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Natural convection in air between two infinite horizontal concentric cylinders at different 
constant temperatures is numerically investigated. The study covered a wide range of the 
Rayleigh number, Ra from 102 to 106, and the Radius Ratio, (RR) was changed between 
1.25 and 10. The differential governing equations (mass, momentum, and thermal energy 
together with their boundary conditions) were solved using a finite difference method. The 

numerical method and the computer program are checked for the case of pure conduction. 
The results were presented graphically in the form of streamlines and isotherms. The local 
and average Nusselt numbers, velocities and temperature distributions are also presented. 

The flow starts in the conduction regime at low Rayleigh numbers (Ra  102) and low radius 

ratios. It changes to the laminar boundary layer regime as the Rayleigh number or the ra-
dius ratio was increased. The study showed that the average Nusselt number increased 
with the increase of each of Ra and RR in the laminar boundary layer regime.  For any fixed 
value of Ra, the laminar convection starts earlier at higher values of the radius ratio. The 

annular gap will act as a single inner cylinder in an infinite medium at RR= 10 for Ra  105. 

For Ra > 105, the radius ratio has to be increased much over RR=10 in order for the annu-
lar gap to behave as a single cylinder. The numerical results were correlated as a function 
of Ra and RR.  A good agreement is shown between the present correlation and previous 
data and correlations. The present correlation lies between the other correlations with a 

maximum deviation of 9.6 . 

تم عمل دراسة عددية للحمل الحر بين إسطوانتين أفقيتين لا نهائييتين ومتحادتا المحاور عناد درحتاا حارارف منتل تاين م و اد  امل  
الدراسااة ماادس واساا  لاار م رالااا بااين   

2
01  ،

6
م و ااد تاام حاال  01،  0221وتغياار  النساابة بااين  طاارس الاسااطوانتين بااين   01

الدتلااة ودميااة الحردااة والطئ ااة بئسااتندام الطاارس العدديااة بئسااتندام برناائم  حئساا  ألااا بعااد المعاائدلا  الت ئياالية التااا تحداام تباائدل 
إنتبئره فا حئلة إنتقئل الحرارف بئلتوصيل فقط م تم عرض النتئي  فا منحنيئ  تعبر عن نطوط السريئن ودرحاة الحارارف م دمائ تام 

عائ  درحاة الحارارف والسارعة م عنادمئ تداون النسابة باين عرض النتئي  المعبرف عن ر م نوسل  المويعا والمتوساط وداكلت تو ي
 طرس الاسطوانتين صغيرف ور م رالاا أ ال مان  

2
ائ بئلتوصايل وتتغيار الحئلاة إلاا الساريئن الحادارس   01 فانن الحارارف تنتقال اسئسب

 ياائدف داال ماان نساابة  الر اائيقا عنااد  ياائدف نساابة القطاارين أو ر اام رالااا م و ااد أرهاار  الدراسااة أن ر اام نوساال  المتوسااط ياا داد ماا 
القطرين و ر م رالا فا حئلة السريئن الحدارس الر ئيقا م دمئ أن الاسطوانة الدانلية يمدن أن تعئمل دمئ لو دئنا  أساطوانة م اردف 

ور اام رالااا أ اال ماان    01فااا وسااط لانهاائيا عناادمئ تدااون نساابة القطاارين   
1
م وعنااد  ياائدف ر اام رالااا عاان   01

1
فاانن نساابة   01

ا عان القطرين فا  ا ما   01هاكه الحئلاة يحا  أن ت ياد دايارب م و اد تام إساتنتئع معئدلاة تماال النتائي  العددياة و اد أرهار  توافقائب دبيارب
 م ٪ 626النتئي  السئبقة ودئن  فا وي  وسط بينهئ ودئن أ صا إنتلاف موحود فا حدود  
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1. Introduction 

 

 Natural convection in a horizontal annu-
lus kept at constant surface temperatures has 

been the subject of interest of many research-

ers due to its theoretical interest and its 

various engineering applications such as solar 

collectors design, thermal storage systems, 
nuclear reactors, cooling of electronic compo-

nents, aircraft fuselage insulation, under 

ground electrical transmission lines, etc. 

 Extensive survey on natural convection 

between two horizontal concentric cylinders is 

given by Kuehn and Goldstein [1]. They per-
formed both experimental and theoretical-nu-

merical studies for air and water at Rayleigh 
numbers (based on gap width, L) from 2.1×104 

to 9.8×105 at a diameter ratio of 2.6. A nu-

merical parametric study was carried out by 

Kuehn and Goldstein [2], in which the effects 
of the Prandtl number and the radius ratio on 

heat transfer coefficient were investigated. The 

Prandtl number and diameter ratio are each 
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varied over several orders of magnitude (0.001 

 Pr  1000, 1.0  RR  ). Cho et al. [3] used 

a bi-polar coordinate system  to investigate 

the local and overall heat transfer between 

concentric and eccentric horizontal cylinders 
for Rayleigh numbers less than 5×104 (based 
on gap width, L). They found that the very 

small eccentricity gives an overall thermal be-

havior similar to that of the exactly concentric 

cylinders. Farouk and Güceri [4] applied a 

turbulence model to study the turbulent 
natural convection for high Rayleigh numbers 

ranging from 106 to 107 with a radius ratio of 

2.6. They also accounted for the buoyancy ef-

fects on the turbulence structure. The results 

for both the laminar and turbulent cases were 
in good agreement with results obtained ex-

perimentally by other investigators. Hessami 

et al. [5] and Mahony et al. [6] investigated the 

effect of variable properties on natural con-

vection in horizontal annulus. They found 

that the Boussinesq approximation is valid for 

a temperature difference ratio 
c

ch

T

TT 
 < 

0.1. It also can be used for a ratio of    up to 
0.2 with reasonable accuracy in the calcu-

lated heat transfer. They also found that the 

Boussinesq approximation does overestimate 

the tangential velocity and the temperature 

gradient near the hot inner cylinder. Tsui et 

al. [7] investigated numerically and experim-
entally the transient natural convection be-

tween two concentric isothermal cylinders. 

They covered Grashof numbers from approxi-

mately 1×103 to 9×104 and diameter ratios 

from 1.2 to 2.0. Several authors such as Ta-
kata et al. [8] and Feirao et al. [9] have carried 

out numerical investigations on the three di-

mensional convective flow. Feirao et al. [9] 

considered the steady convection in a wide 

gap annulus and found that nearly two-di-

mensional crescent eddies establish in the 
central region and that the fluid particles 

move along a coaxial double helix. Hessami et 

al. [10] investigated experimentally and theo-

retically the effect of changing the fluid prop-

erties within the annulus. They used air, glyc-

erin and mercury in the ranges of 0.023  Pr 

10000 and 0.03  Gr  3×106, and showed  

that glycerin is more sensitive to the constant 

properties assumption, while air had not been 

significantly affected by this assumption. This 
is due to the large radii ratio they used 
(RR=11.4). Finally their experimental data 

have been correlated with some other data 

from the literature for smaller values of  RR .  

It has been shown that the heat transfer from 

the inner cylinders should be almost the same 

as that in an infinite medium when RR 10. 
Kolesnikov and Bubnovich [11] studied nu-

merically a conjugate problem of natural con-

vection in a horizontal annulus and compared 

the solution with non-conjugate problems. 

Kumar [12] presented the numerical results 

for constant heat flux at the inner cylinder 
and isothermal condition at the outer cylin-

der. A lower effective sink temperature is ob-

tained when it is compared to isothermal 

heating, thus a higher heat transfer rate is 

expected. Choi and Kim [13] studied the linear 
stability of the crescent-shaped convection of 
air (Pr = 0.71) by solving the linear equation 

for three-dimensional disturbances with a 

time marching method. It was shown that the 

principle of exchange of stabilities is valid 

for 12.Ldi  , which implies that the resultant 

three-dimensional spiral flow is not periodic in 
time for di/L=2.1. Most of the past research 

has focused on the heat transfer at the sur-

face of cylinders as given in [2]. Recently, Yoo 

[14, 15] considered the natural convection 

problem in a narrow horizontal annulus, and 

investigated the effect of the Prandtl number 
on the stability of conduction regime and 

transition of flow patterns. Yoo [16] investi-

gated the flow patterns and bifurcation phe-

nomena for fluids of 0.3  Pr  1, in a wide-
gap annulus of di/L=2. He found that when 

Ra exceeds a critical value, two kinds of flow 

patterns are realized according to initial con-

ditions, and two kinds of bifurcation phenom-
ena are observed, which are dependent on the 

Prandtl number. The origins of the change of 

flow patterns and dual steady solutions for 

the convection were clarified by Mizushima et 

al. [17]. They obtained the whole bifurcation 
structure of the convection of air (Pr = 0.7) by 

numerically calculating the stable and unsta-

ble steady state solutions and analyzing their 

linear stability. They concluded  that  the   so- 
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called “ instability ” is not an instability of the 

crescent shaped convection in its strict 

meaning. It was shown that the transitions of 
the convection and the appearance of dual 

stable steady solutions are explained by im-

perfect trans-critical and saddle-node bifur-

cations instead of the instability. For natural 

convection, the Boussinesq approximation 

simplifies the Navier-stokes equation by ne-
glecting the compressibility effect everywhere 

except for the buoyancy force terms. Regions 

of validity of this approximation is presented 

by Gray and Giorgini [18]. Finally, Kuehn and 

Goldstein [19] also presented a correlation 
equation that improved upon previously pub-

lished results. In all of the numerical studies, 

the cylinders are assumed to be long, hence 

the flow is two dimensional, with the inner 

cylinder hotter than the outer cylinder. 

Our basic aim here is to investigate 
numerically the natural convection heat 

transfer between two horizontal concentric 

and isothermal cylinders as to get the com-

plete image about the heat transfer  

characteristics of this   problem. 
The present numerical investigations will 

cover diameter ratios of (1.25-10) and 

Rayleigh numbers (based on inner diameter, 
di) ranging from 102 to 106 at Prandtl number 

= 0.71.   

 
2. Mathematical formulation 

 

In the present study, air between the two 

concentric cylinders will be considered a 

Newtonian constant property fluid except for 

the density in the buoyancy force components 
existing in the momentum equations. The 

Boussinesq approximation will relate the vari-

able density to the local temperature. 

The steady state dimensionless equations 

governing the transport of mass, momentum 
and thermal energy in the cylindrical coordi-

nates (r,)  for the case of incompressible fluid 

flow are:  
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The following dimensionless variables are 

used: 

 a

v
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                      (5) 

 

The above equations are subjected to the 

following boundary conditions: 

 
at 1R and  0 : 

0 VVR , 1 ,                                       (6-a) 

 

at
i

o

R

R
R  and  0  : 

0 VVR , = 0 ,                                      (6-b) 

 

at
i

o

R

R
R 1 and 0   or  :                                  

0V , 0






RV
, 0







.                            (6-c)  

 
Since the flow and heat transfer is 

symmetrical about the vertical axis, it suffices 

to consider only one half of the flow field on 

either side of the vertical axis. This is shown 

in fig. 1.            
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2.1. The nusselt number 

 
 The local Nusselt number, Nu is defined 

as: 

                                  

 
.

Rk
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Nu R 12

2





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
                              (7) 

 
 The average Nusselt number, Nu  over the 

inner cylinder perimeter is defined as: 
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2.2. The calculation grid 

 

 The number of nodes for the solution in 

the half annular space was taken as 50 nodes 
in the radial direction and 90 nodes in the 

circumferential direction. The spacing be-

tween the nodes in the circumferential direc-

tion was taken uniform. However, in the ra-

dial direction, non- uniform spacing was used 
for better accuracy, with smaller spacing near 

each of the two cylinders.   

 

3. The numerical solution 

 

The governing eqs. (1-4) along with the 
boundary conditions given by eqs (6-a, 6-b 

and 6-c) can not be solved analytically. So, 

the numerical methods remain the only possi-

ble solution one could take. The computer 

program used to solve the above equations is 
based on the finite difference technique devel-

oped by Patankar [20]. This was based on the 

discretization of the governing equations us-

ing the central differencing in space. The 

discretization equations were solved by the 

Gauss-seidel elimination method. The itera-
tion method used in this program is a line by 

line procedure, which is a combination of the 

direct method and the resulting Tri Diagonal 

Matrix Algorithm (TDMA). The procedure used 

by Patankar is to solve simultaneously the 
continuity and momentum equations then the 

thermal energy equation. The accuracy of the 

solution and the number of iterations were 

checked. The iteration is stopped according to 

a certain tolerance in the variation of the 

value of the Nusselt number. So, the accuracy 

was defined by the change in the average Nus-

selt number through one hundred iterations 
to be less than 0.01% from its value. This 

check showed that 1500 iterations were 

enough for the required accuracy.                                                                                                             

 

4. Results 

 
Before proceeding with the numerical so-

lutions, the numerical method and the com-

puter program were checked for the case of 

pure conduction in the present configuration. 

This is done by solving only the energy equa-
tion alone with the given boundary conditions. 

Other equations (continuity and momentum 

equations) are ignored in the numerical solu-

tion. 

 As shown in eqs. (4, 6), the pure conduc-

tion solution depends only on the radius ratio 
and is independent of the Rayleigh or Prandtl 

numbers. The exact value for the average 

Nusselt number for pure conduction between 

two isothermal concentric cylinders is derived 

from the analytical solution of the energy 
equation. It is given as: 

 

 RRLn
Nu

2
 .     (9) 

 

The numerical values of the conduction 

solution for 1.25  RR  10 are exactly the 

same as the analytical values given by eq. (9). 

 

 

 
 

 

 

  

 

 
 

 

 

 

 
 

 
Fig.1. Boundary conditions of the natural convection 

problem. 
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4.1. Streamlines and isotherms   

 

The streamlines and isotherms for the flow 
between the two concentric horizontal cylin-

ders due to natural convection are plotted 

with the aid of the Surfer software version 

6.01 in figs. 2 up to 5. The results in these 

figures are obtained at different fixed values of 

Rayleigh numbers between 102 and 106, and 
the radius ratio was varied from 1.25 to 10.  

 
4.1.1. Isothermal lines 
 For low Rayleigh numbers (Ra=102), the 

isotherms for RR  5 consist of concentric 

cylinders approaching the inner hot cylinder 

as RR increases. This indicates that conduc-
tion heat transfer regime prevails in these 
cases. For RR >5, the boundary layer regime 

is dominant with the isotherms concentrated 

at the hot inner cylinder. The lower part of the 

annular gap is not affected by the flow. 
 For high Rayleigh numbers (Ra=106), the 

flow changes from the conduction regime (at 
RR=1.25) to the boundary layer regime for RR 

 2. As the radius ratio increases; a stratified 
region is developed in the middle region be-

tween the two cylinders (figs. 4-b and 5-b). 

This leaves the lower part below the hot cylin-

der almost unaffected by the flow. 

 
4.1.2. Streamlines    
 For low Rayleigh numbers (Ra=102 ), the 

flow consists of a big single cell filling the 

whole domain with its center of rotation 

moving upwards as the radius ratio is in-

creased from 1.25 to 10 . For high Rayleigh 
numbers (Ra=106), the conduction flow at 

RR=1.25 changes continuously to the bound-

ary layer regime with the streamlines getting 

closer to the cylinder surfaces. The lower part 

of the annular gap becomes more and more 

stagnant as the radius ratio increases above 

RR=2. For     RR  5, the flow takes the shape 

of a plume where the streamlines are concen-
trated around the inner hot cylinder and the 

flow is entrained and raised above the top of 

the hot cylinder, then falls down along the 

cold cylinder.         

 
4.2. The average nusselt number 

 

Fig. 6-a shows  the  average  Nusselt  num 

-ber versus the radius ratio for Pr =0.71 and 

fixed different values of the Rayleigh number. 

It shows that the flow always starts in the 
conduction regime for low RR (RR=1.25) and 
low Ra (Ra =102). As the radius ratio in-

creases, the gap thickness increases, thus the 

conduction Nusselt number decreases. A plot 

of the conduction Nusselt number is shown 

on the same figure as given by eq. (9). This 
decrease in Nu continues until the free con-

vection starts in the gap and thus Nu starts to 

increase. The onset of convection depends on 
the values of Ra and RR. As Ra increases from 

102, convection starts earlier at higher values 

of the radius ratio. This is clearly shown in fig. 
6-b where conduction Prevails for RR=1.25 up 

to Ra =106. However, the convection started at 

Ra = 104 for RR=2, and Ra = 103 for RR=2.6. 

For RR  5 the convection was already domi-

nant at Ra = 102. 

 
4.3. Local nusselt number 
 

 The distribution for local Nusselt number 

along the hot cylinder, Nu  for Pr =0.71 and 

102  Ra  106 for different values of RR in the 

range 1.25  RR  10 is given in fig. 7. For 

RR=1.25, the conduction regime (Nu is con-

stant along the cylinder surface) prevails for 
Ra <105. At Ra =105, the free convection starts 

and the local Nusselt number is maximum at 

the bottom of the inner hot cylinder ( =0o). As 

the angle,   increases, Nu   monotonically 

decreases up to a location where flow separa-

tion occurs at   165o. The local Nusselt 
number starts to increase after separation till  

 =180o. 
 For RR>1.25,  the same behavior occurs 

except that the conduction regime ends  at 

lower  values of  Ra  and  for  RR  5, convec-
tion  is dominant for  Ra >102. 

 
4.4. Velocities and temperature distributions 
 

 The angular and radial velocities and tem-

perature distributions along a radius in the 

annular gap at  = 90o are shown in fig. 8 for 
Pr =0.71, and RR =2 in the Rayleigh number 

range 102  Ra  106.  
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Fig. 2. Isotherms (left) & Streamlines (right) for Pr=0.71, RR=1.25 (a) Ra=102,  (b) Ra=106. 
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Fig. 3. Isotherms (left) & Streamlines (right) for Pr=0.71, RR=2 (a) Ra=102,  (b) Ra=106. 
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Fig. 4. Isotherms (left) & Streamlines (right)  for Pr=0.71, RR=5 (a) Ra=102,  (b) Ra=106. 
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Fig. 5 Isotherms (left) & Streamlines (right) for Pr=0.71, RR=10 (a) Ra=102,  (b) Ra=106. 



S.M. Elsherbiny, A.R. Moussa / Convection between concentric cylinders 

306                                        Alexandria Engineering Journal, Vol. 43, No. 3, May 2004 

 
 
 
 

 
 
 

 
 
 
 

 
 
 
 

 
  

Fig. 6. Average Nusselt number for Pr=0.71. 

 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
(a)   RR=1.25                (b)   RR=2 

 

 
 
 

 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
    (c)   RR=5               (d)   RR=10 

 
Fig. 7 Local Nusselt number distribution for Pr =0.71. 
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 The dimensionless angular velocity, V  is 

very small for Ra 103 since the flow is domi-
nated by the conduction regime. For Ra>104, 

the laminar boundary layer regime prevails 

and the location of maximum or minimum ve-

locities moves closer to the cylinder surfaces. 

This indicates thinner boundary layer thick-
ness as Ra increases. The absolute value of 

maximum angular velocity near the hot inner 

cylinder is higher than its value near the cold 

outer cylinder. This shows that the flow 

speeds up near the hot cylinder. 

 The distribution of the dimensionless ra-
dial velocity, Vr  is  given  in  fig. 8-b. It shows 

that its value increases with   Ra.  It is in gen-

eral directed towards the center of the cylin-
ders except for Ra =105   in a small region 

near the hot cylinder. 

 The dimensionless temperature distribu-

tion,   is shown in fig. 8-c.  For Ra 104 it is 

logarithmic distribution as the  flow  is  in  the  

conduction  regime.  For Ra 105, the laminar 

boundary layer regime prevails and the tem-

perature change concentrates near the two 

cylindrical walls with higher temperature 
rates at higher   Ra. The core of the annular 

gap is almost isothermal and the temperature 

drop is higher near the inner hot cylinder. 

To study the effect of the radius ratio on 

the distributions, fig. 9 shows the velocities 
and temperature distributions for Pr =0.71 

and RR=10. From figs. 8 and 9, increasing RR 

moves the flow quickly to the boundary layer 
regime with higher velocities at higher Ra. The 

magnitude of the radial velocities increased 
with RR and the laminar boundary layer was 

more confined near the hot inner cylinder 

where most of the temperature drop occurs. 

The temperature is almost constant over a 
large part of the middle portion of the annular 

gap.     

 

 
 
 
 

 
 
 

 
 
 
 

 
 
 
 

 
     (a) Angular velocity component                                                       (b) Radial velocity component 
 

 

 
 
 
 

 
 
 
 

 
 
 
      

 
 
 
 

(c) Temperature distribution 
 

Fig. 8. Velocities and Temperature distributions along a radius for Pr =0.71, RR=2,  =90o.  
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5. Correlations and comparison with     

 previous work 

 
The correlating method suggested by Chur-

chill and Chu [21] is used and the form of 

correlation given by Kuehn and Goldstein [2] 

is adapted. The Least- Squares method is 

used to get the optimum constants of the cor-

relations which are given as: 
 

  1511515
convcond NuNuNu  ,                  (10-a) 

 
where,  

 

)RR(Ln
Nucond
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RR.Ra.

Ra.
Ln

Nu .       (10-c) 

 
The numerical results along with the 

correlations are shown in fig. 10. The maxi-

mum deviation is 7 % and the standard devia-

tion is about 0.014. A comparison with previ-
ous work for RR=2.6 is shown in fig. 11. A 

good agreement is shown with a maximum 
deviation of 9.6 %. 

 

 
    
 
 

 
 
 
 

 
 
   
        

 
 
 
 

       (a) Angular velocity component             (b) Radial velocity component   
 
 
 

           
 
 
 

 
 
 
 

            
 
 
 

 
 
 

 
 
 
 

 
                                               (c) Temperature distribution 

Fig. 9. Velocities and temperature distributions along a radius for Pr =0.71, RR=10,   =90o. 
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Fig. 10.  Comparison between correlation Nusselt number and numerical Nusselt number for Pr =0.71. 

                   
 

 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 

 
 
 
 

Fig. 11.  Comparison between correlation and previous data. 
 

 

6. Conclusions 

 
Laminar natural convection in the air 

annular gap between two infinite horizontal 

isothermal cylinders is numerically studied. 
The study covered a wide range of Ra from 102 

to 106   and the radius ratio changed between 

1.25 and 10. A computer program is devel-
oped to solve the governing equations. It was 

initially checked for the problem of pure 

conduction in the annular gap where the nu-

merical and analytical solutions were exactly 

the same. Streamlines and isotherms are pre-

sented as well as average and local Nusselt 
numbers. Also, velocity and temperature 

distributions are given. The study shows that 

the annular gap can represent a single inner 

cylinder in an infinite medium for RR=10 if Ra 

 105. For higher Ra, the radius ratio should 

be increased much over 10. For Ra  102 and 

RR  5, the flow represents pure conduction. 

The laminar boundary layer regime starts at 
higher Ra or larger RR. A correlation equation 

is given by eq. (10) where a good agreement is 

shown between present and previous work 
with a maximum deviation of 9.6 %.    

 

Nomenclature 

 
a is the radius of inner hot cylinder , (a 

=ri ir ) , m, 

cp is the specific heat , J/kgK, 
di is the diameter of inner cylinder , 
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( id =2a) , m, 

g is the gravitational acceleration , 2sm , 

Gr is the Grashof number, 

    232  aTTg ch  , 

h is the average heat transfer coefficient, 

KmW 2 , 

h is the local heat transfer coefficient, 

KmW 2 , 

k is the thermal conductivity,  mKW , 

L is the gap width,  io rr  , m , 

Nu is the average Nusselt number, 

  kah 2 , 

Nu is the local Nusselt number,   kah 2 , 

pd is the dynamic pressure, 2mN  

Pd is the dimensionless dynamic pressure,       

 2a

p
P d
d


 ,  

Pr is the Prandtl number,  kc p , 

r is the radial coordinate, m ,  
ri is the radius of inner cylinder, m , 
ro is the radius of outer cylinder, m . 
R is the dimensionless radial coordinate, 

ar , 

RR is the radius ratio, io rr , 

Ra is the Rayleigh number based on inner 

diameter      32aTTg ch  , 

T is the local fluid temperature, K, 
Th is the temperature of hot inner cylinder, 

K . 
Tc is the temperature of cold outer 

cylinder, K . 
vr is the radial velocity , sm , 

Vr is the dimensionless radial velocity, 

v is the angular velocity , sm ,  and 

V is the dimensionless angular velocity. 

 

Greek symbols 

 

 is the thermal diffusivity ,  pck   , 

sm2 , 

 is the coefficient of volumetric thermal 

expansion, 1K  ,  

 is the local density, 3mkg , 

 is the dynamic viscosity, mskg , 

 is the kinematic viscosity,  , sm2 , 

 is the angular coordinate, rad, and 

 is the dimensionless temperature, 

   chc TTTT   . 

 

Subscripts 

 
c is the cold, 
h is the hot, 
i is the inner, and 
o is the outer. 
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