

Alexandria Engineering Journal, Vol. 43 (2004), No. 4, 477-488 477
© Faculty of Engineering Alexandria University, Egypt.

Kernel-based disk transaction mirroring for highly available
Linux clusters

Ramy M. Hassan a, Saleh A. Shehaby b and Yasser Y. Hanafy a
a Dept. of Computer Eng., College of Eng., AAST, Alexandria, Egypt

b Medical Research Institute, Alexandria University, Alexandria, Egypt
E-mail: ramy@aast.edu, sshehaby@mcit.giv.eg and yhanafy@aast.edu

This paper presents a new network mirroring approach for highly available Linux clusters
based on replicating disk transactions at the kernel system calls level. The system is
designed to allow reliable, and secure bi-directional mirroring over unreliable, slow, or
insecure networks including Wide Area Networks (WANs) and dialup links without the need
of any special hardware. The new approach can operate in different modes to optimize the
performance and bandwidth consumption on wide range of environments.

لقد أصبدت اأبلتناتددااأحدوىأ ندمرأر ددل اباأك د أبلاداحااأىأاابددتتأكهدةأبلاداحااأ ل ددجأبنحدا أ ضدضأل مبحلددجأحدمبا أ ددنا أ
بلتناتااىأمأببتتأكهةأبل ئملننأكنأبلتناتااأبلإ لندااأتدننأادابئضأبل قديأةهنهدجأبللحدالن أبللدةأةد ألخا دلفأل داضاأاقد أحدوىأ دنأ

ادةأادساأبلماةدجأبلت لندجأىأةد اأضانقدجأ قأبل ابنداأمأكدا مأ داأنحدمنأادسبأب دهم.أ حهد بلتناتااأبمألضتنقأتيدافأبلل الد أكدنأضاند
مألدفألقد نفأتتداىأتيدا ةأ لحا د أمألبد نفأتا حدةألهتيدافأ ح ن مألل ال أبلتيفأكنأضانقأ ابناأبلتناتااأكهةأكتاةند أبلتيدافألنتدمح

أبل قلاحأىأمأتلائجأةنا أحقاىمأك أبلتياف

Keywords: Mirroring, Distributed systems, Clustering, Data protection, Data recovery

1. Introduction

Computerized data has become critical to

the survival of enterprises. Companies must

have strategies for recovering their data

should a disaster such as a fire destroy the

primary data center. Recognizing the restric-
tions of only relying on tape backup, compa-

nies today are integrating replication technol-

ogy to maintain real-time copies of data and

applications at one or more off-site locations.

According to Gartner Group, two out of five
companies that experience a major disaster

never resume operations due to the loss of

electronic data. Of those companies that re-

sume operations, one in three go out of

business within two years. The lack of remote

data protection can be both costly and disas-
trous [1]. Network mirroring provides a safe

computing environment and is useful for basic

failure protection, planned outages, disaster

recovery, and data migration. It also allows

local access of distributed data.

2. Mirroring overview and related work

A mirror is a set of files on a computer

server that has been copied to another com-

puter server so that the files are available from
more than one place. A mirror helps reduce

network traffic, and ensures better availability

of the system. It can also enhance the

system’s response time. Depending on

applications requirements of a certain

computing environment, appropriate network
mirroring approaches are selected.

2.1. Taxonomy of network mirroring systems

The mirroring solutions are classified into
software, and hardware. The hardware solu-

tions are mainly based on SCSI technology.

The software solutions are classified into user

space, and kernel space solutions. The user

space solutions are usually programs that

search the filesystem for any modifications
and send all or part of the modified filesystem

objects to a remote mirror. The kernel space

solutions are usually more effective than user

space solutions since they do not require any

filesystem search. Instead, the modifications
issued by the applications are intercepted by

the mirroring software subsystem. The ker-

nel space solutions are also classified into

synchronous and asynchronous solutions

mailto:sshehaby@mcit.giv.eg

R.M. Hassan et al. / Linux clusters

478 Alexandria Engineering Journal, Vol. 43, No. 4, July 2004

depending on the mode of operation of the

system.

2.2. Synchronous mirroring

In synchronous mirroring each write to a

disk block is written to and acknowledged by

the target drive and then written to the source

drive, and finally committed to both before any
subsequent read or write input/output (I/O),

the transfer of information between devices,

can be processed by the disk subsystem. The

performance penalties that may emerge can

become proportionately greater as the distance
between the systems increase because com-

munication speed is limited by the speed of

light, in the best case. Often times once

network protocol and routing latency are fac-

tored in, it is much slower.

2.3. Asynchronous mirroring

To avoid the round-trip delay overhead

associated with synchronous mirroring, sys-

tems can buffer then transmit the changes as
fast as available bandwidth allows. Providing

the available bandwidth is equal to or greater

than the rate of data change, data will be

transmitted and applied nearly instantane-

ously providing "near zero" data loss. With this

buffering alternative, if the rate of data change
temporarily exceeds available bandwidth, sec-

onds or even minutes of changes could be

queued, waiting to be transmitted. Since the

changes are still on-site, they could be lost in

the event of a disastrous failure. Losing the
changes would be impossible with a synchro-

nous system since the transactions would

never occur because to allow the mirroring to

keep pace everything would have been slowed

down to the rate of data transmission.

Asynchronous replication captures changes to
any files managed by the server Operating

System (OS) at a byte level by installing a File-

System Filter Driver, which filters all

transactions sent to the file system. The filter

driver captures a copy of each transaction and
sends it to a system service or daemon. The

system service or daemon then transmits it via

TCP/IP to the target server.

2.4. RSYNC

RSYNC is an open source user-space
asynchronous data mirroring software, widely

used by the UNIX community [2,3]. RSYNC

can efficiently bring two remotely mirrored

volumes in sync at the minimal network

traffic. Assuming the presence of two general-
purpose computers α and β. α Computer has
access to file "A" and β has access to file "B",

where "A" and "B" are similar. There is a slow

communications link between α and β. The

RSYNC algorithm consists of the following
steps: 1) β splits the file "B" into a series of

non-overlapping fixed-sized blocks of size S

bytes. The last block may be shorter than S
bytes. 2) For each of these blocks β calculates

two checksums: a weak 32-bit rolling

checksum (described below) and a strong 128-
bit MD4 checksum. 3) β sends these

checksums to α. 4) α searches through "A" to

find all blocks of length S bytes that have the
same weak and strong checksum as one of the

blocks of "B". This can be done in a single

pass very quickly using a special property of

the rolling checksum described below. 5) α
sends β a sequence of instructions for

constructing a copy of "A". Each instruction is
either a reference to a block of "B", or literal

data. Literal data is sent only for those

sections of "A" which did not match any of the

blocks of "B".
The end result is that β gets a copy of "A",

but only the pieces of "A" that are not found in
B (plus a small amount of data for checksums

and block indexes) are sent over the link. The

algorithm also only requires one round trip,

which minimizes the impact of the link

latency.

The time to needed to bring the mirrors in
sync is positively correlated to the number of

filesystem objects in the volume that is

required to synchronize, the average file size,

and the amount of change in the master

volume. This means that for a filesystem
containing millions of files, which is very

common in servers, the synchronization time

will be intolerable, thus a failure in the master

storage volume will lead to a considerable loss

of un-restorable data. Also RSYNC will require

huge amount of memory in the host to build

R.M. Hassan et al. / Linux clusters

 Alexandria Engineering Journal, Vol. 43, No. 4, July 2004 479

and store the files list, and a lot of cpu power

to compare local and remote copies of files.

2.5. RAID1 over NBD

One of the most popular network mirroring

solutions is to setup a RAID1 [4] mirror

between two machines connected through a

high-speed network. This is achieved in Linux
using NBD driver. The Network Block Device

[5] driver offers an access model that will

become more common in this network-

oriented world. It simulates a block device,

such as a hard disk or hard-disk partition, on
the local client, but connects across the

network to a remote server that provides the

real physical backing. This is illustrated in

fig. 1. Locally, the device looks like a normal

disk partition, but it is in fact a teleport for a

remote disk partition. The remote server is a
lightweight piece of daemon code providing the

real access to the remote device and does not

need to be running under Linux. The local

operating system will be Linux and must

support the Linux kernel NBD driver and a
local client daemon. NBD setups are mainly

used to provide real-time off-site storage and

backup, but can be used to transport physical

devices virtually anywhere in the world. The

Network Block Device connects a client to a

remote server across a network, creating a
local block device that is physically remote.

This is an example of synchronous kernel

space mirroring.

Fig. 1. An NBD presents a remote resource as local to the
client.

The NBD method risks importing corrup-

tion from the source filesystem into the mir-

ror, when the source goes down. This is be-
cause NBD operations are journaled at the

block level, not the file system level, so a com-

plete NBD operation may represent only a

partially complete file operation. The corrup-

tion and subsequent repair is not worse than

on the source file system if the source actually
crashed; if connectivity was the only thing

lost, the source system may be in better shape

at reintegration than the mirror.

3. RNM approach

RNM is a network mirroring system

designed to allow mirrored disk volumes to

exist on multiple machines connected through

network. The system is designed to allow

reliable, and secure bi-directional mirroring
over unreliable, slow, or insecure networks

including WAN and dialup links without the

need of any special hardware. The system was

also designed to be highly configurable

allowing the maximum flexibility to fulfill the
practical needs of modern computing environ-

ments. The most significant feature of the

RNM approach is that disk transactions are

intercepted at the system calls layer as

universal file operations that can be replicated

to mirroring hosts regardless to the implemen-
tation details of the remote filesystem.

3.1. System architecture

To allow different flexible implementations
where any desired number of mirrored

network volumes can exist, the publisher sub-

scriber design pattern was used. The pub-

lisher subscriber design pattern helps to keep

the state of co-operating components synchro-

nized. To achieve this it enables one-way
propagation of changes where a single pub-

lisher notifies any number of subscribers

about changes to its state [6].

In the case of RNM a publisher process

manages any number of subscriber processes,
which have requested to mirror a certain RNM

volume. It enlists the subscribers in its local

data structure to start distributing Binary

Update Log (BUL) content that subscribers

R.M. Hassan et al. / Linux clusters

480 Alexandria Engineering Journal, Vol. 43, No. 4, July 2004

can use to replicate the updating file opera-

tions.

The publisher is actually the main process
that controls the whole scenario, thus the

name “controller” is assigned to the system

component that plays the publisher’s role in

the RNM system.

The RNM system is currently composed of

five different software components. The “moni-
tor” is a kernel space component that

intercepts and logs the file operations. The log

is made available to the “controller” compo-

nent running on the same machine. The

controller distributes the file operations one or
more instances of a third component named

“subscriber”. The fourth is named “admind”. It

receives configuration instructions from the

fifth and last component named “console”.

3.1.1. Monitor

The monitor is a kernel module that

intercepts all system calls that possibly modify

any filesystem object, and then checks if the

target filesystem object resides in any of the
RNM Volumes specified in the system configu-

ration. The monitor then translates the file

system operations, which are filtered to be file-

system update operations on one of the RNM

volumes, to commands in the BUL (Binary Up-

date Log; described later). The Linux kernel
has an array of pointer to functions responsi-

ble for handling system call. This array is
known as syscall_table. When the monitor is

initialized it modifies the syscall_table to set

the handler functions of the filesystem updat-

ing system calls to the monitor functions. This
is illustrated in fig. 2.

The Monitor can be used in two different

ways, as an LKM (Linux Kernel Module) or a

custom built kernel, illustrated in fig. 3. The

system administrator can choose either of the

two flavors. The LKM can be loaded into the
kernel dynamically while the system is up and

running. There are several advantages of

using LKM including the following [7]: i) No

need to reboot the system. ii) Can be easily

removed from the kernel when mirroring is no
longer needed. iii) No need to reconfigure the

kernel from scratch, thus saving a lot of the

system administrator’s time and effort.

There are also several disadvantages for

using LKM that might appeal system admin-

istrators to patch and recompile a customized
kernel. The disadvantages include the follow-

ing: i) Less security. Many expert system adm-

inistrators choose to disable the LKM kernel

support to prevent kernel-based virii from inf-

ecting their systems [7]. ii) Less performance.

iii) An extra function call is made for each sys-
tem call invoked.

It would be recommended for a system

admin to just install the monitor as a LKM

whenever needed at the beginning and save

himself the hassle of patching and recompiling
his kernel, but if the need was almost perma-

nent then installing it as a kernel patch would

be recommendable.

The monitor defines a set of alternative

functions to all system calls that can possible

modify any file system object. These functions
are called whenever any userspace process re-

quest one of those system calls. When called

each function identifies the filesystem object(s)

subject to updating and then gets the real

path of the filesystem object by walking
through up the dentries [8] tree till the root is

reached.

Identifying the real path of the filesystem

object is essential because any of the given

path components can be a symbolic link to

some other path in the filesystem. The monitor
then checks if the real path identified resides

in any of the RNM volumes that are being

mirrored.

In case of bi-directional mirroring, the

monitor needs to distinguish between system
calls issued by applications and those issued

to replicate file operations from the remote

mirror. For this reason, the monitor defines a

new system call for every filesystem updating

call to be issued only by the subscriber com-

ponent that is responsible to receive and
replicate file operations from remote mirrors.

For example a new system call Sys_origwrite is

added to be issued by the subscriber when-

ever it needs to write data in a file without

generating a BUL sequence for the operation.
This is illustrated in fig. 4.

3.1.2. BUL

The BUL is a file containing some binary

sequences, each sequence representing a

R.M. Hassan et al. / Linux clusters

 Alexandria Engineering Journal, Vol. 43, No. 4, July 2004 481

Fig. 2. Monitor activity.

Fig. 3. LKM vs. Kernel patch.

Fig. 4. System calls.

certain filesystem update transaction to be

sent to the relevant "subscriber(s)" (explained

in its consequent section below).
The first four bytes store the size of the

transaction sequence in bytes. Then comes

the operation id, which is a unique identifier

for the used filesystem operations. Then

comes the file name terminated by a null
character. The rest of the binary sequence is

used to store the arguments sent to the

system call. Those arguments vary from a

system call to another.

3.1.3. Controller

The controller is a user space daemon

implemented in the Java; it listens to a TCP
ports waiting for subscribers to connect req-

uesting to receive filesystem update instruc-

tions in the form of BUL sequences. When it

receives a connection request from a sub-

scriber it requests authentication first then
authorizes each subscriber based on an

access list defined in the configuration files of

the controller.

The controller starts to read the BUL

generated by the monitor then distribute them

R.M. Hassan et al. / Linux clusters

482 Alexandria Engineering Journal, Vol. 43, No. 4, July 2004

to the appropriate subscribers that requested

to receive mirroring instructions for one or

more RNM Volumes managed by the control-
ler.

The controller creates a thread for every

accepted connection. Each thread runs inde-

pendent from other threads allowing different

mirroring modes for different connected sub-

scribers. Also threading prevents the slow
subscribers from slowing down the whole

system.

The controller should authorize subscrib-

ers based on a predefined access control list

(ACL). The ACLs define which hosts are
allowed to receive BUL sequences for which

RNM volumes. After authorizing a subscriber a

secure streams is created for the data sent by

the controller to the subscribers and vise

versa. The javax.crypto package is used to

provide such secure stream. Besides, in slow
connections, it might be necessary to com-

press the data due to the limited bandwidth to

optimize transfer speed.

3.1.4. Subscriber

The subscriber is a user space daemon

implemented in the Java programming lan-

guage. It connects to the controller requesting

to receive BUL content stream to mirror one or

more RNM volumes. When establishing a con-

nection to a controller the subscriber tells the
controller which RNM volume is requests and

at which BUL offset to start.

By keeping track of the BUL offset the sub-

scriber can recover from any problem leads to

loosing connection with the controller. It re-

ceives BUL sequences and interprets them

replicating all modifications done to the RNM

volume. Fig. 5, shows the controller/ sub-
scriber interaction.

If bi-directional mirroring is required,

which means that a monitor and a controller

are running on the same machine as the

subscriber, the alternative set of system calls

added by the monitor are used to identify the
operations as replication operations, so that

the monitor does not generate BUL sequences

for those operations.

3.1.5. Admind/console

The system admin can setup the whole

mirroring process by describing the mirroring

scenario and configuring every single host

involved in the mirroring process. This can be

done using the console program and its

administrator friendly interface. The console
communicates with the admind using secure

streams, as admind will require an admini-

stration password directly after the connection

is established.

The admind receives configuration from
the console and accordingly modifies the local

settings of the system componenets. The

admind also communicates directly with other

system components allowing remote admini-

strators monitor the action of each component

and thus identify easily the problems or
bottlenecks. It also gives the ability to start

and stop the mirroring process remotely.

The components described above interact

together in different ways to suit different

needs, different systems, and different

Fig. 5. Controller-Subscriber interaction.

R.M. Hassan et al. / Linux clusters

 Alexandria Engineering Journal, Vol. 43, No. 4, July 2004 483

environment. Figs. 6 describe the system

components collaboration.

3.2. Synchronous mode design considerations

So far the systems components described

and their collaboration mechanisms provides

a flexible asynchronous mirroring system

without considering the synchronous mode of
operation which can not be achieved without

some modifications to the system’s design.

One of the design objectives of RNM

system is to allow bi-directional mirroring

where data updates on either side of the
mirror is replicated on the other synchro-

nously allowing applications to run

transparently on any of the systems involved

in the synchronous mirroring process. This

adds another dimension to systems

scalability. The design considerations required
to allow the system to operate in synchronous

mode are discussed by exploring the limita-

tions of the asynchronous mode design and

suggesting solutions to overcome the explored

limitations.

3.2.1. Sequential updates

As described earlier, the subscribers

receive BUL sequences and execute them

sequentially keeping track of the last executed

operation offset to be able to resume mirroring

if it disconnected for period time. This will not

be suitable in synchronous mode, because if

two concurrently running processes perform
updating disk transactions at the same time.

The first operation will have to finish before

the second one is started which is a very

undesirable behavior that may degrade the

whole system performance dramatically. So in

synchronous mode every updating operation
should be propagated to all subscribers in a

separate independent thread.

3.2.2. Stream based communication

The system currently uses secure stream
objects for communication between the con-

troller and the subscribers. Stream commu-

nication implies using TCP protocol, which is

a connection-oriented protocol. Synchronous

mode requires that every single operation

should be propagated to subscribers in a
separate thread, which means that a new

connection will be established for every updat-

ing operation. Needless to say the cost of

establishing a TCP connection is high. So

using TCP is much less than ideal choice. This
was not an issue in the asynchronous mode

because only a single TCP connection is re-

quired for a subscriber.

A workaround to this limitation is to use a

connectionless protocol like UDP while operat-

ing in synchronous mode, and implement a

Fig. 6. RNM system components collaboration.

R.M. Hassan et al. / Linux clusters

484 Alexandria Engineering Journal, Vol. 43, No. 4, July 2004

fast checksum and acknowledgment mecha-

nism to guarantee data integrity.

3.2.3. No transaction level acknowledgment

A third limitation of the current system

design is that the master system does not

receive an acknowledgment from the slaves for

every single transaction executed on the slave

systems. That was not needed in the
asynchronous mode, but it is required in the

synchronous mode.

The solution is to make the master system

expects an acknowledgement from the sub-

scribers after every transaction while operat-
ing in synchronous mode. This is also needed

if UDP is used to replace TCP since UDP do

not guarantee that data arrives to destination.

3.2.4. File locking

Many applications depend on file locking
to preserve data consistency by avoiding any

concurrent writes to the same file. This is

actually a problem when the locking is per-

formed on a system while all other systems

are not aware of this locking. Locking is an
operation that is managed by the kernel and

never affects the data stored on the disk. To

solve this problem the monitor should also

consider intercepting the file locking system

calls while operating in synchronous mode.

4. Evaluation

According to the Linux high availability

project[9] , the most commonly used systems

for data mirroring and replications currently
used by the Linux community are RAID1/

NBD[10] and RSYNC[2]. For this reason, the

RNM system performance will be compared to

both systems later in this chapter. Although

RAID1/NBD and RSYNC are two completely

different approaches that are used for the two
different sets of applications, RNM can be

considered a replacement for both systems

each on its own set of applications.

4.1. Benchmarks

To be able to evaluate the RNM system

performance as opposed to other mirroring

approaches in a real-world operating environ-

ment, a system prototype was developed for
Linux kernel 2.4.12. Extensive measurements

were then conducted on a variety of file

system workloads, and network bandwidths.

Experiments we performed to show the overall

performance on general-purpose file system
workloads, determine the performance of indi-

vidual common file operations, and compare

the efficiency of RNM mirroring to equivalent

NBD based RAID1 mirroring. All experiments

were conducted on two equivalent 1GHz Intel

Pentium-III processors with 128MB of physical
RAM, 40GB EIDE Disk 7200RPM, and a 32-

bit/33MHz PCI bus). A third machine was

used as a traffic shaper to control network

bandwidth between the two machines used in

the experiments. The tools used to benchmark
system performance are Bonnie, and iproute2.

Bonnie [11] is a file system test that

intensely exercises file data reading and

writing, both sequential and random. Bonnie

tries hard to measure disk I/O performance

regardless of the quality of the buffer cache
implementation. To be able to evaluate the

performance impact of the mirroring system

being studied, the benchmark result of the

machine involved in the experiments should

be recorded before any mirroring system is
installed. These results are shown in table 1.

To be able to simulate WAN, dialup links,

and other limited bandwidth network environ-

ments, and thus study the impact of limiting

the bandwidth on the performance of the

system being experimented, a Linux machine
was used as a an advanced router to control

the traffic. To be able to control traffic passing

through the router; the Linux QoS (Quality
Table 1
Reference benchmark results

Sequential output
(kB/s)

Sequential input
(kB/s)

Random
seeks

(Seeks/s) Per Char Per Block Per Char Per Block

16932 107923 17305 583155 19556.3

R.M. Hassan et al. / Linux clusters

 Alexandria Engineering Journal, Vol. 43, No. 4, July 2004 485

of Service) support available in the recent

Linux kernels is enabled while configuring the

kernel. A user space tool named iproute2 is
used to control the kernel based routing using

the CBQ (Class Based Queuing) technique

[12]. CBQ gives the ability to define classes of

network applications assigning each class a

set of QoS parameters including the maximum

bandwidth allowed.
The Linux software RAID1 implementation

[13] is also used to mirror the remote resource

served by the enbd server and a local disk

image. An ext2 filesystem was created on the

RAID volume, and then it was mounted in
async mode given the mount option “–o

async”.

When the bandwidth between the two

hosts is adjusted to 100Mbps, the RAID vol-

ume was quite stable. The benchmark results

are shown in table 2.
When limiting the bandwidth to 10Mbps,

and running Bonnie again the RAID volume

was broken and only the local disk image was

used. To recover from this, the RAID volume

was unmounted and the remote disk image
was manually added to it again and the RAID

volume started to resync the mirrors. The

same experiment was repeated several times

and same results were observed. This means

that asynchronously mounted RAID1 over

ENBD was unstable for bandwidth less than

100Mbps.

When remounting the same RAID1 volume
in sync mode using the mount option “-o

sync”. The RAID volume was very stable even

when bandwidth is limited to as low as

128Kbps, although there was a significant

impact on performance. The results observed

are shown in table 3.
The same experiment was repeated on an

RNM volume. The results are shown in table

4.

Taking a look at the benchmark results

(illustrated in figs. 7-12) the following points
can are concluded.

Output performance of RAID1/NBD is

affected by the available network bandwidth.

By decreasing the network bandwidth the out-

put throughput decreases dramatically.

Output performance of RNM is independ-
ent of the network bandwidth.

Input performance in both approaches is

nearly constant and independent of the net-

work bandwidth.

Disk seek performance of RAID1/NBD is
affected by the available network bandwidth.

By decreasing the network bandwidth the out-

put throughput decreases dramatically.

Disk seek performance of RNM is inde-

pendent of the network bandwidth.

Table 2
RAID1/ENBD async 100Mbps benchmarks

Sequential output
(kB/s)

Sequential input
(kB/s)

Random
seeks
(Seeks/s) Per Char Per Block Per Char Per Block

10489 102064 7195 186303 12475.3

Table 3
Bonnie results – RAID1/ENBD

Bandwidth

Sequential
output
(kB/s)

Sequential input
(kB/s)

Random
seeks

(Seeks/s) Per

Char

Per

Block

Per

Char

Per

Block

10Mbps 215 283 15318 573155 554.3
8Mbps 214 276 14228 573026 528.8

5Mbps 197 262 17374 524859 529.6
2Mbps 156 203 16800 575668 477.5
1Mbps 78 101 17162 569078 379.5
768Kbps 52 67 17033 549061 188.6

512Kbps 35 45 16883 574312 141.0
256Kbps 17 22 18117 561403 65.8
128Kbps 8 10 18022 519796 1.3

R.M. Hassan et al. / Linux clusters

486 Alexandria Engineering Journal, Vol. 43, No. 4, July 2004

Table 4
Bonnie results – RNM

Bandwidth

Sequential

output
(kB/s)

Sequential

input
(kB/s)

Random
seeks

(Seeks/s) Per

Char

Per

Block

Per

Char

Per

Block

10Mbps 10669 37483 14511 533912 13724.1
8Mbps 10104 37288 18427 592173 13685.6

5Mbps 10690 38076 17382 583926 13689.3
2Mbps 11023 38720 16234 582123 13714.9
1Mbps 10529 37123 15923 571234 13784.2

768Kbps 10414 37821 18345 543292 13801.6

512Kbps 10902 38885 14722 528751 13775.5
256Kbps 11014 38912 18720 577630 13789.7
128Kbps 10320 37291 17331 549837 13699.3

RAID1/ENBD - Sequential Output

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

02,0004,0006,0008,00010,000

Bandwidth (Kb/s)

D
is

k
 T

h
ro

u
g

h
p

u
t

(K
B

/ s

)

Per Char Per Block

Fig. 7. Sequential output performance – RAID1/ENBD.

RAID1/ENBD - Disk Seeks

0

100

200

300

400

500

600

02,0004,0006,0008,00010,000

Bandwidth (Kb/s)

S
e

e
k

s

/ s

Fig. 8. Disk seek performance – RAID1/ENBD.

RNM - Sequential Output

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

02,0004,0006,0008,00010,000

Bandwidth (Kb/s)

D
is

k
 T

h
ro

u
g

h
p

u
t

(K
B

/ s

)

Per Char Per Block

Fig. 9. Sequential output performance – RNM.

RNM - Disk Seeks

0

2000

4000

6000

8000

10000

12000

14000

16000

02,0004,0006,0008,00010,000

B andwidth (K b/s)

S
e

e
k

s

/ s

Fig. 10. Disk seek performance – RNM.

 Sequential Input - Per Block

0

100000

200000

300000

400000

500000

600000

700000

02,0004,0006,0008,00010,000

Bandw idt h (Kb/s)

D
is

k
 T

h
ro

u
g

h
p

u
t

(

K
B

/ s

)

RNM - Per Block ENBD - Per Block

Fig. 11. Sequential input performance – Per Block.

R.M. Hassan et al. / Linux clusters

 Alexandria Engineering Journal, Vol. 43, No. 4, July 2004 487

 Sequential Input

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

02,0004,0006,0008,00010,000

Bandwidth (Kb/s)

D
is

k
 T

h
ro

u
g

h
p

u
t

(K
B

/ s

)

RNM - Per Char ENBD - Per Char

Fig. 12. Sequential Input Performance – Per Char.

5. Conclusions

This paper has a presented new network

mirroring approach for highly available Linux

clusters. The approach is based on kernel

space monitoring of filesystem updating

operations and user space networking for the
communication between mirroring hosts.

The paper also presented the system

architecture, and software design for the

proposed approach. The system was

implemented for Linux operating system and

performance was evaluated and benchmarked
against other popular mirroring systems.

 The main contributions presented the

proposed system may be summarized as

follows:

 Mirroring is done at the kernel system calls
level masking all filestem details the mirroring

process allowing the maximum flexibility in
choosing the filesystem type for every host

involved in the mirroring process.

 This is achieved by filtering all file system
and block device operations details from the

application level communication protocol and

only sending the information required to
replicate the file operation to mirroring hosts.

Data compression can also be used.

 The mirrors synchronization time is
independent of the number of filesystem

objects and the average filesize in the volume,

while all user-space mirroring solutions

available are positively correlated to both
factors.

 Filesystem integrity is guaranteed, as all file
operations are atomic.

 The system design supports both
synchronous and asynchronous modes of

operations.

 The system design introduces a new
adaptive mode of operation that automatically
selects the most suitable mode of operation

based on the network status and system

configuration.

 Unlike other comparable solutions, the
proposed system performance impact on the

hosts is independent of the available
bandwidth since is supports operating in

asynchronous mode.

6. Future work

Here some issues that may trigger further

research directions related to or based on the
present work are listed

 For maximum data protection, we need
versioning support. We can design and

implement an adapter to allow mirroring to

remote CVS servers [42]. Another possibility is

to study the behavior of mirroring to a volume

with a versioning filesystem installed [6].

 So far, the RNM system does not support
online automatic regeneration of volume

content in case a new node is adding to the

high availability cluster. There is a need for

this feature to be designed and implemented.

Another possible enhancement is to create
a look-ahead optimizer for BUL sequences to

further optimize the network bandwidth and

achieve better performance. The optimizer

would be able to ignore any writes to a file

that was deleted while the mirroring host was

lagged, or disconnected.

References

[1] http://www4.gartner.com/Init

[2] Andrew Tridgell, Paul Mackerras, “The
rsync algorithm”,

http://cs.anu.edu.au/techreports/1996

/TR-CS-96-05.pdf

[3] Andrew Mayhew, “File Distribution

Efficiencies: cfengine vs. rsync,” In proc.

of USENIX LISA (2001).

R.M. Hassan et al. / Linux clusters

488 Alexandria Engineering Journal, Vol. 43, No. 4, July 2004

[4] Ron I. Resnick, “A Modern Taxonomy of

High Availability”,

http://www.generalconcepts.com/resour
ces/reliability/resnick/HA.htm, (1996)

[5] Peter T. Breuer , “The Enhanced Network

Block Device Linux Kernel Module”,

http://www.it.uc3m.es/~ptb/nbd/ ,

(2003).

[6] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, M. Stal, A System of

Patterns, Wiley ltd.

[7] Toby Miller, “Detecting Loadable Kernel

Modules (LKM),”

http://www.linuxsecurity.com/resource
_files/host_security/lkm.htm

[8] Alessandro Rubini , Jonathan Corbet ,

“Linux Device Drivers, 2nd Edition,”

O'Reilly & Associates, Inc. (2001).

[9] Linux High Availability Project,

http://linux-ha.org

[10] P. T. Breuer, A. Marín Lopez and Arturo
García Ares, “The Network Block Device,”

In Linux Journal, May (2000).

[11] M. Peter Chen and A. David Patterson.

“Storage Performance-Metrics and

Benchmarks.,” Proceedings of the IEEE,

81 (8), pp. 1151-1165 (1993).
[12] Saravanan Radhakrishnan , “Linux -

Advanced Networking Overview.”

http://library.n0i.net/linux-

unix/administration/advanced-

networking-v1/
[13] Linas Vepstas , “RAID and Data

Protection Solutions for Linux,” http://

linas. org/ linux/ raid.html

Received November 11, 2003
Accepted April 27, 2004

