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A novel approach for power system state estimation is presented in this paper. The 
proposed approach is based on a fuzzy linear regression model, and uses on-line 
measurements, available from remote terminal units. The problem is formulated as a 
fuzzy linear programming optimization problem, where the objective is to minimize the 
spread of the estimated states, over the total number of available measurements. Effects 
of measurements accuracy, as well as the degree of fuzziness on the estimated states are 
discussed in the paper via simulated examples on a 6-bus system. Superior bad data 
detection and identification is obtained and verified via the simulation. 
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1. Introduction 

 
The problem of monitoring the power flows 

and voltages in power systems is very 
important in maintaining system security. 
Measurement discrepancies cannot be avoided 
due to metering nature. Power System State 
Estimation (PSSE) performs the task of 
smoothing out small random errors in meter 
readings, detect and identify gross 
measurement errors (bad data) [1]. 

Power systems are large, complex, 
geographically widely distributed and 
influenced by unexpected events. These facts 
make it difficult to effectively deal with many 
power system problems through strict 
mathematical approaches. Therefore, intelli-
gent techniques such as fuzzy algorithms have 
emerged in recent years in power systems as a 
complement to mathematical approaches and 
have proved to be effective when properly 
coupled [2, 3, 4]. 

This paper presents a novel technique, 
based on fuzzy set theory [5, 6], for PSSE with 
superior performance for bad data detection 
and identification. The proposed approach is 

based on solving the power system linearized 
model as fuzzy linear regression problem. 
Both system measurement variables and 
system state variables (bus voltage magni-
tudes and bus angles at all buses, except for 
the reference bus) are assumed to be a fuzzy 
numbers, having a certain middle ‘p’ and a 
spread value ‘c’. The network parameters are 
assumed to be known and a non-fuzzy ‘crisp’ 
values. The objective function is to minimize 
the spread of the estimated states over the 
data set available. The output is fuzzy system 
states and fuzzy measurement vector in which 
the degree of fuzziness is set by the user. Bad 
data detection is based on exceeding a preset 
threshold for the output membership value. 
Measurements with maximum spread and 
minimum membership value are prime 
suspects of bad data. 
 
2. Mathematical formulation 
 

2.1. Fuzzy linear regression: a background  

 
The general fuzzy model has the form: 
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where Y is a fuzzy dependant variable, x is 
crisp independent variable, A is a set of Ai 
coefficients, Ai is the ith fuzzy coefficient 

(usually a fuzzy number). The fuzzy parameter 
Ai is a function of two parameters, p and c, 

known as the middle value and the spread, 
respectively. The spread denotes the fuzziness 
of the function. The membership function of 
the fuzzy coefficient Ai is assumed triangular 
with a middle value p and spread c on each 

side as shown in fig. 1. This can be expressed 
as [7]: 
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The fuzzy parameters A=(A1, …, An) can be 

denoted in the vector form of A={P,C}, where 
P={p1,…pn} and C={c1,…,cn}are the middle and 
spread vectors. Therefore, the output Y can be 

written as: 
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and the membership function for the output 
fuzzy parameter, as shown in fig. 2, Y is given 

by [8]: 
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Fig. 1. Membership function for the fuzzy parameters A. 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Fuzzy output function. 

 
In regression we seek to find the fuzzy 

coefficients that minimize the spread of fuzzy 
output for the whole data set. The objective 
function that has to be minimized: 
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where m is the number of samples, xij is the 
independent variable xi at data set j. This 

objective function is minimized subject to two 
constraints given by: 
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where h, defined as fuzzification degree, is 
specified by the user. As h increases, the 

fuzziness of the output increases. This is due 
to the need of a wider spread to validate the 
input measured values in condition of 
satisfying higher h [5]. Since each data set 

produces two constraints, there is a total of 2 
m constraints. The problem formulated in eqs. 

(5) and (6) and (7) is a standard optimization 
problem and can be solved using any 
optimization software available.  
 
2.2. Problem formulation 
 

The linearized power system measurement 
model about a given point xo is given by: 
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where Zj is the system jth measurement, m and 
n are the total number of system measure-
ments and states, respectively, hij is the ijth 

element of the system measurement jacobian 
matrix, xi is the ith system state. 

Eq. (8) can be rewritten as: 
 

nn2211 hx....hxhxZ ∆++∆+∆=∆ ,                  (9) 

 

where ∆Z is the (mx1) measurement difference 
vector, hi is the (mx1) ith column of the 

measurement jacobian matrix. Eq. (9) is a 

linear model in the state variable ∆xi, i=1, 2, .., 
n. If these state variables are fuzzy numbers, 
then eq. (9) is a general fuzzy linear regression 
model. The system state variables are 
assumed to have a middle value pi, i=1,2,…, n. 

The spread value represents a measure to the 
variable fuzziness. In a fuzzy linear regression 
the objective is to minimize the spread of the 
state variables over the number of 
measurements available. This can be 
expressed as: 
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subject to satisfying the inequality constraints 
on each measurement: 
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where h is specified by the user indicating the 

degree of  fuzziness. The optimization problem 
defined by eqs. (10,11), and (12) is a linear 
programming optimization problem and can 
be solved using any available software 
available. Having estimated the fuzzy 
parameters p’s and c’s, all system operating 
conditions (e.g. complex bus voltages, line 
flows, ..etc) will be readily available using 
fuzzy set rules. Bad data detection is easily 

determined through exceeding a preset 
threshold for measurements membership 
value. Identification is done by discarding the 
measurement that has a membership value of 
exactly h and maximum spread, and rerun-

ning the optimization program.  
 
3. Implementation and results 

 
The proposed algorithm is tested using a 

6-bus system with 11 states and 62 
measurements [9]. System layout and data are 
shown in fig. 3 and table 1. A MATLAB code 
was used to apply the algorithm. Convergence 
was achieved after the third iteration (p<1e-5). 
Output fuzzy states for different fuzzification 
factors are shown in table 2. Table 3 shows 
the input crisp measurements, traditional 
output using least square state estimation, 
and the output fuzzy measurements with its 
membership values. From these results, one 
can conclude that the degree of fuzziness, h, 
has no effect on the middle, p, of the 

estimated states, and directly proportionally, 
as expected, to the spread. It seems that high 
discrepancy in measurements affects the 
accuracy of the output fuzzy states when 
applying fuzzy linear regression technique. 
Yet, this algorithm can easily detect and 
identify bad data. 

Bad data detection was based on setting a 
threshold (was set to .3 pu) for the spread of 
the measurements with barely h membership 

value. Exceeding the threshold value flags a 
bad data occurrence. Measurements with 
exactly h membership value and high spread 
are the primary suspects of bad data. 
Removing the highest spread measurement 
and rerunning the program reveals the 
removal of the bad data. Tables 4, 5 show the 
examples of P35 power flow reversal and 300% 
error increase in Q14. In conclusion, it can be 

said, through extensive bad data runs, that 
the measurement with exactly h membership 
value and highest spread is most probably the 
bad data.  
 
4. Conclusions 

 
A new technique for PSSE based on fuzzy 

linear regression  is  presented  in  this  paper.  
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Fig. 3. Six-bus system layout with measurements. 

 
 
 
 

Table 1 
Bus system line data, PU (230 kV, 100 MW base) 
 

From To R X Bcap (0.5 line cap.) 

1 2 0.1 0.2 0.02 

1 4 0.05 0.2 0.02 

1 5 0.08 0.3 0.03 

2 3 0.05 0.25 0.03 

2 4 0.05 0.1 0.01 

2 5 0.1 0.3 0.02 

2 6 0.07 0.2 0.025 

3 5 0.12 0.26 0.025 

3 6 0.02 0.1 0.01 

4 5 0.2 0.4 0.04 

5 6 0.1 0.3 0.03 

 

 
 
Table 2 

      Output states using least square state estimation and fuzzy state estimation  
             with different h 

 

 Vse kV 
Vfuzzy (p,c) kV 
h=0.1                    h=0.5               h=0.9 

V1 240.5 239.8, 1.7 239.8, 3.1 239.8, 7.7 
V2 239.8 239.9, 2.3 239.9, 4.1 239.9, 8.3 
V3 244.6 247.4, 3.6 247.4, 6.6 247.4, 19.6 
V4 226 225.1, 2.1 225.1, 3.9 225.1, 10 
V5 225.1 226.1, 4.5 226.1, 8.7 226.1, 15 
V6 229.9 230, 1 230, 1.9 230, 5 

 
Thetase 

(degree) 
Theta Fuzzy (degree) 
h=0.1                 h=0.5                h=0.9 

Theta1 0 0 0 0 
Theta2 -3.8283 -4.07, .13 -4.07, .45 -4.07, .63 
Theta3 -4.4656 -4.620, .3 -4.620, .7 -4.620, 1 
Theta4 -4.3428 -4.113, .25 -4.113, .5 -4.113, .85 
Theta5 -5.5103 -5.741, .2 -5.741, .7 -5.741, 1.1 
Theta6 -6.1560 -6.14, .1 -6.14, .4 -6.14, .8 

 
 
 

The problem is formulated as a linear 
optimization problem, where the objective is to 
minimize the spread of measurements 
available. Fuzziness factor did not affect the 
middle value of the estimated states, but it 
was directly proportional to measurements 
spread, as expected in fuzzy linear regression 
techniques. The presented algorithm had a 

high performance in terms of bad data 
detection and identification. Bad data was 
flagged when the spread of any measurements 
with barely h membership value exceeds a 
threshold value. Identification, through nu-
merous runs, leads always to the 
measurement with highest spread. 
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Table 3 

Input measurements values and output fuzzy values 

 

Fuzzy O/P Value(p,c), µ 
Measured 

quantity 

 

Measured 

value 

State 

estimation 

Value h=0.1 

      p                c                  µ 

h=0.5 

        p               c                   µ 

h=0.9 

        p                 c                       µ 

P1 1.131 1.119 1.1185 0.0946 0.8675 1.1185 0.1703 0.9264 1.1185 0.8517 0.9853 

P2 0.484 0.475 0.4662 0.2741 0.8513 0.4662 0.4934 0.6396 0.4662 1.4672 0.9279 

P3 0.551 0.595 0.5734 0.3117 0.8474 0.5734 0.5611 0.9152 0.5734 2.8055 0.9830 

P4 -0.718 -0.702 -0.6774 0.1679 0.1625 -0.6774 0.3022 0.7347 -0.6774 1.111 0.9269 

P5 -0.72 -0.718 -0.6924 0.2386 0.8844 -0.6924 0.4294 0.9358 -0.6924 2.1472 0.9872 

P6 -0.723 -0.689 -0.6763 0.1965 0.4536 -0.6763 0.3537 0.6853 -0.6763 1.3687 0.9471 

Q1 0.202 0.187 0.1654 0.2885 0.6960 0.1654 0.5193 0.8755 0.1654 1.5966 0.9551 

Q2 0.719 0.703 0.7541 0.5636 0.9378 0.7541 1.0145 0.9654 0.7541 5.0724 0.9931 

Q3 0.906 0.874 1.0780 0.5371 0.6798 1.0780 0.9668 0.8221 1.0780 4.8342 0.9644 

Q4 -0.719 -0.702 -0.7438 0.2179 0.6073 -0.7438 0.4722 0.7818 -0.7438 1.8608 0.9564 

Q5 -0.677 -0.694 -0.6814 0.3810 0.6633 -0.6814 0.8458 0.8129 -0.6814 3.2288 0.9626 

Q6 -0.609 -0.658 -0.6816 0.2862 0.2942 -0.6816 0.4951 0.6079 -0.6816 2.4754 0.9216 

P12 0.315 0.304 0.3278 0.0371 0.6554 0.3278 0.0667 0.8086 0.3278 0.3335 0.9617 

P14 0.389 0.448 0.4176 0.0318 0.1000 0.4176 0.0572 0.5000 0.4176 0.2859 0.9000 

P15 0.357 0.368 0.3731 0.0258 0.3760 0.3731 0.0465 0.6533 0.3731 0.2323 0.9307 

P23 0.086 0.03 0.0307 0.0615 0.1000 0.0307 0.1107 0.5000 0.0307 0.5533 0.9000 

P24 0.328 0.324 0.2329 0.1056 0.1000 0.2329 0.1901 0.5000 0.2329 0.9506 0.9000 

P25 0.174 0.156 0.1352 0.0431 0.1000 0.1352 0.0776 0.5000 0.1352 0.3882 0.9000 

P26 0.223 0.259 0.2230 0.0268 0.9988 0.2230 0.0483 0.9993 0.2230 0.2415 0.9999 

P35 0.177 0.192 0.1747 0.1072 0.9787 0.1747 0.1930 0.9882 0.1747 0.9652 0.9976 

P36 0.433 0.433 0.3584 0.1419 0.4744 0.3584 0.2554 0.7080 0.3584 1.2772 0.9416 

P45 0.007 0.043 0.0459 0.0433 0.1000 0.0459 0.0779 0.5000 0.0459 0.3893 0.9000 

P56 -0.021 0.013 0.0117 0.0363 0.1000 0.0117 0.0653 0.5000 0.0117 0.3267 0.9000 

P21 -0.349 -0.294 -0.3156 0.0371 0. 1000 -0.3156 0.0667 0.5000 -0.3156 0.3335 0.9000 

P41 -0.401 -0.436 -0.4070 0.0289 0.7930 -0.4070 0.0520 0.8850 -0.4070 0.2601 0.9770 

P51 -0.366 -0.356 -0.3624 0.0230 0.8423 -0.3624 0.0414 0.9124 -0.3624 0.2071 0.9825 

P32 -0.021 -0.03 -0.0297 0.0626 0.8609 -0.0297 0.1126 0.9227 -0.0297 0.5631 0.9845 

P42 -0.298 -0.309 -0.2163 0.0957 0.1470 -0.2163 0.1723 0.5261 -0.2163 0.8617 0.9052 

P52 -0.117 -0.151 -0.1321 0.0391 0.6139 -0.1321 0.0705 0.7855 -0.1321 0.3523 0.9571 

P62 -0.196 -0.254 -0.2183 0.0248 0.1000 -0.2183 0.0446 0.5000 -0.2183 0.2231 0.9000 

P53 -0.251 -0.181 -0.1649 0.0956 0.1000 -0.1649 0.1722 0.5000 -0.1649 0.8608 0.9000 

P63 -0.468 -0.423 -0.4464 0.0851 0.1000 -0.4464 0.1432 0.5000 -0.4464 1.0162 0.9000 

P54 -0.021 -0.042 -0.0447 0.0445 0.4674 -0.0447 0.0801 0.7041 -0.0447 0.4003 0.9408 

P65 0.01 -0.012 -0.0116 0.0366 0.4088 -0.0116 0.0659 0.6716 -0.0116 0.3293 0.9343 

Q12 -0.132 -0.144 -0.1771 0.0733 0.3858 -0.1771 0.1320 0.6588 -0.1771 0.6601 0.9318 

Q14 0.212 0.212 0.2147 0.0863 0.9683 0.2147 0.1554 0.9824 0.2147 0.7768 0.9965 

Q15 0.094 0.118 0.0878 0.1089 0.6411 0.0878 0.2019 0.8006 0.0878 1.0597 0.9601 

Q23 -0.119 -0.126 -0.1745 0.1100 0.4958 -0.1745 0.1981 0.7199 -0.1745 0.9904 0.9440 

Q24 0.383 0.453 0.4432 0.1080 0.1000 0.4432 0.2204 0.550 0.4432 1.1022 0.91 

Q25 0.22 0.148 0.1009 0.1323 0.1000 0.1009 0.2381 0.570 0.1009 1.1906 0.92 

Q26 0.15 0.108 0.1266 0.0695 0.6629 0.1266 0.1252 0.8127 0.1266 0.6258 0.9625 

Q35 0.239 0.229 0.2239 0.1797 0.9160 0.2239 0.3235 0.9533 0.2239 1.6173 0.9907 

Q36 0.583 0.583 0.5421 0.1402 0.3374 0.5421 0.2323 0.6319 0.5421 1.5616 0.9264 

Q45 -0.174 -0.051 -0.1002 0.0820 0.1000 -0.1002 0.1476 0.5000 -0.1002 0.7380 0.9000 

Q56 -0.008 -0.101 -0.0467 0.1056 0.6338 -0.0467 0.1901 0.7965 -0.0467 0.9505 0.9593 

Q21 0.097 0.119 0.1578 0.0737 0.1746 0.1578 0.1327 0.5414 0.1578 0.6633 0.9083 

Q41 -0.143 -0.209 -0.2132 0.0780 0.1000 -0.2132 0.1403 0.5000 -0.2132 0.7016 0.9000 

Q51 -0.175 -0.136 -0.1698 0.0869 0.1000 -0.1698 0.1505 0.5000 -0.1698 0.8525 0.9000 

Q32 0.102 0.062 0.1120 0.1172 0.9149 0.1120 0.2110 0.9527 0.1120 1.0552 0.9905 

Q42 -0.443 -0.444 -0.4305 0.0779 0.4460 -0.4305 0.1842 0.6922 -0.4305 1.0211 0.9384 

Q52 -0.222 -0.174 -0.1333 0.1196 0.2584 -0.1333 0.2153 0.5880 -0.1333 1.0764 0.9176 

Q62 -0.223 -0.145 -0.1652 0.0642 0.1000 -0.1652 0.1156 0.5000 -0.1652 0.5778 0.9000 

Q53 -0.299 -0.258 -0.2564 0.1556 0.7259 -0.2564 0.2801 0.8477 -0.2564 1.4003 0.9695 

Q63 -0.511 -0.557 -0.5935 0.1139 0.1000 -0.5935 0.3850 0.60 -0.5935 1.1249 0.91 

Q54 -0.015 -0.025 0.0247 0.0832 0.5225 0.0247 0.1498 0.7347 0.0247 0.7492 0.9469 

Q65 0.029 0.044 0.0128 0.1081 0.6128 0.0128 0.1946 0.7849 0.0128 0.9728 0.9570 

V1 1.037 1.046 1.0418 0.0074 0.3566 1.0418 0.0133 0.6425 1.0418 0.0666 0.9285 

V2 1.034 1.043 1.0430 0.0100 0.1000 1.0430 0.0181 0.5000 1.0430 0.0903 0.9000 

V3 1.09 1.064 1.0757 0.0159 0.1000 1.0757 0.0287 0.5000 1.0757 0.1435 0.9000 

V4 0.981 0.983 0.9788 0.0094 0.7599 0.9788 0.0169 0.8666 0.9788 0.0843 0.9733 

V5 0.979 0.980 0.9952 0.0316 0.4892 0.9952 0.0569 0.7162 0.9952 0.2845 0.9432 

V6 0.995 1.00 0.9991 0.0046 0.1000 0.9991 0.0082 0.5000 0.9991 0.0411 0.9000 
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Table 4 
Measurements of highest spread when P35 is reversed 

 

Measurements 

with µ = 0.5 

Original 
measured  
value (MW) 

Output fuzzy  
value(middle, 
spread) 
(MW) 

P35 0.177 0.045, 0.46 

P25 0.174 0.02, 0.3 

P56 -0.021 0.13, 0.29 

Q25 0.22 0.086, 0.27 

P63 -0.468 -0.34, 0.24 

 
Table 5 
Measurements of highest spread when Q14 has 300% 
increase 
 

Measurements 

With µ = 0.5 

Original 
measured value 
(MW) 

Output fuzzy 
value (middle, 
spread) 
(MW) 

Q14 0.636 0.38, 0.54 
Q24 0.383 0.64, 0.49 
Q41 -0.143 -0.35, 0.421 
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