

Alexandria Engineering Journal, Vol. 42 (2003), No. 5, 577-587 577

© Faculty of Engineering Alexandria University, Egypt.

Imprecise computation technique to schedule AND/OR tasks
with global end-to-end deadline in distributed real-time systems

Wafaa A. El-Haweet, Hanan H. El-Meligy and Ibrahim Abd El-Salam
Computer Science and Automatic Control Dept., Alexandria University, Alexandria, Egypt

In a real-time system, tasks must produce logically correct results by their deadlines. These
tasks usually don't need to be executed in a sequential order. Rather, certain precedence
constraints must be handled between them along with timing constraints to provide correct
scheduling and consequently correct execution. In traditional precedence-constrained
scheduling, a task is ready to execute when all of its direct predecessors are completed.
Such task is called an AND task. In many applications, some tasks are ready to execute
when one or more but not necessarily all of their direct predecessors are completed. These
tasks are called OR tasks. The resultant system containing both AND & OR tasks is said to
have AND/OR precedence constraints. Directed Acyclic Graphs DAGs are used to represent
these systems. This paper introduces a method to combine both precedence constraints and

timing constraints into the same scheduling problem. Timing constraints here are in the
form of a global End-to-End Deadline EED between a start task and an end task of the
AND/OR graph representing the task system. A proposed Imprecise Computation Technique
ICT is introduced to maximize the solution quality within the available time. ICT is motivated
by the fact that one can trade off precision with timeliness; it prevents the total processing
time of the system from stretching over the EED. To examine and evaluate this proposed
imprecise scheduling solution, a Random Graph Generator algorithm RGG is created to
provide a wide range of random DAGs to be used in the simulation experiments.

 �� � �����	
 ��� ��� �	���� ������ ������ ���� ����� �������� ���
� �� ���� 		� � ����� � ��� ��!"# ���$# �	��%�
��� &��'��� ��"�%�� ������ 	�	� � ����' ()��" �*�� �# ������ ����
� �� +
� � �$,��"� ��. � ����. ������ ,��"� ��� �

��� �/'�'�� +����	�� ������ +
� � ��0 ������� ���	
�� ��0 ��*��� ��"�%�� 	��*�� 1�2 ���34�� ������ ��� ��*�'5�
,��"��� . ���� � 	��*� ����0��� ��	��*��� ���	
�� ��� �*��'�� ������ 6��
 7���"� 	"� ,��"��� �%$�
 ������ ���� ���*�'5� .

�'� ������ 8,$ �� ����� "���� � ." �# :	�2 ���"� �,2 ,��"��� �%$�
 ������ ;�� ���� � �	�	� <�=# ��*���� � ����
����� 7�	# �� ��� �*��'�� ������ 6��
 >��� ;�� . ������ �� ?�"�� �,$ �'� �"�# ���� . " ��� @%�� <,�� ������ ��!"

���'��� ��*�'5� 	�� A��� ���� ��*��'�� ����"�� "�/�# " . /���� � �*�C� �)��	 �� �������� ��. ��
���� ����D�� �	=�'��
�!"�� 8,$ /�� .���	
�� ����� >�" � ��*�'5� 	�� � ��"�%�� 	��*�� ��� (�	�� �	�	
 ������ �*��� E���� ��3� . 	�*�� /�����

/�# ,��"� ���	� ,"� �		���� ������ ��"�%�� ������� ������ 8,$ � "�%�� �=F /�� �� 7���"�� �2 ��!"�� ������� ���D�� � ����
���� ���� . ���'�� ������ ��!" ���	
� �����*� ����'� �*��� �2 �!"�� 8,$ /�� ���	
 � ��	��*��� �*����� ����� �� �

A� &��'��� � ��� 	�	� � �	�
�� ����� ()��" �� /�0���. 	���� ��� ��'�)��� ������ �2 ����'��� �*����� 8,$ �����
�		���� ������ ��"�%�� ������ /G= � ������ �!�� %�
"2 /��' � ()��"�� � � 	�� �� ;��� ���3��� $ �����*��� . H����

	 �� �������� ��. ��
���� ����D�� �� 6'�� ���" ������ ����D��)��D� 	��� ���0�� �"� ��*����� 8,$ ���*� � �)��
�������� +��
� � ����	=�'� �*�C�.

Keywords: AND/OR precedence constraints, Directed acyclic graphs, Imprecise

computation, Dependability, Design-to-time real-time scheduling

1. Introduction

Real-time systems are defined as those
systems in which correctness depends on the
logical result of computation as well as on the
time at which the results are produced. Most
real-time systems are designed using ad hoc

techniques [1,2], making them very brittle,

difficult to understand and expensive to
modify. The primary reason behind this
situation is that task representation is not
always taken into consideration. A general
model to represent a real-time task system
can be in the form of AND/OR DAGs. A system
having both AND tasks and OR tasks is an
AND/OR precedence-constrained system [3-7].

W. A. El-Haweet et al. / Imprecise computation technique to schedule AND/OR tasks

578 Alexandria Engineering Journal. Vol. 42, No. 5, September 2003

Many real life applications benefit from the
AND/OR precedence constraints model,

especially when the time limit factor is
involved. For example, the goal of an assembly
sequencer is to produce a sequence that
completely decomposes the original product
into its individual parts. If there is a time limit
to disassemble the product, it is more likely to
disassemble main parts or groups of parts
first. Then, if any time is left, disassemble the
rest of the product. The first step must be
performed following precedence order. The
second step is done at any order providing
best performance in the available time. This
model can be represented in the form of
AND/OR DAGs, where the direct predecessors
of the OR tasks indicate which tasks are to be

scheduled in the first then in the second
steps. To apply the EED timing constraint over
the AND/OR precedence constraint system, a

single start and end tasks are introduced by
modifying the AND/OR DAG that represents

the task system model to contain single start
and single end tasks where the EED is placed
between them. An ICT is proposed to handle
the problem of missing the EED in the

presence of a transient overload. The proposed
ICT starts by a feasibility check algorithm to

detect the system dependability in the early
stages of the scheduling process. The
foundation of the scheduling framework
described here is a simple but flexible
scheduling model. Instead of dealing with
specific applications, abstract task systems
are used. This leads to a better understanding
of the system model and the corresponding
scheduling problem. The rest of this paper is
organized as follows: Section 2 shows the
evolution of task representation. Section 3
gives a general scheduling overview. Section 4
describes different implementations of the
imprecise computation technique, and
compares the traditional imprecise scheduling
technique to the proposed imprecise
scheduling technique. Section 5 gathers the
proposed work all together. Section 6 contains
performance evaluation through simulation
and Section 7 draws conclusions and recom-
mends future work.

2. Task representation

The representation of tasks in a real-time
system has three major models:

• Linear chain: when tasks are independent
of each other, a single task may be viewed as a
linear chain of subtasks. Each task may
execute sequentially on many different
processors as each of its subtasks represents
a segment of the main task that executes on
one of the processors. When sequential
precedence constraints exist among tasks,
they follow the same rules used with the linear
chain of subtasks. This model is simple and
helped many researchers to immerge in the
study of distributed real-time systems [8] to
develop powerful scheduling algorithms and to
prove their efficiency through simulation, but
it is too narrow to cover all the real-time
applications where the precedence constraints
among tasks or subtasks are not linear.

• AND-only graphs: AND-only DAGs were

used to permit computation of parallel and
distributed processing. An AND task is ready

to execute when all its direct predecessors are
completed. The partial order over these tasks
is known as AND-only precedence constraints.
AND-only task representation is widely used in

different domains of the real life. Examples are
given in [9]: PERT (Program Evaluation and
Review Technique) and CPM (Critical Path
Method) models are essential for project
scheduling. AND-only directed graph model is

more general than the linear chain model, but
it falls short in describing many real-time
applications encountered in practice. In these
applications, a task may become ready for
execution when some but not necessarily all of
its direct predecessors are completed.

• AND/OR graphs: OR tasks are added to
the previous model to permit more flexibility to
the real-time system representation. This
model is the general task graph representation
because it can be used to represent all
possible task models. The concept of AND/OR

directed graph model is not new, it is used in
Artificial Intelligence where some problems

may be solved in one of many ways [10], it
also has some applications in compiler design
to represent SWITCH-CASE statements [11].

Fault-Tolerant applications may also benefit
from AND/OR graph scheduling where OR

W. A. El-Haweet et al. / Imprecise computation technique to schedule AND/OR tasks

 Alexandria Engineering Journal. Vol. 42, No. 5, September 2003 579

tasks are known as threshold tasks where
most error treatment strategies are based on
some kind of redundancy or replication [12].
The use of AND/OR graphs to represent

assembly-planning problems were introduced
in [13,14]. There are two types of AND/OR
scheduling problems: unskipped scheduling
problem where all predecessors of every OR

task must eventually be completed, and
skipped scheduling problem where some OR

predecessors may be left unscheduled [3].

3. Scheduling

Many optimal scheduling algorithms work

in two phases:

• In the pre-processing phase, the given task
system is modified to achieve consistency or to
remove complicating or conflicting informa-
tion, such as the precedence constraints.

• In the scheduling phase, the resultant
task system is scheduled according to a
greedy priority-driven heuristic.

There are, in general, two types of
scheduling: scheduling to meet deadlines and
scheduling to minimize completion time. Both
types of scheduling were investigated in [3]
over AND/OR/Skipped and Unskipped

variants through different models of graphs
starting from general models and ending by
simpler models. It was proven in [3] that: most
problems of scheduling tasks with deadlines
are NP-complete on a single processor, also

problems involving the minimization of com-
pletion time in a multiprocessor are NP-com-
plete, and when AND & OR tasks are present

in the same graph, every tractable problem in
the scheduling literature becomes NP-
complete. All the above justifies the need for

heuristic algorithms to solve such problems.
This paper focuses on the pre-processing

phase, where the AND/OR graph is processed
into an AND-only graph with special property.
A heuristic algorithm –CljDelete– is proposed

in [3] to solve the problem of scheduling
AND/OR/Skipped task system to minimize

completion time on a single processor. A
modified version of CljDelete– resulting in
ModCljDelete heuristic algorithm– is used in

this paper to provide us with the schedule
tasks with minimum acceptable completion
time. This algorithm is used as a starting step

for the proposed imprecise computation tech-
nique ICT shown in the following section.

Tasks involved in the resulting schedule are
considered to be the mandatory M tasks of the
system, and tasks left unscheduled are
considered to be the optional O tasks of the

system.

4. Imprecise computation

A real-time system functions properly only
in the absence of timing faults. For many such
systems, having an approximate but usable
result on a timely basis is better than having a
late and precise result. An approximate but
usable result can often be produced by much
less processor time than a precise result. So,
imprecise computation technique is applicable
whenever a task can produce an imprecise
result in less execution time than it would
take to produce an exact one in order to
conserve resources and eliminate timing
faults. This observation is the basis for the
imprecise computation technique. By trading
off precision for timeliness, the imprecise
computation technique prevents missed
deadlines by ensuring that an approximate
result of an acceptable quality is available
whenever the exact result cannot be produced
in time. A system based on the imprecise
computation technique is called an imprecise
system. So, the imprecise computation
technique is a way to make a real-time system
dependable. By definition [15,16], dependabil-
ity is the capability of a system to deliver the
specified application services during its period
of operation. On the other hand it does not
forbid the occurrence of failures in general.
Dependable real-time scheduling algorithms
are capable of achieving high deadline
compliance and high predictability. Deadline
compliance represents the probability that the
system will meet a task’s time constraints.
Predictability represents the system’s ability to
decide the feasibility of meeting the time
constraints of a given task from a task set well
ahead of the deadline. A dependable real-time
system produces predictable results even
when the timing constraints or the system
environment varies.

A task in an imprecise system can be
implemented using one of three methods [17]:

W. A. El-Haweet et al. / Imprecise computation technique to schedule AND/OR tasks

580 Alexandria Engineering Journal. Vol. 42, No. 5, September 2003

• The Milestone Method: A task system and
its underlying computation algorithm are said
to be monotone if the quality of the
intermediate result produced by it is non-
decreasing as it executes longer. A monotone
task system produces a precise result when
the entire system completes. An approximate
result can be made available by recording the
intermediate results produced by the system
at approximate instants of its execution, i.e.,
milestones.

• The Sieve Method: A computation or a set
of computations whose sole purpose is to
produce outputs that are at least as precise as
the corresponding inputs is called a sieve
function. If a sieve function is executed, it

improves the accuracy of its inputs. If it is
skipped, processing time is saved but at the
expense of having less accurate values. Hence
a task that carries out a sieve function is

optional. It is either completely executed or
entirely skipped.

• The Multiple-Version Method: This method
provides at least two versions of the task
system: the primary version and the alternate
version(s). The primary version produces a
precise result but has longer processing time
while an alternate version has a shorter
processing time but only produces an
approximate and acceptable result. The
alternate version corresponds to the
mandatory part of the task system. The
difference between the two versions defines
the optional part. When multiple versions are
used, it is necessary to decide before the task
starts which version will execute. Also, the
optional part will be completely executed
(primary version) or not executed at all
(alternate version). This requirement is also
called a 0/1 constraint.

The AND/OR scheduling model can be

used to allow real-time systems to function
correctly under transient overload, by omitting
certain portions of the task system in order to
meet hard real-time deadlines. Presumably,
under normal operating conditions the full
task system is executed and all the deadlines
are met. This is done using the Unskipped

scheduling model where all the tasks must
eventually be completed. When an overload
occurs (i.e. when the processor utilization
exceeds 100%) and the processor can no

longer meet all the deadlines, some portions of
the task system may be skipped in order to
allow critical tasks to meet their deadlines.
The AND/OR/Skipped task model can repre-

sent the portions of the task system that may
be skipped. It can represent applications
where the precision increases in discrete steps
as a task is either executed or skipped as a
whole and not partially executed, and this is
presumably more common in real-time
applications. Our intention is to make a
liaison between the scheduling of AND/OR

task systems and the concept of imprecise
computation in order to enhance the
performance of the system by decreasing its
failure rate. So, we propose an imprecise
computation technique ICT that can be
applied on a real-time system with AND/OR

precedence constraints. This technique can be
applied on general graphs. A global End-to-
End deadline EED is introduced to this task

system between a start node and an end node
in the graph. The proposed imprecise
computation technique differs from the
traditional one in several points such as:

• The traditional model is applied on
system composed of independent tasks, each
task is formed of a linear chain of subtasks,
while the proposed model is applied on
systems that can be represented on the form
of a general AND/OR graph.

• In the traditional imprecise computation
technique, a task is decomposed into
mandatory subtask and optional subtasks.
All the mandatory subtasks must be executed
for the system to produce correct results. The
execution of optional subtasks enhances the
performance of the system as long as the
end-to-end deadline is not violated. On the
other hand, in the proposed model, a task is
dealt with as a unit that cannot be
decomposed. Tasks are identified as
mandatory M or optional O tasks according to
their type (AND or OR tasks) as well as their

position in the graph. For instance, a
maximal task (which is a task with no
successors) is always an M task, while a

minimal task (which is a task with no
predecessors) can be an O task. Also an AND
task can be an O task when it is a direct
predecessor of an OR task in the graph, while

W. A. El-Haweet et al. / Imprecise computation technique to schedule AND/OR tasks

 Alexandria Engineering Journal. Vol. 42, No. 5, September 2003 581

the direct predecessors of an M AND task are
all M tasks.

• The end-to-end deadline in the traditional
imprecise computation model is defined as a
special deadline for each task from the
starting subtask to the end subtask. In this
case a set of deadlines D=[d1,d2,…,dn] is

associated with the set of tasks
T=[T1,T2,…,Tn]. The global end-to-end deadline
EED of the proposed model is defined over the

whole system between a starting task and an
end task of the system.

• The best way to implement a traditional
imprecise computation model is using the
milestone method, as it gives great flexibility

to the scheduling algorithm. This method
cannot be used in the AND/OR precedence
constraint model. Rather, the sieve model is

preferred in this case because it works on the
concept of 0/1 constraint that is more
convenient as each task is dealt with as a
complete unit that cannot be decomposed. It
is either completely executed or entirely
skipped.

5. The proposed solution

This section introduces the proposed com-
plete solution that includes a new technique
to schedule a task system with
AND/OR/Unskipped precedence constraints in

an off-line mode, taking into consideration the
existence of a global EED over the whole

system, to obtain an imprecise result with
minimum number of skipped tasks, i.e. with
maximum possible quality. This problem-
solving concept is not new, it is known in the
literature as “Design-To-Time Real Time
Scheduling” [18]. It is an approach to real-time

problem solving in situations where multiple
methods exist for many tasks that a system
needs to schedule. It involves designing a
solution to a problem that uses all available
resources to maximize the solution quality
within the available time.

5.1. System model

This section introduces the basic

terminology needed for the system model used
in this paper. It represents a real-time system

consisting of a general task graph and
applying the global EED concept.

• The system consists of a set of m identical
processors P = {P1,P2,…,Pi,…,Pm}and a set of n
tasks T = {T1, T2,…,Ti,…,Tn}.

• Each task Ti executes on one processor
for pti units of time. So a set of processing
times pt = {p1,p2,…,pi,…,pn} is associated with
the set of tasks T.

• There is a partial order < defined over T.
- If Ti < Tj, then Ti is a predecessor
of Tj, and Tj is a successor of Ti.
- Ti is a direct predecessor of Tj and
Tj is a direct successor of Ti if there is
no Tk such that Ti < Tk < Tj.

• The partial order < is said to be in-forest if
whenever Tk < Ti and Tk < Tj, either Ti < Tj or Tj
< Ti, and it is said to be in-tree if it has a

unique element with no successors.

• Ti is an AND task if its execution may
begin only after all its direct predecessors are
completed, and Tj is an OR task if its
execution may begin after any one of its
direct predecessors is completed.

• The partial order is also represented by a
weighted an transitively reduced directed
graph G = (T, E, pt, II), called the task graph.
- In this graph, there is a vertex Ti
for every task in the set T.
- The set E is known as the set of edges: if
Ti is a direct predecessor of Tj in the partial
order, then (Ti , Tj) is an element of E.
- The set pt = {pt1, pt2,…,pti,…,ptn} denotes
the set of processing times.

- The set π = {π1, π2,…, πi,…, πn} denotes the
set of thresholds. It indicates the number of
direct predecessor tasks that must be
completed before a task may begin execution.

• A task graph together with a global end-
to-end deadline EED (between a start task
and an end task) is denoted (G,EED). This 2-

tuple characterizes a scheduling problem; it
is called a task system.

• A task with no successors is a maximal
task, and a task with no predecessors is a
minimal task.

- All the maximal tasks in a task graph are
classified as essential tasks; this means that

they must be executed.
- If an AND task is essential, then its direct
predecessors are essential.

W. A. El-Haweet et al. / Imprecise computation technique to schedule AND/OR tasks

582 Alexandria Engineering Journal. Vol. 42, No. 5, September 2003

- If an OR task Tj is essential, then the

scheduling algorithm must choose one direct
predecessor Ti to be essential and the
precedence constraint Ti < Tj must be obeyed

in scheduling the task system.
- If a task is not classified as essential, it is
inessential.
a- In a skipped task system, inessential

tasks may be skipped, that is, they do not
have to be executed.
b- In an unskipped task system, inessential

tasks must eventually be completed.

5.2. ModCljDelete heuristic algorithm

Modifications on the CljDelete algorithm

proposed in [3] resulting in ModCljDelete

algorithm are:

• First: the set of tasks T can be
represented as a vector Tnx1 (of length n which
is the number of tasks in the graph) where a
2 means an OR task and a 1 means an AND
task. The index of Tnx1 itself will be the id of

the task. In this way, there is no need for the
set of task types kind[n] in the input.

• Second: to represent the set of edges E,
we can benefit from the Adjacency Matrix AM

concept, to eliminate the multiple use of the
depth-first-search DFS, as it will be direct
retrieval from the AM. AM[i,j]=1 when an arc
exists from Ti to Tj and 0 otherwise. Some of

the advantages of this method are: the ease of
implementation, as there is no need for a
large number of queues and id's, as well as
many repetitions of the DFS, the time
complexity to retrieve data from the AMnxn or
Pathnxn matrices is usually O(1) and at most
never exceeds O(n2), while the time
complexity of the CljDelete algorithm was
O(n2(m+n)) [3], where n is the number of
tasks and m is the number of arcs in the task

graph.
This algorithm results in the set of

mandatory tasks of the system. It is also used
as a feasibility check algorithm.

The ModCljDelete algorithm’s pseudo code

is as follows:

Input: Vector of tasks Tnx1 and AMnxn to represent the
AND/OR graph, set of processing times ptnx1.
Output: Vector of tasks Tnx1 and AMnxn to represent the
Mandatory tasks.

Variables: integer lengthnx1, ordegreenx1, costnx1, sumnx1,
Pathnxn, OR_Queue,.
Start:
p. Copy AMnxn into Pathnxn.
 Form Pathnxn using the following transitive closure
algorithm:
 For (k=1; k≤n; k++)
 For (i=1; i≤n; i++)

 For (j=1; j≤n; j++)
 Path[i,j]= Path[i,j] OR (Path[i,k] AND Path[k,j])

0. Copy the processing time ptnx1 into lengthnx1.
 For each OR task k, where T[k]=2:

a. check the k's column of Path
(Path[i,k], for all i=1 to n), tasks i's
with Path[i,k]≠0 are all the
predecessors of the OR task k.

b. if all predecessors i's are AND tasks
(T[i]=0), or no predecessors exist for
task k, then put k in the OR_Queue.

1. If OR_queue is empty, quit(done).
2. Initialize to zero all ordegree[] counters associated
with tasks.
3. For each task k in the OR_Queue
 The non-zero element in A[j,k], for all j=1to n,
represents an AND predecessor of task k.

 The ordegree[j] equals to the sum of all the direct
successors of task j, i.e.:

 ordegree[j]=Σ for all i =1 to n AM[j,i].
4. Compute floating-point cost ratio for each AND task i.
 cost[i] = length[i]/ordegree[i]
5. Find direct predecessors j's of each task in the
OR_Queue k from AM[j,k].
6. Find predecessors i's of tasks j's from Path[i,j], for each
one perform:

 sum[j] = sum[j] + cost[i].
7. Find task i where sum[i] is the largest number in the
sumnx1.
8. From A[i,k] find the direct OR successor k of task i
(where T[i]=2)

a. let A[i,k]=0 (i.e. remove the arc).
b. If task k has now only one predecessor

(only one non-zero element in A[j,k] for
all j=1 to n) then remove task k from
the OR_Queue and let T[k]=0.

9. If the OR_Queue is empty then refill the OR_Queue
with a new set of minimal OR tasks.
10. Go to step 1.

5.3. Feasibility check algorithm

The set of tasks is considered to be

feasible whenever the completion time of its
subset of mandatory tasks doesn’t exceed the
given EED. Otherwise the set of tasks is
infeasible. At the end of ModCljDelete

algorithm, the total execution time of
mandatory tasks minproc is computed and
compared with the EED.

• The task system is infeasible if minproc >
EED, in this case a FAILURE occurs with no

possible recovery with our solution unless the

W. A. El-Haweet et al. / Imprecise computation technique to schedule AND/OR tasks

 Alexandria Engineering Journal. Vol. 42, No. 5, September 2003 583

user changes some of the system
configurations.

• Otherwise, it is feasible if minproc ≥ EED,
and SUCCESS occurs with different degrees
of quality.

5.4. Implementation of ICT

After the AND/OR graph is generated by

RGG or given by the user, the ModCljDelete is

applied over the graph. At the end of this
algorithm, the total execution time of the M
tasks minproc is computed and compared with
the EED.

• The system is infeasible if minproc >EED,
in this case a FAILURE occurs. No recovery is
reached unless the system’s configuration is
changed.

• Otherwise, it is feasible if minproc ≤ EED,
and SUCCESS occurs with different degrees
of quality. In this case, an ICT is followed:
- If minproc = EED, then no more improve-
ment can be done. An imprecise result with
maximum error is found.
- If minproc < EED, then a recursive

algorithm is followed to enhance the system
performance and the result quality. O tasks

to be removed from the schedule are taken
from the bottom of the list sorted using one of
five methods.
The ICT algorithm’s pseudo code is as follows:

Input: from RGG or by user: n, Tn, AMnxn ptn, EED,
from ModCljDelete: Man, Totalproc, minproc
Output: Scheduled list of tasks Tn , Fraction of Discarded
Work Frac1, Fraction of Skipped Tasks Frac2 .
Variables: Tot = copy of Totalproc, Copyn = copy of
number of tasks n.
Start:
0. Compare Totalproc with EED:

 if Totalproc ≤ EED
then � SUCCESS with No Error �STOP.

1. else Compare minproc with EED:
 if minproc > EED

then � FAILURE with No Recovery � STOP
 else
 if minproc = EED

then � SUCCESS with Maximum Error
 Frac1 = (Totalproc - minproc) /
Totalproc
 Frac2 = (n – Man) / n � STOP

2. else ITC is followed:

Sort Optional tasks according to one of five priority
protocols.
a. Priority Protocol (1): Sort O tasks

ascendingly according to their level in
the graph.

b. Priority Protocol (2): Sort O tasks descendingly
according to their level in the graph.

c. Priority Protocol (3): Sort O tasks descendingly
according to their processing times.

d. Priority Protocol (4): Sort O tasks ascendingly
according to their processing times.

e. Priority Protocol (5): Sort O tasks descendincly
according to their priorities given by the user.

3. Tot = Totalproc
Copyn = n

4. Remove an optional task T[copyn] from the bottom
of the sorted list.

5. Tot = Tot – tp[T[copyn]]
6. if EED < Tot
 then Copyn = Copyn – 1
 goto step 4.
7. else � SUCCESS with Imprecise Solution
 Frac1 = (Totalproc – Tot) / Totalproc
 Frac2 = (n – Copyn) / n
8. Output final Schedule = Mandatory tasks + used
Optional tasks.
 Output error = Frac1 , Frac2.

Performance is measured using [8]:

• The fraction of discarded work Frac1 =

[∑ pts of skipped Os]/[∑ pts of all tasks], or

• The fraction of skipped tasks Frac2
= [number of skipped Os]/n.

5.5. Random Graph Generator (RGG) algorithm

An algorithm RGG to generate random

graphs with AND/OR precedence constraints

to be used as inputs for the proposed
algorithms is introduced in this section. RGG
is based on a rich set of parameters resulting
from the combination of the lists of simulation
parameters given in [7,16]. Our method is
designed having in mind that most of the
parameters have to be chosen at random as
much as possible to provide a wide range of
non-repeated graphs. Important parameters
are:

• q: the ratio of actual number of edges to
the total possible number of edges in the
graph.

• p: the ratio of actual number of OR tasks
to the number of candidate OR tasks in the

graph.

• GridRatio: the ratio representing the X/Y
grid controlling the graph.

• [L,U]: a uniform distribution for the lower
and upper levels of the processing time
values.

A pseudo code of the RGG algorithm is
shown as follows:

W. A. El-Haweet et al. / Imprecise computation technique to schedule AND/OR tasks

584 Alexandria Engineering Journal. Vol. 42, No. 5, September 2003

Experiment (1)

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 100 200 300

Number of Tasks n

P
e
rf

o
rm

a
n

c
e
 R

a
ti

o
 P

R

CljDelete

ModCljDelete

Input: float q, p, GridRatio, L, U.
Output: int n, AMnxn, Tnx1, float ptnx1
Variables: int ActualEdges, Edges, X, Y, Xnx1, Ynx1,
CandOR, nOR, n1, n2.
Start:
1. Seed the random number generator.
2. Pick up number of tasks n at random in the

range [1,200], and be sure n>zero.
3. Calculate total number of possible edges in the

system graph:
a. n1 = number of nodes in each

level Y[i]
n2 = number of nodes in all of the following

levels starting from level Y[i+1]
n1 x n2 = all possible edges coming out of

the nodes in level Y[i]
b. Edges = ∑results of all the

previous multiplications
4. Calculate actual number of edges in our graph:
 ActualEdges = q x Edges
5. Pick up a random number X in the range [1,50] to

represent number of columns in the X by Y grid.
Again make sure that X>zero.

6. Calculate Y = X/GridRatio.
7. For each task i from 1 to n, withdraw a random

number X[i], and another Y[i] to represent where i is
placed in the grid. A check is made so that X[i]>zero
and Y[i]>zero. Another check is made to prevent
repetition of the same couple (X[i],Y[j]) with different
tasks.

8. Tasks are sorted in an ascending order according to
the values of Y[j], and then are sorted in an
ascending order according to the values of X[i]
within the same value of Y[j].

9. The AMnxn is initialized by filling it with zeros.
10. Edges to be connected in AMnxn are chosen at

random providing their number doesn't exceed the
previously calculated value of Edges.

11. Task processing times ptnx1 are chosen at random in
the interval [L,U].

12. Initialize Tnx1 =1 as all tasks are still AND tasks.
13. Identify candidate-OR tasks to be those which have

two or more direct predecessor tasks. Number of
those tasks = CandOR.

14. Number of actual OR tasks nOR= p x CandOR
15. Generate OR tasks at random from the

candidate OR tasks, providing that their sum
doesn't exceed nOR.

16. Update the entries in Tnx1 of the OR tasks to be 2.
17. If there are more than one minimal task in the

generated graph:
a. Add a dummy AND task T0 with pt[0]=0

and T[0]=1.
b. Make this task the direct predecessor of all

minimal tasks.
18. If there are more than one maximal task in the

generated graph:
a. Add a dummy AND task Tn+1

with pt[n+1]=0 and T[n+1]=1.

b. Make this task the direct
successor of all maximal tasks.

6. Simulation

The simulation consists of four different
experiments. Each experiment is run on
different sets of parameters. The first experi-
ment is concerned with the verification of
ModCljDelete. The three remaining

experiments are used for the performance
evaluation of the proposed ICT. In each

experiment, a different measure of
performance is used: the failure rate -FR- in
the second experiment, the fraction of
discarded work -Frac1- in the third, and the
fraction of skipped tasks -Frac2- in the fourth.

The simulation model is validated relative to
those measures of performance that can be
used in decision-making.

6.1. Experiment (1): modcljdelete verification

In order to verify this algorithm, it is

compared with the original CljDelete on the

basis of a performance ratio defined in [3]. Fig.
1 shows that both CljDelete and ModCljDelete

have very close results. This experiment
indicates that ModCljDelete is verified and can

be used as a tool to find the mandatory tasks
of the system in our proposed ICT.

6.2. Validation of proposed ICT

Simulation parameters –explained in
section 5.5- are: q, p, X/Y and [L,U]. Four

different sets of parameters, shown in table 1,
are used with 3 experiments with different
measures of performance. Number of tasks n
varies from 10 to 200. The values of EED are
chosen depending on those of n and [L,U].

Fig.1. ModCljDelete vs CljDelete.

W. A. El-Haweet et al. / Imprecise computation technique to schedule AND/OR tasks

 Alexandria Engineering Journal. Vol. 42, No. 5, September 2003 585

Experiment (2) - n=10, q=0.2,

p=0.1, X/Y=0.1, [L,U]=[1,10]

0

0.5

1

1.5

0 50 100

End-to-End Deadline EED

F
a
il
u

re
 R

a
te

 F
R

Normal

Imprecise

Experiment (2) - n=200,

q=0.5, p=1.0, X/Y=0.5,

-0.5

0

0.5

1

1.5

0 5000 10000 15000

End-to-End Deadline EED

F
a

il
u

re
 R

a
te

 F
R

Normal

Imprecise

Table 1
Simulation sets of parameters

Parameters Set(1) Set(2) Set(3) Set(4)

Q 0.2 0.5 0.5 0.5

P 0.1 0.5 0.8 1.0

X/Y 0.1 0.5 0.5 0.5

[L,U] [1,10] [1,100] [1,100] [1,100]

6.2.1. Experiment (2): failure rate

For each EED value at each number of
tasks n, 100 runs are done at random and the

number of failure times are counted and
denoted by NF. The failure rate FR is
computed as follows: FR = NF/100. This

experiment sets a comparison between the
normal and the imprecise frameworks. In all
cases, the imprecise outperforms the normal
framework. Figs. 2 and 3 gives samples of the
outputs to this experiment. The complete
output is found in [19]. Parameters’ Set (1)
gives an almost AND-only graph. When there
are few tasks in the system (10 or 20), the
imprecise framework gives better results than
the normal framework. When the number of
tasks goes larger (100 and 200), the difference
in performance between the two frameworks is
barely noticed. In the worst cases though, the
normal framework never outperforms the
imprecise framework. Set (2) provides a
moderate number of OR tasks in the graph,

and in Set (3), this number is much higher. As
the number of OR tasks increases, there is a

larger set of optional tasks which gives more
flexibility to the imprecise framework. Set (4)
shows the case of all candidate OR tasks
becoming actual OR tasks. It is to be noticed
that as long as p increases, the corresponding
value of EED in the imprecise framework,

which gives a good probability of acceptable
solution decreases.

6.2.2. Experiment (3): fraction of discarded
 work frac1

Frac1 is the ratio between the sum of

execution times of skipped tasks and that of
all the tasks in the system. In this and the
following experiment, 5 different methods –
shown in table 2– are used to sort O tasks so

that the worst task in each case is removed
first. Sample outputs are shown in figs. 4 and
5, and the complete output is in [19].

In Set (1), where p is very low, sudden
changes occur in the value of Frac1 from 1 to

0. This is due to the small number of optional
tasks, so there is a lack of flexibility in the
system.

Fig. 2. Experiment (2), Set (1), n=10.

Fig. 3. Experiment (2), Set (4), n=200.

Table 2
Different O tasks sorting methods

METHOD Sorting O tasks Worst task

Method1 ↑ w.r.t graph level Highest level

Method2 ↓ w.r.t. graph level Lowest level

Method3 ↓ w.r.t. processing times With lowest pt

Method4 ↑ w.r.t. processing times With highest pt

Method5 ↓ w.r.t. given priority Lowest priority

In Sets (2)→(4), p is getting higher which

provides smoother curves due to the increase
in the number of optional tasks. The system
becomes more flexible and the value of Frac1
decreases gradually with the increase in EED.

W. A. El-Haweet et al. / Imprecise computation technique to schedule AND/OR tasks

586 Alexandria Engineering Journal. Vol. 42, No. 5, September 2003

Experiment (3) - n=10,

q=0.2, p=0.1, X/Y=0.1,

0

1

2

0 50 100

End-to-End Deadline EED

F
ra

c
ti

o
n

o
f

D
is

c
a

rd
e
d Method1

Method2

Method3

Method4

Method5

Experiment (3) - n=200,

q=0.5, p=1.0, X/Y=0.5,

0

1

2

0 5000 10000 15000

End-to-End Deadline EED

F
ra

c
ti

o
n

o
f

D
is

c
a

rd
e
d

Method1

Method2

Method3

Method4

Method5

Experiment (4) - n=200, q=0.5, p=1.0,

X/Y=0.5, [L,U]=[1,100]

0

0.5

1

1.5

0 5000 10000 15000

End-to-End Deadline EED

F
ra

c
ti

o
n

 o
f

S
k
ip

p
e
d

 T
a
s
k
s

F
ra

c
2 Method1

Method2

Method3

Method4

Method5

Best performance is obtained when all
candidate OR tasks are becoming actual OR

tasks.

Fig. 4. Experiment (3), Set (1), n=10.

Fig. 5. Experiment (3), Set (4), n=200.

6. 2. 3. Experiment (4): fraction of skipped
 tasks frac2

Frac2 is the ratio between the number of

skipped tasks and that of all the tasks in the
system. Sample outputs are shown in figs. 6
and 7, also the complete output is in [19]. In
this experiment, it is to be noticed that
Method4 outperforms all other methods with
all sets of parameters and all number of tasks,
especially when p gets higher. This is special

for this specific measure of performance: it is
always true when the task with the highest
processing time is removed first, then most
probably the largest number of tasks
scheduled in the system among all other
methods will be obtained.

7. Conclusions and future work

This paper devises an algorithm to
schedule tasks with AND/OR/Unskipped

precedence constraints and introduces a
method to integrate precedence constraints

Fig. 6. Experiment (4), Set (1), n=10.

Fig. 7. Experiment (4), Set (4), n=200.

and timing constraints into the same schedul-
ing problem. An imprecise computation
technique ICT is proposed to handle the
problem of missing the EED in the presence of
a transient overload. ICT provides system
dependability. It tends to achieve deadline
compliance as much as possible, it gives lower

failure rates compared with the corresponding
normal scheduling model. Its feasibility check
helps predicting whether or not a certain

system can meet its timing constraints at the
very early stages of the algorithm.

There are several promising areas for
further work, for example: application in the
on-line mode, use of multi-processors sched-
uling to enhance the system performance, and
subtasks scheduling of each individual task
within the proposed framework.

References

[1] M. A. Austin, “Parallel Distributed Real-

Time Systems in Manufacturing (An
Aerospace View)”, Pratt and Whitney,

Experiment (3) - n=10 , q =0.2, p =0.1,

X/Y=0.1, [L,U]=[1,10]

0

0.5

1

1.5

0 50 100

End -to-End Deadline EED

F
ra

c
ti

o
n

 o
f

D
is

c
a

rd
e

d
 W

o
rk

F
ra

c
1 Method 1

Method 2

Method 3

Method 4

Method 5

W. A. El-Haweet et al. / Imprecise computation technique to schedule AND/OR tasks

 Alexandria Engineering Journal. Vol. 42, No. 5, September 2003 587

United Technologies, Proceedings of the
1997 Joint Workshop on Parallel and
Distributed Real-Time Systems,
Institute of Elec-trical and Electronic
Engineers (1997).

[2] R. Rajkumar, “Synchronization in Real-
Time Systems: A Priority Inheritance
Approach”, Department of Computer
Science, Carnegie Mellon University,
Pittsburgh, PA, USA, Kluwer Academic
Publishers, Boston Hardbound, August
(1991).

[3] D. W. Gillies and J. W. S. Lui,
“Scheduling Tasks with AND/OR
Precedence Constraints”, Second
Annual IEEE Symposium on Parallel
Distributed Processing, December, pp.
379-387 (1990).

[4] D. W. Gillies and J. W. S. Lui,
“Scheduling Tasks with AND/OR
Precedence Constraints”, Report No.
UIUCDCS-R-90-1627 (UIUC-ENG-176),
Department of Computer Science,
University of Illinois at Urbana-
Champaign (1991).

[5] D. W. Gillies, “Algorithms To Schedule
Tasks With AND/OR Precedence
Constraints”, Ph. D. Thesis, University
of Illinois, Urbana (1993).

[6] D. W. Gillies and J. W. S. Lui,
“Scheduling Tasks with AND/OR
Precedence Constraints”, SIAM Journal
on Computing (1993).

[7] D. W. Gillies and J. W. S. Lui,
“Scheduling Tasks with AND/OR
Precedence Constraints”, Office of Naval
Research (1995).

[8] J. Sun, “Fixed-Priority End-To-End
Scheduling In Distributed Real-Time
Systems”, Ph. D. Thesis, University of
Illinois, Urbana-Champaign (1997).

[9] L. Badvicka and M. Berka, “A Tutorial
On Networks: PERT & CPM”, Faculty of
Civil Engineering, Eunet Czchia, Czech
Republic (1997).

[10] N. J. Nilsson, “Principles Of Artificial
Intelligence”, Palo Alto, California, Tioga
Publishing Company (1980).

[11] S. A. Warshall, “A Theorem On Boolean
Matrices”, Journal Of The ACM, Vol. 9,
pp. 11-12 (1962).

[12] P. Chevochot and I. Puaut, “Scheduling
Fault-Tolerant Distributed Hard real-
Time Tasks Independently of The
Replication Strategies”, IRISA, Campus
de Beaulieu -35042 Rennes- France
(1999).

[13] L. S. H. DeMello and A. C. Sanderson,
“AND/OR Graph Representation Of
Assembly Plans”, Proceedings of AAAI,
Philadelphia, PA, Aug 11-13 Vol. 2, pp.
1113-1119 (1986).

[14] J. D. Wolter, “On The Automatic
Generation Of Plans For Mechanical
Assembly”, Ph. D. Thesis, University of
Michigan, September (1998).

[15] J. Peleska, “On The Unified Formal
Approach For The Development of Fault
Tolerant and Secure Systems”, Nordic
Seminar on Dependable Computing
Systems, Technical University of
Denmark (1996).

[16] S. Shekhar and B. Hamidzadeh,
“SARTS: A Dependable Real-Time
Search Algorithm”, Department of
Computer Science, University of
Minnesota, Minneapolis, IEEE
Transactions on Knowledge and Data
Engineering (1995).

[17] D. L. Hull, W. Feng and J. W. S. Liu,
“Enhancing The Performance and
Dependability of Real-Time Systems”,
IEEE International Computer
Performance and Dependability
Symposium, Erlangen, Germany, April
(1995).

[18] A. Garvey and V. Lesser, “Design-To-
Time Real-Time Scheduling”, IEEE
transactions on Systems, Man and
Cybernetics - Special Issue on Planning,
Scheduling and Control, Vol. 23 (6)
(1993).

[19] Hanan H. El Meligy, “Imprecise
Computation Technique To Schedule
AND/OR tasks with Global End-to-End
Deadline In Distributed Real-Time
Systems”, Master Thesis, Alexandria
University, Faculty of Engineering,
Computer Science and Automatic
Control Department (2002).

Received June 19, 2002

Accepted October 14, 2002

