

 The local Nusselt number, Nu  on the 

inner hot cylinder is defined as: 
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and the average Nusselt number, Nu over the 

inner hot cylinder perimeter is given as: 
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2.2. Grid system 
 

 The grid system of the half annular space 
consists of 50 nodes in the radial direction 

with non-uniform spacing. The nodes are 

denser near the inner and outer cylinder 

surfaces and coarser away from them. In the 

circumferential direction, 90 nodes were 

taken with uniform spacing.  
 
2.3. Numerical solution 

 
The finite difference technique developed 

by Patankar [17] is used to solve the 

governing eqs. (1-4) with their boundary 
conditions given in eqs. (6-a, 6-b and 6-c). 

The discretized equations used central 

differencing in space and were solved  by  

Gauss-seidel  elimination method. A line by 

line procedure is used in the iterations. The 

continuity and momentum equations are first 
solved simultaneously and then the energy 

equation. The solution was stopped when the 

change in the average Nusselt number over 

100 iterations is less than 0.01 % of its value. 

1500 iterations were quite enough to reach 
the required accuracy in most of the runs.  

 The governing equations were casted in 

the following general form of the transport 

equation used by Patankar [17] for steady 

state  in (r-) cylinder coordinates.  
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Where: 

*  is the transported quantity into consid-

eration, 

  is the diffusion coefficient of   *, 
SC  is the constant part of the source term of 

* , and          
SV  is the variable part of the source term of 

*. 

 The results for the diffusion coefficients 

and source terms for the four governing 

equations are summarized in table 1. 
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Table 1  
Dimensionless diffusion coefficients and source terms for the governing equations   
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 1 1 0 0 0 
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Fig.1. Solution domain and boundary conditions. 

 

3. Results 
 
3.1. Streamlines 

 
The effects of  Pr on the flow in the 

horizontal annulus can be explained from the 

streamlines and isotherms at different values 
of  Pr  and fixed values of RR and Ra. Fig. 2  

shows the streamlines for  RR=2 and  Ra=102. 

At this low value of Ra, steady unicellular flow 

in the form of a crescent-shape eddy is 
observed which indicates the pure conduction 

regime. The fluid rises near the inner hot 

cylinder and sinks near the outer cold 
cylinder. As Pr was increased from 0.01 to 10, 

the stream function was reduced indicating 

continuous reduction in the flow velocity. 
However, the conduction regime prevails. For 
Ra=106 and RR=2, several counter-rotating 

eddies as shown in fig. 3 were formed with 
high rotating velocities at low Pr (Pr = 0.01). 

As Pr was increased to 0.1, only two counter-

rotating cells were observed with lower 

rotating velocities. For Pr  1, the flow velocity 

continued to reduce and a steady flow of the 

crescent-shape was observed with its center 
of rotation moving upward in the cavity as Pr 

was increased.  

To show the effect of radius ratio on the 
flow, a wide cavity with RR=10 was investi-

gated. For Ra=102, fig. 4 shows the stream-
lines as counter-rotation cells for Pr =0.01. 

For Pr  0.1, the steady unicellular flow 

existed with its center of rotation moving 
upward as Pr was increased. When Ra was 

increased to Ra=106, the flow for Pr =0.01 was 

similar to that on a single horizontal cylinder 

as shown in fig. 5. For Pr  0.1, the boundary 

layer flow existed with a thermal boundary 

layer adjacent to each cylinder.  

 
3.2. Isotherms  

 
  For RR=2 and Ra=102, fig. 6 shows the 

isotherms as concentric cylinders for 0.01  

Pr  10 which indicates pure conduction in 
the annulus. For RR=2 and Ra=106 , the 

boundary layer flow existed , as shown in fig. 

7, with isotherms moving closer to the bottom 

of the inner cylinder and the top of the outer 
one as Pr was increased . For the wide  cavity 
of RR=10 and  Ra=102 , a transition from the 

conduction regime at low Pr to the boundary 

layer regime is noticed as shown in fig. 8. For 
Ra=106, fig. 9 shows isotherms confined to 

the inner cylinder for Pr=0.01 as in the case of 

a single cylinder. For Pr  0.1, the thermal 

boundary layers are shown close to each 

cylinder with stratified flow in the core of the 

cavity.  
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Fig. 2. Streamlines for RR=2, Ra = 102. 
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Fig. 3. Streamlines for RR=2, Ra = 106. 
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Fig. 4. Streamlines for RR=10, Ra = 102. 
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Fig. 5. Streamlines for RR=10, Ra = 106. 
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3.3. Average Nusselt number 

 
 The effects of Pr on the Nusselt number 

are shown in figs. 10, 11. For RR=2, as in fig. 

10, the conduction regime persists for  Ra  

104  with a constant value of Nu close to the 
conduction limit (Nucon=2 / ln RR) . For Ra > 

104, the average Nusselt number increased 
with  Ra  with higher increase for higher  Pr. 

For Pr  1, no significant effect on  Nu  was 
shown. For  RR=10, fig. 11  shows continuous 

increase in  Nu  with both  Ra  and  Pr. For  Pr 

 102 , the average Nusselt number did not 
change with  Pr. 

 
3.4. Local Nusselt number 
 

The local Nusselt number distributions at 

the inner hot cylinder are shown in figs. 12, 
13. For  RR=2 and  Ra=106, the local Nusselt 

number for  Pr=0.01 is high at the cylinder 

bottom ( =0) and gradually decreases till  

120o  where separation of  the  flow  occurs. 

It starts to increase again up to  150o and 
then decreases up to   the top of the cylinder. 

This behaviour continues for low Pr up to Pr  

0.1. For Pr  0.7, a monotonic decrease in 

local Nusselt occurs from the bottom to the 

top of the inner cylinder.  
For  RR=10 and  Ra=106, fig. 13 shows a 

gradual decrease in local Nusselt number for 

all values of  Pr. However, for low Pr (Pr  0.1) 

separation of flow occurs near the top of the 

cylinder at  170o.  
 
3.5. Angular velocity and temperature  
       distributions 

 

 The distribution of the angular velocity, V 

along a radius at  90o is shown in fig. 14-a  

for  RR=2, Ra=106 and 0.01  Pr  103 . The 

velocity increases from zero at inner cylinder 

wall to a maximum in the upwards direction 
and then gradually drops to zero at the 

middle of the cavity. In the outer half of the 

annulus, the angular velocity increases in the 

downwards direction and then it is reduced to 

stagnation at the outer cylinder wall. The 

maximum value of  V increases with  Pr and 

shifts closer to the cylinder walls as  Pr  was 

increased.  

 The distribution of the temperature along 

a radius at  =90o for RR=2, Ra=106 and 0.01 

 Pr  103 is given in fig. 14-b. A continuous 

decrease along the radius is shown with 

higher changes near the cylinder walls. A 

slight reverse in the temperature slope is 
shown in the core of the cavity which is a 

characteristic of the boundary layer type of 

flow shown in fig. 7. This temperature 

inversion phenomenon has also been shown 

previously both numerically [4,8,11] and 

experimentally[1]. No further change was 

noticed for Pr  10.  

 
4. Correlations 

 

The average Nusselt number over the inner 

hot cylinder for natural convection in 

horizontal fluid annular cavities was corre-
lated using the method suggested by Churchill 

and Chu [18]. Using a Least-squares method, 

the correlations are given as:  
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The above correlation is valid for the 

ranges 1.25  RR  10, 102  Ra  106 and 

0.01  Pr  103. The average deviation in the 

numerical results from the correlation is 3.4 % 

and the standard deviation is about 0.014.  
 

5. Conclusions 

 

 The effects of the Prandtl numbers on 

laminar flow and heat transfer in fluid layers 
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Fig. 6. Isotherms for RR=2, Ra = 102. 

 



S.M. El-Sherbiny, A.R. Moussa / Natural covection 

                                                 Alexandria Engineering Journal, Vol. 43, No.  5, September  2004                   571 

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

Pr=0.01

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

Pr=0.1  

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

Pr=1

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

Pr=10  
Fig. 7. Isotherms for RR=2, Ra = 106. 
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Fig. 8. Isotherms for RR=10, Ra = 102. 
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Fig. 9. Isotherms for RR=10, Ra = 106. 
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Fig. 10. Average Nusselt number for RR=2. 

 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 

 
Fig. 11. Average Nusselt number for RR=10. 

 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 

Fig. 12. Local Nusselt number distribution for RR=2 and 

Ra=106. 

 
 

 

 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
Fig. 13. Local Nusselt number distribution for RR=10 and 

Ra=106. 

 

 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 

Fig. 14. Velocities and Temperature distributions along a 

radius for RR=2,  = 90o, Ra = 106. 
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contained between isothermal concentric 

horizontal cylinders are investigated. The 

study covered the ranges  0.01  Pr  103, 1.25 

 RR  10 and 102  Ra  106. Streamlines and 

isotherms are presented to explain the flow 

regime at different values of the studied 
parameters. For  RR=2, the conduction regime 

prevails for all  Pr up to Ra =104, then the 

boundary layer regime started with higher 
heat transfer at higher Pr. For  RR =10, the 

boundary layer regime was found for  Ra  102 
and all  Pr. Local and average Nu numbers are 

given for all Pr and for RR =2 and 10 . The 

general effect of  Pr was to increase Nu as  Pr 

was increased for the boundary layer regime. 

Separation of the flow occurred near the inner 
cylinder top for low Pr. Angular velocity and 

temperature distributions are given to explain 
the flow regimes. A general correlation for  Nu  

is given which represents all numerical results 

to within 3.4 %.  

 

Nomenclature 
 

a is the radius of inner hot cylinder , (a = ir ) , 

m. 
cp is the specific heat , J/kgK, 

g is the gravitational acceleration , m/s2, 

Gr is the Grashof number, g(Th –Tc) (2a)3/v2,  
h average heat transfer coefficient, W/m2K,  

h is the local heat transfer coefficient, 

W/m2K, 
k is the thermal conductivity,  W/mK, 

Nu is the average Nusselt number, h(2a)/k, 

Nu is the local Nusselt number, h (2a)/k, 
pd is the dynamic pressure, N/m2, 

Pd  is the dimensionless dynamic pressure, 

 2a

p
P d

d


 ,  

Pr is the Prandtl number, cp/k, 
r is the radial coordinate, m  

ri is the radius of inner cylinder, m, 

ro is the radius of outer cylinder, m, 

R is the dimensionless radial coordinate, 

r/a, 
RR is the radius ratio, ro/ri, 

Ra is the Rayleigh number based on inner 

diameter, g(Th-Tc) (2a)3 /v, 
T is the local fluid temperature, K, 

vr is the radial velocity , sm , 

Vr is the dimensionless radial velocity, 

v is the angular velocity, m/s, and 

V is the dimensionless angular velocity. 

 

Greek symbols 

 is the thermal diffusivity,  K/cp, m2/s, 

     is the coefficient of volumetric thermal 
expansion, K-1,  

    is the local density, kg/m3, 

    is the dynamic viscosity, kg/ms, 

    is the kinematic viscosity , /, m2/s, 

    is the angular coordinate, rad, and 

    is the dimensionless temperature , (T-Tc) / 
(Th – Tc). 

 

Subscripts 
 
c  is the cold, 

cond     is the conduction, 

conv     is the convection, 

h  is the hot, 

i  is the inner, and 

o  is the outer. 
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