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A new iterative scheme was developed using the Finite Element Method (FEM) to simulate
the steady seepage of groundwater with a free surface. A constant-mesh with isoparametric
8-nodes elements was used to represent the domain under study. The main idea of this
scheme is to use a greater number of Gauss points to calculate the required integrals-
through the solution process- over the elements crossed by the free surface. This idea
enables the present scheme to use strictly sharp edge (discontinuous) for permeability at
the free surface. Both of the solution accuracy and convergence are assured even if the
permeability completely vanishes immediately outside the free surface. As the iterative
procedure dose not require any modification of the initial mesh, superposition of different
effects (coupled problems) may be easily performed. Excellent agreement was observed
between the obtained numerical results and analytical solutions. A Fortran program was
written to apply the present scheme to the two dimensional and axi-symmetric seepage
problems.
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1. Introduction

Determination of the locations of the free
surface within an earth dam or around any
hydraulic underground structure is a neces-
sary step for a complete design procedure. In
free surface problems, the region where
seepage occurs is initially undetermined, and
the correct position of the flow line together
with the exit point on the downstream face
must be derived as a part of the solution. Due
to difficulties introduced from non-linearity of
boundary conditions for free surface problems,
analytical solutions are restricted only for
simple domain configurations with homoge-
nous isotropic/anisotropic physical parame-
ters. Conformal mapping and inverse hodo-
graph are the main tools to get analytical
solutions [1-3].

Due to the limitation of analytical methods
in solving practical problems, numerical
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methods are frequently used to solve these
problems through iterative procedure. Among
the numerical methods, the Finite Element
Method (FEM) and the Boundary Element
Method (BEM) are the most popular. Todsen
[4] concluded that Finite Difference Method
(FDM) is not flexible to deal with nonhomoge-
neous/anisotropic problems. In spite of the
great accuracy that can be achieved by the
BEM, there is one restricted disadvantage
when dealing with heterogeneous domains.
Heterogeneity  drastically increases the
complexity of the method besides wasting the
main advantage of the method that decreasing
the dimensionality of the problem by one [5-7].

In general, two approaches are always
used to solve the free surface problem using
the FEM with Galerkin formulation. Variable
and constant mesh approaches. Variable
mesh approach analyses only the region lying
below the free surface that assumed as an
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impervious boundary with underestimated
initial guess for its elevation heads. The free
surface must be shifted along prescribed
directions through an iteration process till the
elevation heads are equal to total fluid heads
for the nodes which represent this free
surface. Thus in this approach, the global
conductance matrix needs to be recalculated
from iteration to another as the configuration
and the mesh is modified. Consequently
strong computational effort is required [8-11].

In the variable mesh approach, conver-
gence and uniqueness of solutions are not
always assured specially in case of dealing
with heterogeneous domains. For this reason
mathematicians work intensively on the
solution of steady unconfined seepage by
means of variational inequalities, where both
the convergence and the uniqueness of the
solution are guaranteed [12]. The drawback of
solutions based on variational inequalities is
the assumption of a homogenous domain in
the simplest shape. In variable mesh ap-
proach, dealing with coupled problems using
the same mesh is not possible [13,14]. For
example, in case of studying consolidation
through earth dams due to change in pore
water pressure two meshes are required. One
mesh for the stress-strain problem that covers
the whole domain and the second for the pore
water pressure problem that covers only the
saturated part of the domain under study.
Thus approximate interpolation of pore water
pressure from the second mesh to the first one
is necessary. This consequently reduces the
solution accuracy. Also using two meshes
increases both the computation time and the
programming effort. Also, completely elimi-
nates the possibility of solving the coupled
problems simultaneously.

The constant mesh approach fixes the
mesh through the domain and allows the free
surface to pass through the elements. This
approach requires less programming effort for
implementation and can be easily applied to
problems involving non-homogenous or multi-
layered media. Two concepts were used to
apply both of Neuman and Dirichlet boundary
conditions at the free surface. First one called
the residual flow that was proposed by Desai
[15]. This concept calculates the non-zero
fluxes at the initial under-estimated proposed
position of the free surface. Fluxes entering or
leaving adjacent elements crossed by the

guessed free surface are added together and
inverted. Then transformed into nodal
concentrated flows from which a nodal forcing
vector produced and added to the load vector
through the next iteration. This leads to
convergence of the position of initial the free
surface through iteration process to the actual
one.

Second concept used to apply the constant
mesh approach was produced by Gobbi [16].
In this concept, constant mesh with triangular
elements was used, then variable values for
permeability was allowed through the
elements and exact analytical solutions for the
integrals were calculated. Thus sudden
decrease of permeability through the element
crossed by the iterative free surface was
accepted. The upper most elements were
separated in two parts, first part under free
surface with full magnitude of permeability
(completely saturated) and the second is above
the free surface with a decreased value of
permeability. During iteration process, deter-
mination of the intersection between the free
surface and the triangular elements was a
necessary step for computing the global con-
ductance matrix.

All the preceding methods are unified
under one philosophy that dealing the free
surface as a streamline or impervious
boundary. Therefore, in contrast with reality,
the whole domain of seepage is always consid-
ered as a fully saturated domain.
Consequently, Laplace’s equation is always
used to represent the seepage problem. Simu-
lating the domain under study as a partially
saturated one is another more accurate and
realistic philosophy. In this case, the free
surface cannot be considered as a streamline,
then fluxes are allowed to pass through it and
the problem deviates from determination of
the unknown total head into calculation of the
unknown excess pore water pressure.
Prescribed relations between permeability,
water content and excess pore water pressure
are necessary to handle this philosophy.
Determination of the position of the free
surface is not necessary since it can be deter-
mined implicitly at the zero values of excess
pore water pressure. Through the saturated-
unsaturated philosophy, instead of wusing
Laplace’s equation to simulate the problem
Richard’s equation must be used [17, 18].
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This research applies the same concept of
Gobbi [16], using isoparametric elements and
increasing the Gauss points at elements
crossed by the free surface. This enables
accurate determination of the required
integrands at the permeability edge through
the solution process. This idea, in contrast to
Gobbi’s method, does not require any
calculation for the position of free surface
(zero pore water pressure) through crossed
elements. This is because during iteration
process free surface is calculated implicitly
through the solution procedure. This de-
creases both computation and programming
efforts. Besides the previous advantage, for
the same number of nodes, isoparametric
elements are more superior to triangular ones
from accuracy point of view. Also, isoparar-
metric elements can exactly simulate curved
boundary surfaces till second degree, which
are required for accurate simulation of the free
surface near the exit point.

2. Governing equation and boundary
conditions

General equation for saturated seepage is
the result of combining two separate
equations. First one is derived from Darcy’s
law and the second is derived from the
continuity equation as:

Darcy’s law,

o9
=—ki——+¢, d=y+p/y. 1
Qx, {axi}qﬁypy (1)
Continuity equation,
a
P09, 79 g, 2)
o X oy

where, X; represents x and y directions, Qy, is
the component of the specific discharge vector
in x; direction [L/T], ¢ (x, y) is the potential
head [L], p is the excess pore water pressure
[F/L2], yis the specific weight of the fluid

[F/L3], and k (x, y) is the hydraulic
conductivity [L/T]. By mixing the above two
mentioned equations the following linear
elliptic partial differential equation (Laplace’s
equation) can be introduced:

i{kx ﬁ}+£{kyﬁ}:0.0. (3)
o X ox| 2ay oy

This equation has been wused to solve
seepage problems through porous media with
the following assumptions: (1) steady state
condition, (2) two-dimensional flow, (3) fully
saturated domain, (4) incompressible fluid and
soil matrix, and (5) no sources or sinks.

To solve Laplace’s equation for a boundary
value problem, boundary conditions of the
studied domain must be known in advance.
Considering the case of free surface seepage
through dam, fig. 1, the following boundary
conditions should be determined:

¢=H1l on AB
as (Dirichlet B.C.), (4-a)

p=y & %/ =00 onBC
as (Dirichlet & Neuman BC'’s), (4-b)

=Y on CD
as (Dirichlet B.C.), (4-c)
¢p=H2 on DE
as (Dirichlet B.C.), (4-d)
o9,/ _

n = 0.0 on EA
as (Neuman B.C.), (4-e)

where, O0¢/on is the flow velocity normal to

the boundary (dimensionless). Non-linearity of
free surface problems is introduced due to the
unknown positions of seepage surface BC and
its exit point C at the downstream face. In
case of studying free surface problems involv-
ing cylindrical geometry with axisymmetry

Fig. 1. Dam-boundary conditions.
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Fig. 2. Well-boundary conditions.
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about the vertical axis y, it is convenient to
use cylindrical coordinate system (7, y).

For example, in case of studying uncon-
fined flow towards a pumping well, Laplace’s
equation can be represented as:

li[rkr ﬁ}i{ yﬁ}o.o, (5)
ror orl oy ay

where, r is the radial distance measured from
the center of the well, and k(r, y) is the
hydraulic conductivity [L/T]. The associated
boundary conditions for this problem, fig. 2,
are the same as for the dam.

3. Finite element formulation

The spatial discretization of eq. (3) for the
solution domain Q is obtained using Galerkin
finite element method [19]. The unknown

function ¢ for the solution domain is approxi-
mated by:

¢/(x,y)=§)w(x,y)¢i, (6)

i=1

where y; is the shape function associated

with node i, @ is the unknown parameter at

node i, and N is the total number of nodes. An
approximate solution of eq. (3) is derived
through orthogonalization process written as:

b
Q| X ox| 2y oy

for i=1,2,...,N. (7)

Applying Green’s theorem yields a set of
simultaneous equations with nonlinear coeffi-
cients which, in matrix form, is written as:

[Mnan [2]ne =[FINa » (8)
Ne

M mn :ZM Sm =
-1

Ne

. 0w . OW;
EI o] K, 2V W1+kyya"”' Yildy,  (9)
v Q, OX OX oy oy

where, j is the integral over the domain Q,

0
Fn=00, n, m=1, 2,.., N, e is the element

number, Ne number of elements, Qg domain of

element e, Ne is the total number of elements,
and «a =2ar for axisymmetric coordinates and
equal to one for rectangular coordinates. For
axisymmetric coordinates horizontal axis is
represented by rinstead of x.

The isoparametric quadrilateral element
with 8 nodes is used to discretize the simu-
lated domain (AB'C’E). Analytical determina-
tion of the integrand M using quadratic basis
functions is not possible. So, the integrand
must be mapped to a new coordinates(¢,7)

over a master rectangular element. For more
details see Reddy [19]. Thus the sub-elements
M can be represented as:

Ne Ne M1 M1
an:ZM%n:ZZZF(glrUJ)WI Wy, (10)
e=1 e=11=1J=1

where, M1 represents number of Gauss points
used to accurately calculate the integrand
Mnm, &1.,1m3 are the coordinates for the integ-
ration point (LJ), W denotes the corresponding
Gauss weight, and F is a function that repre-
sents the transformed integrand M,,, on the
¢ —n coordinates. For quadratic isoparametric
elements, only four Gauss points in each
direction are mathematically satisfactory to
calculate M, , precisely in case of smooth
variation of the hydraulic permiability through
the domain under study. Due to the sharp
discontinuity of permiability at the unknown
position of the free surface, a higher number
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of Gauss points (till 30 points) were used in
this research only at elements crossed by the
free surface to accurately determine M. The
functions F(§ ,77) are approximated by means
of the polynomials of Legendre Pn [20]:

Inf(M1/2 ¢
YRR S Al I S
2" & t(M1-t) (M1-2t)

where, Int means integer number, and

(A)" represents the permutations of A. The co-

ordinates (are taken as the values obtained

by equating Pn with zeros. The values of the
weights are obtained from:

W, = 2 . (12)

(1—4.2{"2”}4 )L.

By using the last two equations with
ninstead of ¢ the unknown coordinates of

Gauss points and their corresponding weights
can be determined for any number of Gauss
points.

4. Steps of solution

A Fortran program was written to solve
the free surface problem using the previously
explained concept. This has been done
through the following main steps:

1. Discretize the domain AB'C'E with isop-
arametric (8 nodes) quadrilateral elements.

2. Consider the boundaries AB and DE as
Dirichlet B.C.’s and the remaining bounda-
ries as Neuman B.C.’s {AE, BB, BC, CD}
with zero fluxes.

3. Take the unknown exit point of the free
surface at downstream water level (point D).

4. Neglect the assumption of the initial
position of the free surface and suppose that
the whole domain is fully saturated.

5. Use Gauss elimination technique to solve
eq. (8) and exploit the new values of pore
water pressure to determine the expected
permeability at every Gauss point through the
next iteration.

6. Continue iterations till the relative
maximum difference between potential heads
at two successive iterations is less than 0.5%.
7. If the node above the assumed exit point
on surface DC® has negative pore water
pressure then the solution is completed,
otherwise, move the exit point to this node
and convert Neuman B.C. at this point to
Dirichlet B.C. with head equal to the elevation
head at that point, then repeat steps 5 and 6.
This procedure must be repeated till the
subsequent node to the exit point has a
negative pore water pressure. As a first stage,
through the solution process, the hydraulic
conductivity above the free surface was taken
equal to 1/10000.0 of the saturated one. After
solution completion another more iterations
are carried out due to the replacement
hydraulic conductivity with zero using last
achieved solution as initial guess. Practically
there was no significant change in the final
results (relative differences are less than
0.1%).

8. Calculate the velocity components and
directions for every node. Traditional method
calculates the derivatives of the potential
heads through each element. Then by
averaging the calculated derivatives at each
node, the final velocity vector can be
determined. This traditional procedure
distorts both of magnitude and direction of the
velocity field from the actual one. Therefore,
for more accurate determination of the velocity
field, Galerkin-FEM should be applied on eq.
(1) as mentioned by Yeh [21]. The velocity

components in x and y directions are
considered as a dependent variables (un-
knowns) and approximated by shape

functions similar to eq. (6). The potential head
¢ in eq. (1), is substituted with the pre-calcu-

lated values of ¢ at each node, embedded

within the shape function that represents va-
riation of ¢ between the nodes of each

element. Hence, two sets of matrix forms can
be developed as (x must be replaced by r in
axisymmetric problems):

[D]N*N [ax ]N*l = [P]N*l '

13
[Dln*n [qy aer = (Rl 49

where,
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Ne Ne
Dnm :ZDI?nn ZZJ.Q W nW maxdy
=1 =1 " °

P,=- Vi Kywy —— ¢ |dxdy ,
n ~ 0, i = XX x j

Ne 8 6;//1-
R, :—ZIQ vi kaw% dxdy . (14)
e=1 °

=1

9. Calculate quantity of discharge at Dirichlet
B.C.’s (AB & CE) by substituting the final
solution of the total potential head vector in

eq. (8).
5. Examples and verification of the method

To demonstrate the advantages offered by
the above-illustrated numerical scheme,
several applications of seepage analysis prob-
lems are discussed herein

5.1. Flow towards a pumping well

In this example, flow moves towards a
circular pumping well with radius 12.2 cm
and under constant internal head inside the
well H2 = 30.5 cm, the water head HI at
distance 195 cm from the well center is equal
to 122 cm. This is the same problem studied
in laboratory by Hall [22]. The domain studied
was discretized with a mesh of 120,
isoparametric elements, fig. 3-a. The exit point
of the free surface was located at 76.3 cm, fig.
3-b, while in Hall’'s experiment results, this
point lied at 83.4 cm, fig. 3-c. This difference
was due the existence of the capillary effect in
Hall’'s experiment. Neuman, solved this
problem with the assumption of no capillary
effect — Laplace’s equation- with the variable
mesh technique [8]. The exit point was found
at 77.0 cm which approximately the same as
the calculated one. In case of Dupuit’s as-
sumption, the exit point located at the water
table level inside the well, fig. 3-c. Free surface
position, equipotential lines and velocity field
for this problem are shown in fig. 3-b. Velocity
varies from a maximum value equal to 3.46
cm/sec at the well wall to 0.08 cm/sec at the
outer boundary. The hydraulic conductivity

was assumed equal to 1 cm/sec. The quantity
of flow was calculated at the well and the
outer boundary, it was found equal to 15128
and 15126 cm?3/sec, respectively with relative
difference equal to 0.013%. The relative
difference between the calculated amount of
flow by the present scheme and the corre-
sponding one to Dupuit’s assumption was
equal to 4.3%. From the above results it can
be concluded that the present scheme can
more accurately solve the free surface problem
for axisymmetric problems.

5.2. Seepage through homogenous media

The second problem is an unconfined
plane seepage through homogenous rectangu-
lar dam with different base widths (L= 100,
150, 200, 250, 300, 350 m) was considered.
The upstream and downstream heads (HI and
H2) were taken constants as 100 and 0.0 m
respectively. This problem was previously
studied analytically by Polubarinova-Kochina
[1,23]. The mesh used to discretize the dam
consists of 341 nodes and 100 elements. Fig.
4-a shows a sketch of the problem. Fig. 4-b
shows the results of free surface position,
equipotential lines, and velocity field through
the dam in case of dam width = 150 m.
Velocity ranges from 0.39 m/day at point A to
2.61 m/day at point C. Polubarinova-Kochina
concluded that the relative position of the exit
point of seepage, [He/H1I], for dry downstream
is equal to 0.371(H1/L) [23]. Under Dupuit’s
assumption the quantity of seepage is equal to
k(H1.H1/2L), the hydraulic conductivity k
was taken = 1m/day. Fig. 4-c shows a
comparison between computed seepage flow
rate per unit width in (m2/day) at upstream
and downstream of the dam with the corre-
sponding values to Dupuit’s solution. Good
agreement between different solutions can be
noticed. Negligible differences are shown in fig.
4-d between the positions of the exit point
determined by different solutions. These
differences completely vanish if there is node
at the exact position of the exit point. Thus,
increasing number of nodes which discretize
the downstream dam face minimize these
differences. As expected, both of the exit point
elevation and the quantity of seepage are
going less as the dam width L increases.
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5.3. Seepage through a dam with horizontal
filter

In this example one of the most difficult
problems has been studied. It deals with the
free surface seepage through homogenous
dam with horizontal base drain. Using the pre-
mentioned techniques. In some situations the
free surface may intersect the downstream
dam face instead of passing the horizontal toe
filter. Fig. 5-a presents the problem configura-
tion. This problem was solved analytically
using the inverse hodograph and conformal
mapping [2]. The upstream water head HI was
taken constant 100m, while the position of
the drain edge was taken variable (XF= 50, 70,
90, 110, 130m). Fig. 5-b shows the free
surface position, potential heads and velocity
vectors through the studied dam for XF=70 m.
Velocity vectors range from minimum at point
B to maximum value at point D, see figs. 5-a,
b. The variations of the dimensionless amount
of seepage Q/(k.H1) at upstream face of the
dam and the horizontal drain were compared
with the analytical results. Fig. 5-c shows
good agreement between solutions. Also, fig.
S-c illustrates the behavior of different relative
lengths of seepage that percolate the drain
L/H1 against different values of XF/HI.
Increasing XF causes decrease in L1. Excellent
agreement between the numerical and the
analytical solutions can be observed, due to
the new idea used to handle boundary condi-
tions through this problem. Traditionally, as
in the two previous examples, solutions start
considering the exit flow point at D and this
point sweeps through iteration process to-
wards point C, till the consequent point to the
exit one has a negative pore water pressure.
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Fig. 3-a. Mesh discretized the pumping well problem.
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Fig. 3-b. Free surface, equipotential lines and velocity field
of the pumping well problem.
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Fig. 3-c. Comparison between different solutions of the
pumping well problem.

So, position of exit point of the free surface
settled at the nearest node to the exact one
and through the solution process, only a
limited part of the downstream face was
represented by a Dirichlet B.C. In this
problem, the whole length of the drain (DC)
was initially represented as a Dirichlet B.C.
with zeros magnitudes for excess pore water
pressure. This idea enables the exit point to
pass between nodes representing the drain.
Consequently more accurate results have been
obtained with assuring the convergence of the
problem in less number of iterations. This is
expected because the Dirichlet B.C. is more
restricted to the solution domain than the
Neuman B.C. (dependent variable is always
more accurate than its derivative). As the
solution converges oscillation behavior may be
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N ~ 0.40
B < A [(—+— Present Results
T \ 0.357 —5—  Polubarinova-Kochina Results [23
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H1 D ]
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Fig. 4-a. Rectangular dam problem. 7
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Fig.4-d. Relative position of exit point against L/ H, for
rectangular dam problem.

noticed along the free surface profile, to

alleviate this situation the computed potential

heads must be averaged with the previously

computed one. So, the results of iteration I

y-Coordinate (m)

aaaaaa

33

v
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20 60 80 100 130 140 must be multipligd With a factor C'I gnd added

x-Coordinate (m) to the results of iteration I-I multiplied by the

. . o . value (1-C1), where CI=1/I and not less than
Fig. 4-b. Free surface, equipotential lines, and velocity 0.1

field for rectangular dam with L=150 m.

5.4. Seepage from earthen canal

This problem is a free seepage from
trapezoidal canal with bottom width and water

(Total Quantity of Seepage

4 depth (Dw) equal to 20 m and 10 m, respec-

S at Downstream tively and the side slope was taken 1:1. The

4 canal is underlain by a highly permeable layer

———  Dupuit Assumptio with a depth equal to 50 m. Fig. 6 shows the

3 numerical solution of the free surface, equipo-
— at Upstream tential lines, and velocity field.

Only half of the problem was considered
due to symmetry along the centerline of the
canal. JEPPSON R.W. solved the same prob-
lem numerically in 1968, [24]. It was also
solved analytically for infinite depth of the per-
meable layer by Vedernikov [1]. The calculated

Seepage Flow Rate [m3/ day]
KR L

! d flow width at the permeable layer is equal to

10 — T T T T T T 64.4m; the corresponding one with Jeppson

1.0 1.5 2.0 2.5 3.0 3.5 was found 62.3 m, while for analytical

L/H1 solution with infinite depth the width was

) ) ) equal to 67.5 m. The relative amount of
Fig.4-c. Quantity of seepage against L/H, for rectangular seepage Q/(k.Dw) is equal to 6.757 with a

d blem.
am problem difference of 0.1% from the corresponding

value using the analytical solution.
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Fig. 5-a. Vertical upstream Dam with horizontal toe filter.
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Fig. 5-b. Free surface, equipotential lines, and velocity
field for dam with toe filter (XF=70 m, H1=100m).
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Fig. 6. Seepage from trapezoidal canal [bed width/2
=water depth=10m, side slope 1:1].

Maximum velocity can be noticed at the corner
of the canal while minimum velocity was
found at the intersection of the free surface
with the canal. Dirichlet B.C. with a zero
excess pore water pressure for the whole
width of the permeable layer was taken into
consideration during the solution process.

6. Summary and conclusions

In this research, a modified FEM was used
to solve for free surface problems. The idea of
the modification is increasing the number of
Gauss points in the isoparametric elements,
which are crossed by the free surface. This
enables an accurate calculation due to the
sudden decrease in the magnitude of the
hydraulic conductivity. A Fortran program was
written by the author to apply this scheme.
Different problems of seepage were solved
(rectangular dam on impervious soil, pumping
well, dam with a horizontal base filter, and
canal). Results were compared with the
corresponding analytical and numerical
solutions and good agreement can be noticed.
The developed method enables to solve
problems of heterogeneous and anisotropic
media.

In case of a dam with horizontal toe filter
or a canal under lied with drain, the whole
length of the downstream side of the problem
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should be represented with Dirichlet (B.C.).
This enforces free surface to exit within this
downstream side.

7. Nomenclature

The following symbols are used in this
paper:
a%n is the normal derivatives of ,

Vi
Q0
HIl
H2
He

LI

M1
oF

KH1

XYy

XF
/4

¢n

is the shape function at node i,

is the potential head [L],

is the upstream head [L],

is the downstream head [L],

is the head at downstream exit point of
the free surface [L],

is the hydraulic conductivity in i
direction [L/T],

is the bed width for the rectangular
dam [L],

is the crossed length of the toe filter
(L],

is the number of Gauss points,

is the specific discharge or average

velocity in I direction [L/T],
is the dimensionless total seepage per

unit width of the dam,
is the radial coordinate [L],
is the coordinates in horizontal and
vertical directions [L],
is the distance of the toe filter edge
from the upstream toe [L],
is the Specific weight of the water
[F/L3], and

coordinates of the master element [L].
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