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This paper presents the modeling of Mixed Pole Machine (MPM) operating with eccentric ro-
tors. The operation of a MPM machine with eccentric rotor positions creates asymmetrical air 
gap flux distribution that results in unbalanced magnetic pull. The winding function theory is 
used to calculate machine winding inductances as a function of rotor radial displacement. 
The effect of dynamic air-gap eccentricity on the inductances of salient rotor type has been 

discussed. Coupled magnetic circuits approach has been used to simulate the machine be-
havior under healthy and eccentric rotor conditions. Also, the paper presents the contribution 

of these inductances to the radial force production and how to use this machine in magnetic 
bearing applications.  

تقدم هذه المقالة طريقة رياضية لتمثيل الماكينات ذات الأقطاب المختلطة ذات الأعضاء الدائرة اللامركزية والتى تتسبب فى عدم 
تماثل الفيض داخل الثغرة الهوائية. وتستخدم نظرية دالة اللفات لحساب محاثة ملفات الماكينة كدالة فى الإزاحة القطرية للعضو 

الأقطاب البارزة. وتستخدم طريقة  ىثير ديناميكية اللاتمركز للثغرة الهوائية على محاثة الملفات فى حالة العضو ذالدائر. وتم دراسة تأ
الدوائر المغناطيسية المتزاوجة لمحاكاة اداء الماكينة  وذلك فى الحالة المركزية واللامركزية. كذلك تعرض المقالة لاسهام محاثة 

 وكيفية استغلال هذه الماكينة فى تطبيقات كراسى التحميل المغناطيسية.  ةالملفات فى توليد القوى القطري
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1. Introduction 

 

The idea of Mixed-Pole Machine (MPM) is 

to have two electrically connected and me-
chanically coupled machines in the same 

frame. The resulting new machine has com-

bined characteristics from both machines.  

The idea was firstly introduced from the so 

called “tandem connection” where two three-

phase wound rotor induction machines are 
mechanically and electrically coupled. Me-

chanical coupling is done either directly or 

through gears, while connecting the rotor cir-

cuits provides the electric coupling. The 

method was launched in 1893 by Steimmetz 
and Gorge [1]. The idea of obtaining a single 

unit was implemented by Hunt in 1907 [1]. 

The Hunt motor represented a considerable 

advance over earlier machines; it comprised 

two windings on one stator and one rotor.  The 

two stator windings share the same magnetic 
circuit.  

Recently, the mixed pole machine is used 

for high-speed application as in machine tools, 

turbo-molecular pumps and high-speed fly-

wheels. This is because this machine facili-
tates the application of magnetic bearings. A 

reluctance motor with magnetically combined 

radial force production is to be simulated in 

this paper. The motor is originally four-pole 

machines producing torque with revolving 
magnetic field. An additional two-pole winding 

is added in the stator slots forming a mixed 

pole machine. The four-pole magnetic field is 

intentionally unbalanced by the currents of 

the two-pole winding to produce radial force 

acting on the rotor [2].  
The mixed pole machine presented in this 

paper comprises two stator windings with dif-
ferent number of pole pairs, namely P1 and P2, 

and reluctance rotor with Pr = P1+P2 saliencies, 

as shown in fig. 1. The two fields produced by 

the two-stator windings share the same mag-
netic circuit. 

In this paper, the machine inductances are 

calculated as a function of rotor radial dis-

placement and rotor angular position using 

winding function method [3].  Moreover, a 

mathematical dynamic model for mixed pole 
machine with eccentric rotor is proposed. The 

paper also investigates the contribution of 

these inductances to the radial force produc-

tion. An expression for radial force is formu-

lated as a function of winding currents as well 
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as the machine inductances. The machine 

radial forces are analyzed when the machine 

operates in the generating as well as motoring 
mode. 

 

2. Determination of machine inductances 

 

Fig. 1 shows the machine model of a 

bearing less motor with both four-pole and 
two-pole windings. These windings are wound 

in two phases to simplify the analysis. Three-

phase windings model can be obtained by 

applying park’s transformation. The 
perpendicular axes α and β are fixed in the 

stator. Φ is the angle along the inner surface 

of the stator. The two phases of the two-pole 
winding are NA and NB, while the two phases 

of the four-pole winding are Na and Nb. 

In cylindrical rotor, if the air-gap length go 

and the eccentric displacement are small 

enough compared to the rotor radius. The 
resultant air gap gc can be written as [3]: 

 

    sincosgg oc  ,                    (1) 

 
where go is the air-gap length when the rotor 

center is aligned to the stator center. In 
normal operating conditions, the rotor center 

can be positioned to the stator center. This 

leads to the further assumption that the rotor 
displacements are small enough to go. Then, 

the inverse gap function can be written as:     
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Fig. 1.  4/2 Poles MPM with reluctance rotor. 

 

For salient pole rotor, the inverse air gap 
function is a function of pole arc ε. It can be 

formulated as: 

 

     








 





 sin
g

cos
g

1
g

1
,g

ooo
m

1                 

     
     





 1n2

P
1n2

P r
m

r

.        (3) 

 

Where,  
n    is the  1,2, Pr  (number of saliencies), 

θm   is the rotor angular position, and 

    is the rotor pole arc to the rotor pole pitch  

ratio. 

Since, the inverse air gap function of a 

salient rotor is a function of the rotor angular 
position θm, the machine inductances are also 
function of the rotor angular position θm. The 

inductances are also functions of the rotor 

radial displacement. The orthogonal coordi-
nates α and β are defined as shown in fig.1. 

Then, these inductance functions are repre-
sented by α, β and θm.  

Various means can be used to calculate 
the machine inductances. This includes field 

theory, finite elements and various circuit ap-

proaches. A particular convenient approach 

called the winding functions. In this method, 

the inductances of the machine are calculated 

by the integral expression representing the 
placement of winding turns along the air gap 

periphery [4]. The method is particularly con-

venient for the analysis of unusual machines 

since it does not assume coil placement sym-

metry. Like most inductance calculations, the 
stator and rotor iron is assumed to have 

infinite permeability, saturation is neglected, 

stator surface is considered smooth and the 

slot effect is corrected by carter coefficient. 

For sake of simplicity, the analysis for the 

considered machine is based on sinusoidal 
distribution of the stator main windings. The 

end effects, saturation and stator harmonics 

are also assumed negligible.   

According to winding function theory, the 

mutual inductance between any two arbitrary 
windings i and j in any electric machine can 

be computed by the equation: 
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Where, 
μo    space permeability, 

R     rotor radius, 

l      rotor length, 

θm    rotor angular position, 

    angular position along the stator 

inner  surface, 
g-1(θm , Φ)  the inverse gap function,  

Ni (θm , Φ) the winding function of winding i, 

and  
Nj (θm , Φ)  the winding function of winding j. 

The winding function of the winding 

represents the MMF distribution along the air 

gap for a unit current in the winding. If this 

winding is located on the stator, the winding 

function is only a function of the stator 
periphery angle   while if the winding is 

located on the rotor the winding must be 

expressed as a function of both   and the 

mechanical position of the rotor θm. 

The windings distributions are shown in 

fig. 2. The windings distributions can be 

expressed, assuming sinusoidal distribution, 

as: 

  )2cos(NN 1a   ,             (5) 

 

  )2sin(NN 1b    ,            (6) 

 

  )cos(NN 2A    ,            (7) 

 

  )sin(NN 2B    ,            (8) 

 

Where, 
N1 and N2 are the equivalent number of 

turns per phase per pole. 

The inverse air gap function for concentric 
and eccentric salient rotor is shown in fig. 3. 

Substituting from eqs. (3) and (5-8) in eq. 

(4), the machine inductances can be 

calculated. 

The machine self inductances for the 4-
pole winding L1 and the 2-pole winding L2 are 

expressed in matrix form as, 
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Fig. 2. Winding function for stator windings. 

 

 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 

Fig. 3. Inverse air gap function. 
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The mutual inductances between the 4-

pole and the 2-pole windings are expressed in 

matrix form as: 
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Where, 
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Fig. 4 shows the inductance variations of 

the machine windings with respect to the rotor 

angular position where the rotor is positioned 
to the stator center. The self-inductances L1 

and L2 are constant and independent of rotor 

angular position, which agree with eqs. (8) and 
(9) when α and β are set to zero. The mutual 

inductance M12 varies sinusoidally with rotor 

angular position.  

As the rotor is displaced from the stator 
center, this results in sinusoidal components 
(Lm1, Lm2) that are superimposed on the dc 

component of the constant self-inductances 
components (Lo1, Lo2). Moreover, a dc offset Mo 

is superimposed on the sinusoidal variation of 
M12. Fig. 5 shows the effect of eccentricity on 

the machine inductances.  
From eqs. (9-11), the sinusoidal compo-

nents (Lm1, Lm2) of the self inductances and the 

dc component (Mo) of the mutual inductance 

are expected to vary linearly with the rotor 
radial displacements α and β. However, these 

relations are not absolutely linear. On the 
other hand, the dc components (Lo1, Lo2) of the 

self-inductances and the sinusoidal compo-
nent (M1) of the mutual inductance are  shown 
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Fig. 4. Inductance variation with respect to the rotor 

angular position. 
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Fig. 5. Inductance variation with respect to the rotor 

angular position with rotor radial displacement α = 0.2go. 

 

to be constant and independent of rotor radial 

displacement. However, these components 

vary slightly as the rotor is displaced from the 

stator center. The actual variation of both 
sinusoidal and dc components of the self and 

mutual inductances with respect to the radial 
displacement in the α axis direction are 

illustrated in fig. 6. The horizontal axis αn is 

the normalized rotor radial position with 
respect to the main air gap length go. All in-

ductances become minimum when the rotor is 
positioned to the stator center (αn = 0). 

 

3. Radial force 

 

 The MPM radial force is 

calculated by the specific field energy method. 
This method is suitable for machines with 

different air gap configuration. The air gap can 

be constant or variable as in cylindrical or 

salient, concentric or eccentric rotors. The 

method is based on the well-known formula of 
force attraction F between infinitely permeable 

ferromagnetic surfaces with flux density Bg  

crossing  the  air gap surface area A between 

them. The air gap flux density Bg is given by, 

 

      1
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 For infinitesimal small air-gap area dA the 

radial force is given by, 
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Fig. 6. Variation of inductance components with respect to 

the rotor radial displacement. 
 

 

Where, 

 

dlRdA  . 

 

 Hence, the horizontal and vertical radial 
force components dFx and dFy acting on dA 

can be formulated as: 
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 The radial force components Fx and Fy are 

then determined by the integration over the 

total air gap surface   20  . 
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Assuming that the fields produced by the 
two stator windings are sinusoidally distrib-

uted and given by, 

 

   111m1 2tcosFt,F   ,            (18) 

 

   222m2 tcosFt,F   ,                 (19) 

 

Where;  
ω1 and ω2 are the excitation frequencies of the 

two windings, 

1and 2 are the phase shift of the two MMFs 
at time zero, and 
Fm1 and Fm2 are the MMF amplitudes. 

 The stator total MMF is given by: 
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 Hence, the total MMF can be written in 
complex form as: 
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 Eqs. (22) and (23) state that the stator 
total MMF is a space phasor with variable 
magnitude Fm and variable phase θ. Also, the 

envelope of the total MMF is described by the 

peaks of the total MMF patterns, which is 

given by eq. (22). 
If the excitation frequencies ω1 and ω2 are 

equal, then the envelope of the MMF wave will 
be stationary. The stationary axis direction is 
determined by the phase shift (γ1 – γ2) as 

shown in fig. 7. This angle can be controlled 

by controlling the current in one or both of the 

stator windings. However, the value of 
maximum MMF (Fm) can be controlled by the 

amplitude of the two-stator windings current. 

This develops the idea of magnetic bearings 

using the MPM. Fig. 8 illustrates the field 
distribution for γ1- γ2 = 0, π/4, π/2 and 3π/4. 
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4. Machine dynamic equations 

 

In this section, the machine dynamic 
model is produced [7]. Also, an expression of 

the machine radial forces as a function in 

winding currents is introduced. 

First, the following definitions are intro-

duced:  

 

        




































B

A
2

b

a
1

B

A
2

b

a
1

i

i
i  ,  

i

i
i   ,     ,  









  

 

Hence, 

   

   

   

   


















































































































b

a`
1

b

a

mm

mm
o

B

A

mm

mm`
2m

B

A

2o

2o

B

A

i

i
M

i

i

3cos3sin

3sin3cos
M

i

i

3cos3sin

3sin3cos
L

i

i

L0

0L

  

   
   

   
   

.
i

i
M

i

i

3cos3sin

3sin3cos
M

i

i

3cos3sin

3sin3cos
L

i

i

L0

0L

B

A`
1

B

A

mm

mm
o

b

a

mm

mm`
1m

b

a

1o

1o

b

a



























































 




























































       

 Now apply the definition of space phasor 

flux linkage to flux linkage as follows:  

 

ba1 j  ,                   (26) 

 

BA2 j  .               (27) 

 

Hence,  
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Fig. 7.  Stator MMF distribution at different phase shift angles. 
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Fig. 8. Radial force variation with windings currents 
magnitude. 
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By multiplying both sides of eq. (29) by 

mj
e

2 , yields: 
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               (30) 

Similarly, 
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By multiplying both sides of eq. (31) by 

mj
e

 , yields: 
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Now define, 
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Notice that f1 , fi1 and fi2  are complex 

quantities in rotor coordinates aligned with the 
rotor d- axis. Therefore,  
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Where x and y are the corresponding rotor 

radial displacement in rotor reference frame. 

Therefore, 
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Hence, 
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Similarly, 
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Next, the voltage equations of the two 
windings are: 
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d
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Now using the voltage equations on 

conjunction with definition of space phasor 
yields, 
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which takes the following final form:   
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Similarly, 
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Eqs. (43) and (44) are the space phasor 

equations in a system of coordinates rotating 
at speed ωm (rotor speed).  

The dq- model of the machine may now be 

developed by resolving the stator complex 
quantities along the d-axis and the q-axis; that 

is, 
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2q2df2 jiii  .                   (47) 

 
Similar expressions for voltages, flux 

linkage can be defined. 

Consequently, the dq components of the 

machine flux linkage for both windings are 

expressed in matrix form as:   
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With the decomposition defined by eqs. 

(46-47), the voltage eqs. (44,45) may be 

expressed as two components:  
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The magnetic energy Wm stored in the 

windings can be written as: 
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The components Fx and Fy in the x- and y- 

direction in the produced radial forces, 

assuming linear magnetic circuit, can be 

written as: 
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Substituting from eq. (53) in eq. (54), the x-

y components of the radial force can be formu-

lated as: 

 

 

 

 ,iiiiM

iiL
2

1

iiL
2

1
F

2q1q2d1d
'

o

2
2q

2
2d

`
2m

2
1q

2
1d

`
1mx







              (56) 

 

 2d1q2q1d
'

o2q2d
'

2m1q1d
'

1my iiiiMiiLiiLF 

               (57) 

 

From the transformation defined in eq (33), 
the dq components of the winding current is 
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the rotational frame can be obtained from the 

following transformation matrix: 
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Also, the radial force components Fα and Fβ 

in the stationary coordinates α and β are given 

by: 
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Examination of eqs. (56) and (57) reveals 
that both components of radial force Fx and Fy 

consist of three components, 4-pole winding 

current component, 2-pole winding component 
and component resulting from the interaction 

between two windings.  

To discuss the effect of windings currents 

on the radial forces, the following case is to be 

simulated. The motor speed is set to zero. 
Phase a current ia is kept constant while the 

phase A current iA is varied. Fig .8 illustrates 

the variation of radial force with respect to 
current id2 at two different values of id1 (0.5A 

and 1A). It should be noted that, when id2 is 

zero the radial force produced is due to the 

component generated by the 4-pole winding 

current, as mentioned previously. It is also 
noted that, the relation actually is not exactly 

linear.  

 

5. Simulation results 

 
In this section, the machine is simulated in 

different modes of operation to investigate the 

effect of operating conditions on radial forces. 

 
5.1. Singly fed operation 

 
In this mode, the 4-pole stator is connected 

to 60V, 50Hz AC supply and the 2-pole stator 

is short-circuited. In this case, the machine 

behaves as a conventional slip ring induction 
motor having a synchronous speed of ω1/Pr. It 

is clear that this connection has a 

synchronous speed of 1000 r.p.m as shown in 

fig. 9. During run up, the stator 2 winding 

frequency decreases. This reduction should 
agree with the frequency relation ωm = (ω1 + 
ω2)/(P1+P2) [7]. At no load, the magnitudes of 

stator 2 current and frequency are zero. The 

motor is loaded with 0.2 N.m load torque at 

0.6 sec. The motor speed decreases to 940 

r.p.m. Also, the 2-pole stator frequency equals 

to the slip frequency, as in the conventional 
induction motor. The dq components in rotor 

reference frame of the currents for both 

windings are shown in fig. 10. 

The components of the radial force and the 

total radial force are shown in figs. 11 and 12. 

From fig. 12, it is noted that the radial force 
profile at steady state is a centered circle 

around origin. 

 
5.2. Doubly fed operation 
 

When the MPM is doubly fed, it operates at 
a synchronous speed given by ωm=(ω1+ 
ω2)/(P1+P2) [7]. Asynchronous operation may 

exist during doubly fed starting or loss of 

synchronism. In asynchronous mode each 

winding has two different frequencies and 

therefore four frequencies exist. As an example 
of doubly fed asynchronous operation is the 

starting up response. In this case 4-pole stator 

is connected to 60V, 50Hz AC supply and two 

lines of the 2-pole stator winding are 

connected to 40V DC supply (20V/phase). Fig. 
13 shows that the machine starts up and self 

synchronizes at 1000 r.p.m. The response is 

similar to the starting up response of 

synchronous machine. Also, fig. 14 illustrates 
the current dq components  in  rotor  reference  
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Fig. 9. Machine speed and torque for singly fed operation. 
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Fig. 10. dq components of machine currents. 
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Fig. 11. Radial force with time. 
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Fig. 12. α-β components of radial force. 

 

frame for both windings currents. The machine 

is loaded by 0.5 N.m at 1 sec. The machine 
response to this load sudden application is 

shown in fig. 13. The speed curve shows that 

the machine returns to synchronism after a 

small transient period. The components of the 

radial force and the total radial force are 
shown in figs 15 and 16. From fig. 16, it is 

noted that the radial force profile at steady 

state is a circle centered on the origin.  

 
5.3. Generation mode 
 

For a constant prime mover speed, a dc 
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Fig. 13. Machine speed and torque for doubly fed 

operation. 
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Fig. 14. dq components of machine currents. 
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Fig. 15. Radial force with time. 
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Fig. 16. α-β components of radial force. 
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winding (2-pole winding) generates power in 

the 4-pole winding. The voltage magnitude of 

the 4-pole winding is controlled by the dc 
excitation voltage applied to the 2-pole 

winding. However, the frequency of the 4-pole 

winding voltage is determined by the prime 

mover speed as in conventional synchronous 

generator. As an example, it is assumed that 

the machine is driven at constant speed of 
1000 r.p.m. The 2-pole winding is excited by 

40V dc between two lines (20V /phase). Under 

this condition the voltage build up response 

across the 4-pole winding is shown in fig. 17. 

The 4-pole winding is connected to resistive 
load of 200 Ω at 0.3 sec. Loading causes the 

generated terminal voltage V1 to decrease. Fig. 

18 illustrates the dq components in rotor 

reference frame for the windings currents. The 

components of the radial forces and the total 

radial force are shown in figs. 19 and 20. From 

fig. 19, it is noted that the radial force profile 
at steady state is circle centered on the origin. 
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Fig. 17. Voltage across the 4-pole winding. 
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Fig. 18. dq components of machine currents. 
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Fig. 19. Radial force with time. 
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Fig. 20. α-β components of radial force. 

 

6. Conclusions 
 

This paper presents the modeling of Mixed 

Pole Machine (MPM) under eccentric rotors. 

Expressions for the machine inductance 

variations with respect to rotor radial 

displacement and rotor angular position were 
formulated using winding function method. A 

dynamic model for the machine as a function 

of rotor eccentricity was produced. An 

expression of radial force as a function of 

winding currents and inductances was 
produced. Simulation study was carried out to 

investigate the machine radial forces when the 

machine operates in both motoring and 

generating modes.  

 

Appendix 
 
MPM machine data: 

Rated Power 250 W 

4-pole winding voltage 60 V 

4-pole winding current 2.1 A 

4-pole winding frequency 50 Hz 
Control 2-pole winding voltage 0 to 120 V 
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2-pole winding current 1.2 A 

2-pole winding frequency -50 to 50 Hz 

Number of turns per phase per pole: 
2-pole winding 140 turn 

4-pole winding 70 turn 
Machine dimensions:  

Rotor radius 3 cm 

Rotor length 8.5 cm 

Air gap length 0.375 mm 
Machine Parameters: 

4-pole stator: 
R1 = 22.3 Ω, L1 = 0.1084 H 

2-pole stator: 
R2 = 23.43 Ω, L2 = 0.4072 H 

Mutual Inductance between two stators:  
M12 = 0.115 H 

Lm1` = 83.74 H/m 

Lm2` = 334.97 H/m 

Mo`  = 263.08 H/m 
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