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A new iterative scheme was developed using the Finite Element Method (FEM) to simulate 

the steady seepage of groundwater with a free surface. A constant-mesh with isoparametric 
8-nodes elements was used to represent the domain under study. The main idea of this 
scheme is to use a greater number of Gauss points to calculate the required integrals- 
through the solution process- over the elements crossed by the free surface. This idea 

enables the present scheme to use strictly sharp edge (discontinuous) for permeability at 
the free surface. Both of the solution accuracy and convergence are assured even if the 
permeability completely vanishes immediately outside the free surface. As the iterative 
procedure dose not require any modification of the initial mesh, superposition of different 
effects (coupled problems) may be easily performed. Excellent agreement was observed 
between the obtained numerical results and analytical solutions. A Fortran program was 
written to apply the present scheme to the two dimensional and axi-symmetric seepage 
problems. 

حددة لحل السريان الجوفي المستقر والذي له سطح حر. مثل المجال الذي يراد دراسته بشبكه من العناصر الم طورت طريقة
ط جاوس والتي تستخدم لحساب االعناصر والتي تمثل بثمان عقد لكل عنصر. والفكرة الأساسية هنا هو استخدام عدد أكبر من نق

غبر مفاجئي والذي يصل للصفر عند السطح الحر مع ضمان دقة المتكاملات أثناء الحل. وذلك مكن من التعامل مع نفاذيه ذات ت
ساعد علي دراسة مشكلتين أو أكثر يوتقارب الحل. وأثناء العملية التكرارية للحل لا نحتاج لأي تعديل لشبكه العناصر الأولية وذلك 

ة و أعطت تطابق ممتاز. وقد تمت كتابه معا لنفس المجال تحت الدراسة باستخدام نفس الشبكة. قورنت النتائج مع الحلول التحليلي
 برنامج فورتران لتطبيق الطريقة المقترحة.
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1. Introduction 
 

Determination of the locations of the free 

surface within an earth dam or around any 

hydraulic underground structure is a neces-

sary step for a complete design procedure. In 
free surface problems, the region where 

seepage occurs is initially undetermined, and 

the correct position of the flow line together 

with the exit point on the downstream face 

must be derived as a part of the solution. Due 

to difficulties introduced from non-linearity of 
boundary conditions for free surface problems, 

analytical solutions are restricted only for 

simple domain configurations with homoge-

nous isotropic/anisotropic physical parame-

ters. Conformal mapping and inverse hodo-
graph are the main tools to get analytical 

solutions [1-3]. 

Due to the limitation of analytical methods 

in solving practical problems, numerical 

methods are frequently used to solve these 
problems through iterative procedure. Among 

the numerical methods, the Finite Element 

Method (FEM) and the Boundary Element 

Method (BEM) are the most popular. Todsen  

[4] concluded that Finite Difference Method 
(FDM) is not flexible to deal with nonhomoge-

neous/anisotropic problems. In spite of the 

great accuracy that can be achieved by the 

BEM, there is one restricted disadvantage 

when dealing with heterogeneous domains. 

Heterogeneity drastically increases the 
complexity of the method besides wasting the 

main advantage of the method that decreasing 

the dimensionality of the problem by one [5-7]. 

In general, two approaches are always 

used to solve the free surface problem using 
the FEM with Galerkin formulation. Variable 

and constant mesh approaches. Variable 

mesh approach analyses only the region lying 

below the free surface that assumed as an 
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impervious boundary with underestimated 

initial guess for its elevation heads. The free 

surface must be shifted along prescribed 
directions through an iteration process till the 

elevation heads are equal to total fluid heads 

for the nodes which represent this free 

surface. Thus in this approach, the global 

conductance matrix needs to be recalculated 

from iteration to another as the configuration 
and the mesh is modified. Consequently 

strong computational effort is required [8-11]. 

In the variable mesh approach, conver-

gence and uniqueness of solutions are not 

always assured specially in case of dealing 
with heterogeneous domains. For this reason 

mathematicians work intensively on the 

solution of steady unconfined seepage by 

means of variational inequalities, where both 

the convergence and the uniqueness of the 

solution are guaranteed [12]. The drawback of 
solutions based on variational inequalities is 

the assumption of a homogenous domain in 

the simplest shape. In variable mesh ap-

proach, dealing with coupled problems using 

the same mesh is not possible [13,14]. For 
example, in case of studying consolidation 

through earth dams due to change in pore 

water pressure two meshes are required. One 

mesh for the stress-strain problem that covers 

the whole domain and the second for the pore 

water pressure problem that covers only the 
saturated part of the domain under study. 

Thus approximate interpolation of pore water 

pressure from the second mesh to the first one 

is necessary. This consequently reduces the 

solution accuracy. Also using two meshes 
increases both the computation time and the 

programming effort. Also, completely elimi-

nates the possibility of solving the coupled 

problems simultaneously. 

The constant mesh approach fixes the 

mesh through the domain and allows the free 
surface to pass through the elements. This 

approach requires less programming effort for 

implementation and can be easily applied to 

problems involving non-homogenous or multi-

layered media. Two concepts were used to 
apply both of Neuman and Dirichlet boundary 

conditions at the free surface. First one called 

the residual flow that was proposed by Desai 

[15]. This concept calculates the non-zero 

fluxes at the initial under-estimated proposed 

position of the free surface. Fluxes entering or 
leaving adjacent elements crossed by the 

guessed free surface are added together and 

inverted. Then transformed into nodal 

concentrated flows from which a nodal forcing 
vector produced and added to the load vector 

through the next iteration. This leads to 

convergence of the position of initial the free 

surface through iteration process to the actual 

one.  

Second concept used to apply the constant 
mesh approach was produced by Gobbi [16]. 

In this concept, constant mesh with triangular 

elements was used, then variable values for 

permeability was allowed through the 

elements and exact analytical solutions for the 
integrals were calculated. Thus sudden 

decrease of permeability through the element 

crossed by the iterative free surface was 

accepted. The upper most elements were 

separated in two parts, first part under free 

surface with full magnitude of permeability 
(completely saturated) and the second is above 

the free surface with a decreased value of 

permeability. During iteration process, deter-

mination of the intersection between the free 

surface and the triangular elements was a 
necessary step for computing the global con-

ductance matrix.  

All the preceding methods are unified 

under one philosophy that dealing the free 

surface as a streamline or impervious 

boundary. Therefore, in contrast with reality, 
the whole domain of seepage is always consid-

ered as a fully saturated domain. 

Consequently, Laplace’s equation is always 

used to represent the seepage problem. Simu-

lating the domain under study as a partially 
saturated one is another more accurate and 

realistic philosophy. In this case, the free 

surface cannot be considered as a streamline, 

then fluxes are allowed to pass through it and 

the problem deviates from determination of 

the unknown total head into calculation of the 
unknown excess pore water pressure. 

Prescribed relations between permeability, 

water content and excess pore water pressure 

are necessary to handle this philosophy. 

Determination of the position of the free 
surface is not necessary since it can be deter-

mined implicitly at the zero values of excess 

pore water pressure. Through the saturated- 

unsaturated philosophy, instead of using 

Laplace’s equation to simulate the problem 

Richard’s equation must be used [17, 18]. 
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This research applies the same concept of 

Gobbi [16], using isoparametric elements and 

increasing the Gauss points at elements 
crossed by the free surface. This enables 

accurate determination of the required 

integrands at the permeability edge through 

the solution process. This idea, in contrast to 

Gobbi’s method, does not require any 

calculation for the position of free surface 
(zero pore water pressure) through crossed 

elements. This is because during iteration 

process free surface is calculated implicitly 

through the solution procedure. This de-

creases both computation and programming 
efforts. Besides the previous advantage, for 

the same number of nodes, isoparametric 

elements are more superior to triangular ones 

from accuracy point of view. Also, isoparar-

metric elements can exactly simulate curved 

boundary surfaces till second degree, which 
are required for accurate simulation of the free 

surface near the exit point. 

 

2. Governing equation and boundary  

     conditions 
 

General equation for saturated seepage is 

the result of combining two separate 

equations. First one is derived from Darcy’s 

law and the second is derived from the 

continuity equation as: 
Darcy’s law,  
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where, ix  represents x and y directions, 
ixq  is 

the component of the specific discharge vector 

in ix  direction [L/T],   (x, y) is the potential 

head [L], p is the excess pore water pressure 

[ 2L/F ],  is the specific weight of the fluid 

[ 3L/F ], and k (x, y) is the hydraulic 

conductivity [L/T]. By mixing the above two 

mentioned equations the following linear 

elliptic partial differential equation (Laplace’s 
equation) can be introduced: 
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This equation has been used to solve 

seepage problems through porous media with 
the following assumptions: (1) steady state 

condition, (2) two-dimensional flow, (3) fully 

saturated domain, (4) incompressible fluid and 

soil matrix, and (5) no sources or sinks. 

To solve Laplace’s equation for a boundary 

value problem, boundary conditions of the 
studied domain must be known in advance. 

Considering the case of free surface seepage 

through dam, fig. 1, the following boundary 

conditions should be determined: 
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where, n/   is the flow velocity normal to 

the boundary (dimensionless). Non-linearity of 

free surface problems is introduced due to the  
unknown positions of seepage surface BC and 
its exit point C at the downstream face. In 

case of studying free surface problems involv-

ing  cylindrical  geometry  with   axisymmetry  

 

 

 
 

 

 

 

 

 
 

Fig. 1. Dam-boundary conditions. 
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Fig. 2. Well-boundary conditions. 

 
about the vertical axis y, it is convenient to 

use cylindrical coordinate system (r, y). 

For example, in case of studying uncon-

fined flow towards a pumping well, Laplace’s 
equation can be represented as: 
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where, r is the radial distance measured from 

the center of the well, and k(r, y) is the 

hydraulic conductivity  [L/T]. The associated 

boundary conditions for this problem, fig. 2, 
are the same as for the dam. 

 

3. Finite element formulation 

 

The spatial discretization of eq. (3) for the 

solution domain   is obtained using Galerkin 
finite element method [19]. The unknown 

function   for the solution domain is approxi-

mated by: 
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where i  is the shape function associated 

with node i, i is the unknown parameter at 

node i, and N is the total number of nodes. An 

approximate solution of eq. (3) is derived 

through orthogonalization process written as: 
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 for i=1,2,…,N.                                 (7) 

 

Applying Green’s theorem yields a  set of 

simultaneous equations with nonlinear coeffi-

cients which, in matrix form, is written as: 
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where, 


is the integral over  the domain  , 

00.Fm  , n, m=1, 2,.., N, e is the element 

number, Ne number of elements, e domain of 

element e, Ne is the total number of elements, 

and r 2  for  axisymmetric coordinates and 

equal to one for rectangular coordinates. For 

axisymmetric coordinates horizontal axis is 
represented by r instead of x.  

The isoparametric quadrilateral element 

with 8 nodes is used to discretize the simu-
lated domain (AB`C`E). Analytical determina-
tion of the integrand M using quadratic basis 

functions is not possible. So, the integrand 

must be mapped to a new coordinates   ,  

over a master rectangular element. For more 

details see Reddy [19]. Thus the sub-elements 
M can be represented as: 
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where, M1 represents number of Gauss points 

used to accurately calculate the integrand 

nmM , JI ,  are the coordinates  for the integ-

ration point (I,J), W denotes the corresponding 

Gauss weight, and F is a function that repre-

sents the transformed integrand nmM  on the 

  coordinates. For quadratic isoparametric 

elements, only four Gauss points in each 

direction are mathematically satisfactory to 

calculate nmM  precisely in case of smooth 

variation of the hydraulic permiability through 

the domain under study. Due to the sharp  

discontinuity of permiability at the unknown 
position of the free surface, a higher number 
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of Gauss points (till 30 points) were used in 

this research only at elements crossed by the  

free surface to accurately determine nmM . The 

functions   ,F are approximated by means 

of the polynomials of Legendre Pn [20]: 
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where, Int means integer number, and 

 A represents the permutations of A. The co-

ordinates i are taken as the values obtained 

by equating Pn with zeros. The values of the 

weights are obtained from: 
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By using the last two equations with 

 instead of   the unknown coordinates of 

Gauss points and their corresponding weights 
can be determined for any number of Gauss 

points. 

 

4. Steps of solution 

 
A Fortran program was written to solve  

the free surface problem using the previously 

explained concept. This has been done  

through the following main steps: 
1. Discretize the domain AB`C`E with isop-

arametric (8 nodes) quadrilateral elements. 
2. Consider the boundaries  AB and DE as 

Dirichlet B.C.’s  and the remaining  bounda-
ries as Neuman B.C.’s {AE,   BB`, B`C`, C`D} 

with zero fluxes. 

3. Take the unknown exit point of the free 
surface at downstream water level (point D). 

4. Neglect the assumption of the initial 
position of the free surface and suppose that 

the whole domain is fully saturated. 

5. Use Gauss elimination technique to solve 

eq. (8) and exploit the new values of pore 

water pressure to determine the expected 

permeability at every Gauss point through the 
next iteration.  

6. Continue iterations till the relative 

maximum difference between potential heads 

at two successive iterations is less than 0.5%. 
7. If the node above the assumed exit point 
on surface DC` has negative pore water 

pressure then the solution is completed, 

otherwise, move the exit point to this node 

and convert Neuman B.C. at this point to 

Dirichlet B.C. with head equal to the elevation 
head at that point, then repeat steps 5 and 6. 

This procedure must be repeated till the 

subsequent node to the exit point has a 

negative pore water pressure. As a first stage, 

through the solution process, the hydraulic 

conductivity above the free surface was taken 
equal to 1/10000.0 of the saturated one. After 

solution completion another more iterations 

are carried out due to the replacement 

hydraulic conductivity with zero using last 

achieved solution as initial guess. Practically 
there was no significant change in the final 

results (relative differences are less than 

0.1%). 

8. Calculate the velocity components and 

directions for every node. Traditional method 

calculates the derivatives of the potential 
heads through each element. Then by 

averaging the calculated derivatives at each 

node, the final velocity vector can be 

determined. This traditional procedure 

distorts both of magnitude and direction of the 
velocity field from the actual one. Therefore, 

for more accurate determination of the velocity 

field, Galerkin-FEM should be applied on eq. 

(1) as mentioned by Yeh [21]. The velocity 
components in x and y directions are 

considered as a dependent variables (un-
knowns) and approximated by shape 

functions similar to eq. (6). The potential head 

  in eq. (1), is substituted with the pre-calcu-

lated values of   at each node, embedded 

within the shape function that represents va-
riation of   between the nodes of each 

element. Hence, two sets of matrix forms can 
be developed as (x must be replaced by r in 

axisymmetric problems): 
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9. Calculate quantity of discharge at Dirichlet  

B.C.’s (AB & CE) by substituting the final 

solution of the  total potential head vector in 
eq. (8). 

 

5. Examples and verification of the method 

 

To demonstrate the advantages offered by 

the above-illustrated numerical scheme, 
several applications of seepage analysis prob-

lems are discussed herein  
 
5.1. Flow towards a pumping well 
 

In this example, flow moves towards a 

circular pumping well with radius 12.2 cm 

and under constant internal head inside the 
well H2 = 30.5 cm, the water head H1 at 

distance 195 cm from the well center is equal 

to 122 cm. This is the same problem studied 
in laboratory by Hall [22]. The domain studied 

was discretized with a mesh of 120, 

isoparametric elements, fig. 3-a. The exit point 

of the free surface was located at 76.3 cm, fig. 

3-b, while in Hall’s experiment results, this 

point lied at 83.4 cm, fig. 3-c. This difference 
was due the existence of the capillary effect in 

Hall’s experiment. Neuman, solved this 

problem with the assumption of no capillary 

effect – Laplace’s equation- with the variable 

mesh technique [8]. The exit point was found 
at 77.0 cm which approximately the same as 

the calculated one. In case of Dupuit’s as-

sumption, the exit point located at the water 

table level inside the well, fig. 3-c. Free surface 

position, equipotential lines and velocity field 

for this problem are shown in fig. 3-b. Velocity 
varies from a maximum value equal to 3.46 

cm/sec at the well wall to 0.08 cm/sec at the 

outer  boundary.  The  hydraulic   conductivity  

was assumed equal to 1 cm/sec. The quantity 

of flow was calculated at the well and the 

outer boundary, it was found equal to 15128 
and 15126 cm3/sec, respectively with relative 

difference equal to 0.013%. The relative 

difference between the calculated amount of 

flow by the present scheme and the corre-

sponding one to Dupuit’s assumption was 

equal to 4.3%. From the above results it can 
be concluded that the present scheme can 

more accurately solve the free surface problem 

for axisymmetric problems. 

 
5.2. Seepage through homogenous media 
 

The second problem is an unconfined 

plane seepage through homogenous rectangu-
lar dam with different base widths (L= 100, 

150, 200, 250, 300, 350 m) was considered. 
The upstream and downstream heads (H1 and 

H2) were taken constants as 100 and 0.0 m 

respectively. This problem was previously 

studied analytically by Polubarinova-Kochina 

[1,23]. The mesh used to discretize  the dam 

consists of 341 nodes and 100 elements. Fig. 

4-a shows a sketch of the problem. Fig. 4-b 

shows the results of free surface position, 
equipotential lines, and velocity field through 

the dam in case of dam width = 150 m. 

Velocity ranges from 0.39 m/day at point A to 

2.61 m/day at point C. Polubarinova-Kochina 

concluded that the relative position of the exit 
point of seepage, [He/H1], for dry downstream 

is equal to 0.371(H1/L) [23]. Under Dupuit’s 

assumption the quantity of seepage is equal to 
k(H1.H1/2L), the hydraulic conductivity  k 

was taken = 1m/day. Fig. 4-c shows a 

comparison between computed seepage flow 

rate per unit width in (m2/day) at upstream 
and downstream of the dam with the corre-

sponding values to Dupuit’s solution. Good 

agreement between different solutions can be 

noticed. Negligible differences are shown in fig. 

4-d between the positions of the exit point 

determined by different solutions. These 
differences completely vanish if there is node 

at the exact position of the exit point. Thus, 

increasing number of nodes which discretize 

the downstream dam face minimize these 

differences. As expected, both of the exit point 
elevation and the quantity of seepage  are 
going less as the dam width L increases.  
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5.3. Seepage through a dam with horizontal 
filter 

 
In this example one of the most difficult 

problems has been studied. It deals with the 

free surface seepage through homogenous 

dam with horizontal base drain. Using the pre-

mentioned techniques. In some situations the 

free surface may intersect the downstream 
dam face instead of passing the horizontal toe 

filter. Fig. 5-a presents the problem configura-

tion. This problem was solved analytically 

using the inverse hodograph and conformal 
mapping [2]. The upstream water head H1 was 

taken constant 100m, while  the position of 
the drain edge was taken variable (XF= 50, 70, 

90, 110, 130m). Fig. 5-b shows the free 

surface position, potential heads and velocity 
vectors through the studied dam for XF=70 m. 

Velocity vectors range from minimum at point 
B to maximum value at point D, see figs. 5-a, 

b. The variations of the dimensionless amount 
of seepage Q/(k.H1) at upstream face of the 

dam and the horizontal drain were compared 

with the analytical results. Fig. 5-c shows 

good agreement between solutions. Also, fig.  

5-c illustrates the behavior of different relative 

lengths of seepage that percolate the drain 
L/H1 against different values of XF/H1. 

Increasing XF causes decrease in L1. Excellent 

agreement between the numerical and the 

analytical solutions can be observed, due to 

the new idea used to handle boundary condi-

tions through this problem. Traditionally, as 
in the two previous examples, solutions start 
considering the exit flow point at D and this 

point sweeps through iteration process to-
wards point C`, till the consequent point to the 

exit one has a negative pore water pressure. 

  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

86 87 88 89 90 91 92 93 94 95 96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

118 119 120 121 122 123 124 125 126 127 128

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

150 151 152 153 154 155 156 157 158 159 160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

182 183 184 185 186 187 188 189 190 191 192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

214 215 216 217 218 219 220 221 222 223 224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

246 247 248 249 250 251 252 253 254 255 256

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

278 279 280 281 282 283 284 285 286 287 288

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

310 311 312 313 314 315 316 317 318 319 320

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

342 343 344 345 346 347 348 349 350 351 352

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

374 375 376 377 378 379 380 381 382 383 384

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

 
 

Fig. 3-a. Mesh discretized the pumping well problem. 
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Fig. 3-b. Free surface, equipotential lines and velocity field 
of the pumping well problem. 
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Fig. 3-c. Comparison between different solutions of the 
pumping well problem. 

 
So, position of exit point of the free surface 

settled at the nearest node to the exact one 

and through the solution process, only a 

limited part of the downstream face was 

represented by a Dirichlet B.C. In this 
problem, the whole length of the drain (DC`) 

was initially represented as a Dirichlet B.C. 

with zeros magnitudes for excess pore water 

pressure. This idea enables the exit point to 

pass between nodes representing the drain. 

Consequently more accurate results have been 
obtained with assuring the convergence of the 

problem in less number of iterations. This is 

expected because the Dirichlet B.C. is more 

restricted to the solution domain than the 

Neuman B.C. (dependent variable is always 

more accurate than its derivative). As the 
solution converges oscillation behavior may be 
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Fig. 4-a. Rectangular dam problem. 
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Fig. 4-b. Free surface, equipotential lines, and velocity 
field for rectangular dam with L=150 m. 
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Fig.4-c. Quantity of seepage against L/H, for rectangular 

dam problem. 
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Fig.4-d. Relative position of exit point against L/H, for 

rectangular dam problem. 

 
noticed along the free surface profile, to 

alleviate this situation the computed potential 

heads must be averaged with the previously 
computed one. So, the results of iteration I 
must be multiplied with a factor C1 and added 

to the results of iteration I-1 multiplied by the 

value (1-C1), where C1=1/I and not less than 

0.1. 
 
5.4. Seepage from earthen canal 
 

This problem is a free seepage from 

trapezoidal canal with bottom width and water 
depth (Dw) equal to 20 m and 10 m, respec-

tively and the side slope was taken 1:1. The 

canal is underlain by a highly permeable layer 

with a depth equal to 50 m. Fig. 6 shows the 

numerical solution of the free surface, equipo-

tential lines, and velocity field.  
Only half of the problem was considered 

due to symmetry along the centerline of the 

canal. JEPPSON R.W. solved the same prob-

lem numerically in 1968, [24]. It was also 

solved analytically for infinite depth of the per-
meable layer by Vedernikov [1]. The calculated 

flow width at the permeable layer is equal to 

64.4m; the corresponding one with Jeppson 

was found 62.3 m, while for analytical 

solution with infinite depth the width was 
equal to 67.5 m. The relative amount of 
seepage Q/(k.Dw) is equal to 6.757 with a 

difference of 0.1% from the corresponding 

value using the analytical   solution. 
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Fig. 5-a. Vertical upstream Dam with horizontal toe filter. 
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Fig. 5-b. Free surface, equipotential lines, and velocity 
field for dam with toe filter (XF=70 m, H1=100m). 
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Fig.5-c. Variation of L/H1 & Q/(k. H1) with XF/H1, for 

dam with toe filter. 
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Fig. 6. Seepage from trapezoidal canal [bed width/2 
=water depth=10m, side slope 1:1]. 

 

Maximum velocity can be noticed at the corner 

of the canal while minimum velocity was 

found at the intersection of the free surface 

with the canal. Dirichlet B.C. with a zero 
excess pore water pressure for the whole 

width of the permeable layer was taken into 

consideration during the solution process. 

 

6. Summary and conclusions 

 
In this research, a modified FEM was used 

to  solve for free surface  problems. The idea of 

the modification is increasing the number of 

Gauss points in the isoparametric elements, 

which are crossed  by the free surface. This 
enables an accurate calculation due to the 

sudden decrease in the magnitude of the 

hydraulic conductivity. A Fortran program was 

written by the author to apply this scheme. 

Different problems of seepage were solved 

(rectangular dam on impervious soil, pumping 
well, dam with a horizontal base filter, and 

canal). Results were compared with the 

corresponding analytical and numerical 

solutions and good agreement can be  noticed. 

The developed method enables to solve 
problems of heterogeneous and anisotropic 

media. 

In case of a dam with horizontal toe filter 

or a canal under lied with drain, the whole 

length of the downstream side of the problem 
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should be represented with Dirichlet (B.C.). 

This enforces free surface to exit within this 

downstream side. 
 

7. Nomenclature                                      

 

The following symbols are used in this 

paper: 

n
  is the normal derivatives of , 

i   is the shape function at node i, 

   is the potential head [L] , 

H1  is the upstream head  [L] , 

H2  is the downstream head [L] , 

He   is the head at downstream exit point of 

the free surface [L], 

ik  is the hydraulic conductivity in i 

direction [L/T], 
L  is the bed width for the rectangular 

dam [L], 
L1  is the crossed length of  the toe filter  

  [L], 
M1  is the number of Gauss points, 

iq    is the specific discharge or average 

velocity in I direction [L/T], 

1kH

Q
  is the dimensionless total seepage per 

unit width of the dam, 
r is the radial coordinate [L], 
x,y is the coordinates in horizontal and  

vertical directions [L], 
XF is the distance of the toe filter edge 

from the upstream toe [L],  

       is the Specific weight of the water  

           [F/L3], and 

 ,   coordinates of the master element [L]. 
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