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This paper addresses the minimum-cost design of pipelines transporting non-Newtonian 
fluids and equipped with equally spaced pumping units.  The author used a set of recently 
presented equations for flow of Herschel-Bulkley fluids in establishing minimum cost design 
equations.  One of these equations is for laminar flow whereas the other is for turbulent 
flow.  The equations are based on hydraulic and economic considerations.  Since both 
equations are implicit, two procedures are suggested to show the steps to be followed to 
estimate the minimum-cost diameter. A practical numerical example is given and both 

procedures are followed in solving the example. Application of both procedures yields the 

same rational minimum-cost diameter. 

في هذا البحث تمت معالجة التصميم الأمثل لخطوط الأنابيب التي تنقل سوائل لانيوتونية.  لقد أخذ في الإعتبار حالة خطوط الأنابيب 
المركب عليها مضخات متماثلة على مسافات متساوية.  تم استخدام مجموعة من المعادلات المستنبطة حدبثا و الخاصة بتدفق سوائل 

هما خاصة بالتدفق الطبقي و الأخرى دااط معادلات تصميمية لخطوط الأنابيب.  لقد تم تقديم معادلتين احبكلي في استنب-هرشل
خاصة بالتدفق الإضطرابي.  كان الأساس في استنباط المعادلات الإعتبارات الهيدروليكية جنبا الى جنب مع الإعتبارات 

ن لحلها و ذلك للتوصل للقطر يمن النوع الضمني فقد تم اقتراح طريقت الإقتصادية.  و لما كانت المعادلات التصميمية المستنبطة
 الأمثل لخط الأتابيب.  كذلك تم تقديم مثال عددي لحالة عملية و تم استخدام كلتا الطريقتين في حل المثال و كانت النتائج في الحالتين

 متطابقة و منطقية. 
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1. Introduction 
 

 The optimal design of pipelines transport-

ing Newtonian fluids has been investigated on 

different lines of approach Cheremisinoff [1].  

A preliminary optimal design was provided in 
which the coefficient of friction was considered 

as a constant depending on the relative pipe 

roughness Daugherty and Franzini [2].  

Considering that the coefficient of friction 

depends on both Reynolds' number and the 

pipe relative roughness, optimal pipeline 
designs were presented in a series of papers 

Hathoot [3]; Hathoot [4]; Hathoot [5] and 

Hathoot et al. [6]. Establishment of pipeline 

optimal design equations was based on the 

well known analytical and experimental 
equations that describe the motion of 

Newtonian fluids in pipes. On the other hand, 

owing to the complexity and the diversity of 

behavior of non-Newtonian fluids, the develop-

ment of "universal" equations for the 

prediction of head losses was not available.  
For this reason no attempts have been made 

to investigate optimal design in cases of non-
Newtonian fluids. Recently )Chilton and 

Stainsby [7]( a coherent set of equations for 

the laminar and turbulent flow of non-

Newtonian (Herschel-Bulkley) fluids has been 

presented. Since non-Newtonian fluids include 
fluids which are essential in industry, it is of 

practical importance to establish optimal de-

sign equations for pipelines transporting non-

Newtonian fluids. 

 

2. Non-newtonian fluids 

 
The rheology of the fluid is described by 

the Herschel-Bulkley model [8] 

 

 ny j   ,                          (1) 

 

in which  = shear stress;  = shear strain rate; 

y = yield stress; and j and n= parameters for a 

particular fluid. The Herschel-Bulkley model 

has been applied to a wide variety of fluids 

including sewage sludges, kaolin slurries, and 
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mine tailings.  Chilton et al. [9] presented the 

following equation for pressure loss in the 

case of laminar flow. 
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where p = pressure loss; L = pipe length; D = 
pipe diameter; and V = mean pipe velocity.  X 

is given by: 
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Given the mean velocity, or discharge, eq. 

(2) can be solved for the pressure loss by an 

iterative technique.  Alternatively, eq. (2) can 

be rearranged to give a direct solution of the 
mean velocity, or discharge, for a given 

pressure loss.  For turbulent flow an equation 

similar to eq. (2) can be obtained by combining 

the coefficient of friction, presented later on, 

and the Darcy-Weisbach equation Chilton and 
Stainsby [7]. 

 

3. Reynolds' numbers and coefficients of  

friction 

 

For laminar flow the Metzner-Reed [10] 
Reynolds' number is given as 
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where  = fluid density.  For turbulent flow the 

special form of Reynolds' number for 

Herschel-Bulkley fluids is, 
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where: 
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and 
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 The critical Reynolds' number was found 

to lie between 2,500 and 5,000. 

 Analogous to Newtonian fluids, the 

coefficient of friction in the case of laminar 
flow is given by: 

 

MRR

64
f   .                          (9) 

 
For turbulent flow )Chilton and Stainsby 

[7]( a coefficient of friction based on experi-

mental data was given by: 
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4. Minimum-cost design 

 
4.1. Cost of pipe 

 
 The levelized net annual cost of pipe per 
unit pipe length )Hathoot et al. [6]( can be 

written as: 

 

Kp =  D t p C1 ,                            (11) 

 

in which t = pipe wall thickness; p = specific 

weight of pipe material; and C1 = levelized net 

annual cost of pipes per unit weight of pipe 
material (C1 is constant for a suitable range of 

diameters).  The pipe wall thickness t may be 
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assumed to be roughly proportional to the 

pipe diameter Davis and Sorensen [11]; Russel 

[12] so that, 
 
t = C D ,                              (12) 

 
in which C = constant of proportionality that 

depends upon the expected pressure and 

diameter ranges of the pipe.  Substitution of 

eq. (12) in eq. (11) yields: 
 

Kp = C C1 p  D2 .                       (13) 

 
4.2. Cost of energy 

 
 For a pipeline with equally spaced 

pumping units, fig. 1, the power required per 

pump is given by: 

 

E

HQ
P

p
 ,                         (14) 

 

in which  = specific weight of the liquid to be 
pumped; Q = the discharge, Hp = head 

required per pump; and E = the overall 

efficiency of each pump.  Neglecting the effect 

of pipe fittings the head per pump is given by 

 



p
H p   ,                             (15) 

 

in which p = the pressure loss between two 

pumping units.  From eqs. (14) and (15) the 

power required per pump is, 
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It follows that the power required per unit 

length of pipe is 

 

LE

pQ
W


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in which L = the spacing between pumps. 

 
 

 
 

Fig. 1. Pipeline with equally spaced pumping units. 
 

 

The levelized net annual cost of pumping 
energy per unit pipe length (Hathoot et al. [6]( 

is given by: 
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in which C2 = the levelized net annual cost of 

pumping energy per watt. 

 
5. Total cost of pipeline 

 
 The total cost of the pipeline is simply the 

sum of the annual costs of pipes and energy.  
From eqs. (11) and (18), the levelized total 

annual cost of the pipeline per unit pipe 

length is given by: 
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6. Establishment of design equations 
 

 In general a pipe of large diameter 

produces a small friction head loss against 

which the pump should act.  On the other 

hand, though a pipe of a smaller diameter is 

cheaper, it produces a greater friction head 
loss.  Therefore, an optimal diameter exists for 

which the total annual cost of pipes and 

energy is a minimum.  For minimum-cost 
design differentiation of Ktu with respect to the 

diameter D should equal zero.  Differentiating 

both sides of eq. (19) and equating to zero 
yields, 
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solving for D, 
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in which, 

 

ECC2

QC
G

p1

2


 .                            (22) 

 

 It is worthy to note that the right hand 
side of eq. (21) is a function of the diameter D.  

Since the pressure drop and the pipe diameter 
are interrelated by different equation in cases 

of laminar and turbulent flows, each case is to 

be considered separately.   

 
5.1. Laminar flow 

 
Substituting V = 4Q / D2  into eq. (2) we 

can write: 
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in which, 
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For convenience eq. (23) is put in the form: 
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From calculus (Swokowski [13]) we have, 
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in which FD (D, p/L) and Fp/L (D, p/L) are 

partial derivatives of the right hand side of eq. 

(26) with respect to D and p/L, respectively.  

Differentiating partially and rearranging: 
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and 

 
X3 = aX + 2bX2 + 3cX3.                     (32) 

 

Similarly: 
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From eqs. (21) and (27) the optimal diameter 

equation for laminar flow is, 
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 It is obvious that eq. (34) is implicit and 

the optimal diameter is to be solved through a 

trial and error procedure. 
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5.2. Turbulent flow 

 
The Darcy-Weisbach equation can be put 

in the form: 
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in which g = acceleration due to gravity and f 

= coefficient of friction. 

 

Rearranging eq. (35), 
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Substitution V = 4Q/D2 into eq. (6) yields, 
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Combining eqs. (35), (10) and (37), we get: 
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in which, 
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 By means of eq. (38) the pressure loss for 

turbulent flow can be estimated.  In fact eq. 

(38) is analogous to eq. (2) which is used to 

estimate the pressure loss in case of laminar 
flow.  For convenience eq. (38) is put in the 

form: 
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in which, 
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Again for convenience eq. (41) is put in the 

form: 
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 Starting with eq. (21) and following the 

same procedure as in the case of laminar flow 
the optimal diameter in the case of turbulent 

flow is, 
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in which HD (D, p/L) and Hp/L (D, p/L) are 

partial derivatives of the right hand side of eq. 

(43) with respect to D and p/L, respectively.  

Differentiating partially and rearranging: 
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Similarly, 

 



M.H. Hathoot / Design of pipelines 

380                                      Alexandria Engineering Journal, Vol. 43, No. 3, May 2004 

 43
2

L/p XX
p

LA
1

L

p
,DH 












  .             (48) 

 
 Since eq. (44) is implicit the optimal 

diameter in the case of turbulent flow is to be 

found through a trial and error procedure. 

 

7. Procedure  

 
 For minimum-cost design of a pipeline 

with equally spaced pumping units the 

following procedure is recommended: 

1. The fluid properties such as , y, j and n 

should be known in advance, also the required 
discharge, Q, should be given. 

2. A rational value of the pipeline diameter, 
D, is to be assumed and the corresponding 

value of the pressure loss p/L is to be 

evaluated by using eq. (2) in the case of 

laminar flow and eq. (38) for turbulent flow.  

p/L is evaluated by trial and error using a 

simple iteration technique (Chilton and 

Stainsby [7]). 

3. Another diameter is assumed and the 

corresponding p/L value is obtained. 

4. Step 3 is then repeated for other diameters 

till a suitable number of (D, p/L) pairs are 

available. 

5. A graph of D versus p/L is plotted which 

we call the pressure-loss curve. 

6. A reasonable value of p/L is assumed 
and eq. (34) or eq. (44) is used to estimate D 

for laminar or turbulent flow, respectively. 

7. Step 6 is repeated for different p/L values 

to obtain a suitable number of (p/L, D) pairs. 

8. On the same aforementioned graph paper 

p/L versus D are plotted according to eq. (34) 

or eq. (44) and the resulting curve is called the 

optimal diameter curve. 

9. The point of intersection of the pressure-

loss curve and the optimal diameter curve 
provides the minimum-cost diameter and the 

corresponding p/L. 

 

8. Alternative procedure 

 

 The following alternative procedure is also 

recommended. 
1. The pressure-loss curve is obtained as 

explained in the first procedure. 

2. The total-cost Ktu is estimated by applying 

(19) and by inserting p/L and corresponding 
D values obtained from the pressure-loss 

curve. 
3. The pipe diameter D is plotted versus the 

total cost and the point of minimum Ktu on the 

graph corresponding to the required 

minimum-cost diameter.  It is worthy to note 
that in all steps X should be less than unity, 

otherwise calculations will not be completed.  

This is because negative quantities raised to 

fractional powers will appear. 
 

9. Numerical example 

 
 It is required to find the minimum-cost 

diameter of a pipeline delivering 0.02 m3/s of 

Kaolin slurry ( = 1,105 kg/m3, y = 4.18 
N/m2, j = 0.035 Pa.sn and n = 0.719), provided 

that p = 73575 N/m3; C = 0.01, C1 0.011, C2 = 
1.9 and E = 0.7. 

 

10. Solution 

 
 The steps of the recommended procedure 
are followed and the results are shown plotted 

in fig. 2.  Since laminar flow dominates eqs. (2) 

and (34) are used in performing calculations.  

As shown in fig. 2 the point of intersection of 
curves provides the minimum-cost diameter D 

= 0.288 m which corresponds to p/L = 66.5 
Pa/m with Rmr = 202.  In addition the 

alternative procedure, mentioned above, is 

applied as shown in fig. 3 and the same 

minimum-cost diameter is obtained. 

 

11.  Conclusions 

 
 Two equations for estimating the 

minimum-cost diameter of pipelines 

transporting non-Newtonian fluids are 

presented.  Although, the two equations, 
which are for laminar and turbulent flow, are 

implicit they can be solved by any simple 

iteration technique.  A numerical example 

considering a practical case provides a 

rational minimum-cost diameter. The example 

is solved using an alternative procedure which 
yields the same diameter. 
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Fig. 2. Graphical evaluation of the optimal diameter. 

 
 

 
 

Fig. 3. Graphical evaluation of the optimal diameter by 

considering the minimum total cost. 
 

 

Notations 

 

The following symbols are used in this paper: 
A is the quantity defined by eq. (25) 

A1 is the quantity defined by eq. (29), 

A2 is the quantity defined by eq. (46) 

a is the quantity defined by eq. (4)0, 

B is the quantity defined by eq. (40), 

B1 is the quantity defined by eq. (39), 

b is the quantity defined by eq. (4), 

C is the constant contained in eq. (12), 

C1 is the levelized net annual cost of pipes per 

unit weight of pipe material, 
C2 is the levelized net annual cost of pumping  

 energy per watt;, 
c is the quantity defined by eq. (4), 

D is the pipe diameter, 

E is the pump efficiency, 

f is the coefficient of friction; 

G is the quantity defined by eq. (22), 

g is the acceleration due to gravity, 

Hp is the head provided by pump, 

j is the parameter of a particular fluid, 

Ken is the levelized net annual cost of pumping  

 energy per unit pipe length, 
Kp is the levelized net annual cost of pipe per 

unit pipe length, 
Ktu is the levelized total annual cost of the 

pipeline per unit pipe length, 
L is the pipe length, 

n is the parameter of a particular fluid, 

P is the power provided per pump, 

p is the pressure loss, 
Q is the pipeline discharge, 

R is the Reynolds number for turbulent flow, 

RMR is the Metzner-Reed Reynolds number for  

 laminar flow, 
t is the pipe wall thickness, 

V is the pipe mean velocity, 

W is the power required per unit length of 

pipe, 
X is the quantity defined by eq. (3), 
X1 is the quantity defined by eq. (30), 

X2 is the quantity defined by eq. (31), 

X3 is the quantity defined by eq. (32), 

X4 is the quantity defined by eq. (47), 

 is the specific weight of fluid, 

p is the specific weight of pipe material, 

w is the apparent viscosity at the wall, 

 is the fluid density, 

 is the shear stress,  and 

y is the yield stress. 
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