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Detection and classification of a fault on a transmission line is essential to the proper 
performance of a power system. It would be desirable to develop a high speed and accurate 
approach to determine the fault type for different power system conditions. To classify single-
phase, two-phase or three-phase faults on a given line, neural network abilities could be 
considered as a solution. To demonstrate the applicability of this solution, neural network 
technique is employed and a novel Elman recurrent network is designed and trained. Details 
of the design procedure and the results of performance studies with the proposed network are 
given and analyzed in this paper. System simulation studies show that the proposed 
approach is able to detect and classify a fault on a transmission line rapidly and correctly. It 
is suitable to be used in an ultra high-speed transmission line protection scheme. 
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1. Introduction 

 

Artificial Neural Networks (ANN) are 
systems that are inspired by biological neural 
networks. Artificial neural networks have 
proved to be a vital tool in applications related 
to power systems due to the non-linearity of 
the system [1]. Contributions to the field vary 
from neural algorithms for different 
applications to dedicated hardware impleme-
ntations. One of the areas of power systems 
engineering that gained more attention with 
use of ANN is distance protection. The 
solutions based on ANN use different methods 
to increase performance in terms of speed of 
operation and efficiency. Dalestein et al. is one 
of the early researchers that applied ANN in 
distance protection [2-4]. In this work Multi-
layer Feed-forward Neural Networks (MFNN) 
are used for the purpose of fault detection, 
fault classification, fault direction 
identification and fault location. The neural 

network used for fault classification in [2] was 
trained using the back propagation learning 
algorithm. For the purpose of training the 
MFNN to classify the fault, the entire training 
process needed around 500 cycles and 24 
hours computing time on a PC using 2268 
simulated faults which mounted to 45360 
different training patterns. The neural network 
used for fault classification consists of 30 
inputs (in the form of five consecutive samples 
of currents and voltages for each line), two 
hidden layers, 20 neurons in the first layer 
and 15 neurons in the second hidden layer 
and an output layer with 11 nodes. Coury et 
al. describe an ANN solution for the 
Transmission Line (TL) protection [5]. A two 
layered MFNN architecture with magnitudes of 
currents and voltages as inputs and a trip/no 
trip signal as the output is presented. They 
use back-propagation algorithm for training 
the ANN and employ 2000 simulated faults, 
covering different fault conditions, for training. 
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They claim the ANN considerably improves the 
protection system efficiency. A training time of 
2 CPU hours is reported in [5]. The solution, 
though attractive in terms of improvement in 
efficiency, requires a large number of simu-
lated faults for training. 

The prototypical use of neural networks is 
in the structural pattern recognition. In such 
a task, the network uses a collection of 
features presented to it to classify the input 
feature patterns into different classes. In the 
MFNN method, the network is presented with 
all relevant information simultaneously and 
its output is based on the currently presented 
input pattern, with no regard to its previous 
output. In contrast, temporal pattern recogni-
tion involves processing of patterns that evolve 
over time and its output depends on the 
current input pattern as well as its previous 
output. Hence, neural networks with temporal 
pattern recognition may be more suitable for 
patterns that vary over time. 

Samples of phase voltage and current 
waveforms are usually used as inputs to the 
neural network. The voltage and current are 
time-varying signals. Therefore, a network 
with temporal processing abilities could be 
considered. In the present work, an Elman 
recurrent neural network is proposed for fault 
classification on transmission lines. The ANN 
based algorithm is tested to evaluate the 
performance of the proposed method in terms 
of accuracy, robustness and speed. Some of 
the test results are included in this paper. 
 
2. Problem description 
 

Fig. 1 shows the main components of a 
digital relay used to protect a TL. Faults on TL 
need to be detected, classified and located 
accurately and cleared as fast as possible. In 
this framework the most important point is 
fast and reliable fault classification. A 
fundamental part of a protective relay is a 
selector module. This module classifies 
whether a single phase, two phases or three 
phases are involved in a fault. In addition, a 
selector module has also to classify the  
“normal state” of the power system (no fault, 
load jump, etc). Using very high speed 
protective   relay  systems,  a  selector  module  

 
 

Fig. 1. Typical modules of a protective relay. 

 
should make an accurate decision in less than 
2 ms to obtain a trip signal as fast as possible. 
Estimation times of conventional methods are 
prohibitively long. 

Identifying the faulted phase can allow for 
selected phase tripping instead of tripping all 
three phases. This practice increases system 
stability during faults. Moreover, if a suitable 
technique is applied to differentiate between 
arcing (transient) and non-arcing (permanent) 
faults, autoreclosure can be safely applied 
after arc extinction while autoreclosure is 
prohibited in case of permanent fault [6]. 

Hence, this paper focuses on the design of 
a reliable and fast acting Elman based ANN 
fault detector and classifier module. The other 
modules shown in fig. 1 are the subjects of 
future work to be published later. 
 
3. Temporal pattern recognition 
 
3.1. Temporal processing 

 
Time is clearly an important factor in 

many of the cognitive tasks encountered in 
practice. It is inextricably bound up with 
many behaviors, which express themselves as 
temporal sequences. Thus, the question of 
how to represent time in connectionist models 
is very important. In particular, how one can 
extend the design of a feed forward network so 
that it assumes a time-varying form and 
therefore will be able to deal with time-varying 
signals and sequences more efficiently. The 
answer to these questions is to allow time to 
be represented by the effect it has on signal 
processing. This means providing the mapping 
network dynamic properties that make it 
responsive to time varying signals [7]. 

In short, for a neural network to be 
dynamic, it must be given memory [8].   One 
way to accomplish this requirement is to int-
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roduce time delay into the synaptic structure 
of the network in one form or another. One 
popular technique which uses time delays is 
the Time Delay Neural Network (TDNN). The 
TDNN is a MFNN whose hidden and output 
neurons are replicated across time [9].  

The TDNN topology is in fact embodied in 
a feed forward network in which each synapse 
is represented by a Finite-duration Impulse 
Response (FIR) filter. This latter network is 
referred to as FIR neural network. The FIR 
neural network uses temporal model of the 
neuron to construct a feed forward network. A 
FIR ANN is used in [10] for the purpose of 
fault detection, classification and direction 
estimation for a high voltage TL. It is shown in 
[10] that the FIR ANN response to a fault is 
2.5 ms and that in general it is reliable. 
However, the FIR ANN proposed contains a 
large number of neurons, as it has 45 neurons 
in the first hidden layer, 35 in the second 
hidden layer and 5 output neurons. Moreover, 
the number of time delay units is 5 for the 
first hidden layer, 2 for the second and 2 for 
the output layer. 

Another way in which a neural network 
can assume dynamic behavior is to make it 
recurrent, that is, to build feedback into its 
structure. The recurrent connections allow the 
hidden units of the network to see their own 
previous output, so that the subsequent 
behavior can be shaped by previous response.   
These recurrent connections are what give the 
network memory. A few different types of 
recurrent networks have been proposed by 
different researchers, including Real-Time 
Recurrent Network [11], Partially Recurrent 
Network [12] and Elman Network [8]. The 
difference between these networks lies in their 
structures and the way they handle the 
feedback. 
 
3. 2. Elman network 

 
In parallel-distributed processing models, 

the processing of sequential inputs has been 
accomplished in several ways. The most 
common solution is to attempt to parallelize 
time by giving it spatial representation. This 
approach does not easily distinguish relative 
temporal position from absolute temporal 
position [8]. A better approach would be to 

represent time implicitly rather than explicitly. 
That is, time is represented by the effect it has 
on processing and not as an additional 
dimension of the input. 

Elman network is a two-layer feed forward 
network with the addition of a recurrent 
connection from the output of the hidden layer 
to its input. The delay in this connection 
stores values from the previous time step, 
which can be used in the current time step.   
This feedback path allows the Elman network 
to learn to recognize and generate temporal 
patterns, as well as spatial patterns. 

The architecture of Elman network is 
shown in fig. 2. The network is augmented at 
the input level by additional units, called 
context units. These units are also hidden in 

the sense that they interact exclusively with 
other nodes internal to the network, and not 
the outside world [8]. 

The augmented input units, including 
both the input units and the context units 
activate the hidden units. The hidden units 
feed forward to activate the output units as 
well as they feedback to activate the context 
units. The number of context units is equal to 
the number of hidden units. Activations are 
copied from hidden layer to the context layer 
on a one-for-one basis with fixed weights of 
1.0.  The context unit values at time step t + 1 

are exactly the same as the hidden unit values 
at time step t. Therefore, the context units 
provide the network with memory. 

 

 
 

Fig. 2.  Elman network architecture. Solid lines represent 
the trainable connections and the dashed line represents 

fixed weight recurrent connections. 

Inputs 
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4. The proposed Elman network design 

 
An Elman recurrent ANN was designed to 

act as the fault detection and classification 
module of a TL relaying system. Details of the 
design procedure are given below. 
 
4.1. Power system model 

 
The training data set of an ANN should 

contain the necessary information to 
generalize the problem. Using the electromag-
netic transient program PSCAD/EMTDC [13], 
a typical 500 kV single circuit transmission 
system of the type encountered in Egypt, Fig. 
3, was simulated and the input/output pair 
patterns for training and testing the network 
were generated. The parameters of the 
Sending End (SE), Receiving End (RE) and 
their Short Circuit Levels (SCL) are as shown 
in fig. 3. 

Training patterns were generated by 
simulating different types of faults on the 
power system. Fault location, fault resistance 
and fault inception time were changed to 
obtain training patterns belonging to a wide 
range of different conditions of the power 
system. Faults including high amount of 
resistance, up to 70 ohms, were also consid-
ered. 
 
4.2. Feature extraction 

  
 Neural networks have the ability to classify 
different input patterns into desired output 
classes. The application of a pattern 
classification technique requires a selection of 
features that contain the information needed 
to discriminate between classes, and which 
permit efficient computation to limit the 
amount of the required training data and size 
of the network. 

The voltage and current waveforms are the 
most available information in power systems. 
The sampled normalized voltage and current 
signals measured at the relay location are 
considered as the input data to the ANN. To 
ensure that the network is able to detect and 
classify the fault in a timely fashion, voltage 
and current waveforms are sampled at a rate 
of 64 samples/cycle (sampling rate is 3200 
Hz). This sampling rate is compatible with the 

sampling rate commonly used in high-speed 
digital relays. 

The fault voltage and current waveforms 
may undergo some changes in their frequency 
spectrum, due to the capacitor voltage 
transformers and current transformers in-
addition-to the anti-aliasing filters, before they 
are finally introduced to the ANN based digital 
relay. Fig. 4 shows the frequency response of a 
typical Capacitor Voltage Transformer (CVT) 
[14]. The frequency spectrum of a typical 
Current Transformer (CT) can be represented 
by a wide band second order Butterworth 
filter, which attenuates partially the dc com-
ponent and the high frequency noise   [15]. 
However, it should be noted that the Butter-
worth filter representation of a CT excludes 
the saturation phenomenon that can occur in 
a CT. Hence, the above mentioned frequency 
spectrums for both the CVT and CT, together 
with a low pass anti-aliasing filter with a cut-
off frequency at 1600 Hz, have been included 
in the PSCAD/EMTDC simulation of the power 
system shown in fig. 3.  In fig. 5 the filtered 3-
phase voltage and current waveforms, for a 
phase-to-phase fault (phases a and c) 

occurring after 0.517 s time mark at 10 km 
from SE, are shown. The Elman ANN was 
trained using the filtered voltage and current 
samples in order to match as close as possible 
actual values fed to a relay. 
 
4.3. Network structure and training 

 

For the ANN to detect and classify a fault, 
it should be able to indicate a “normal state” 
during a no fault condition. Once a fault 
occurs the ANN should indicate which phase 
or phases are involved in the fault. In order to 
reduce the number of output neurons as 
much as possible, which further  reflects  in  a  
 

 

 
 

Fig. 3.  500 kV transmission system (part of Egypt 
national grid). 
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Fig. 4.  CVT frequency response. 
 

Table 1  
Elman neural network outputs 
 

Output 
neuron 1 

Output 
neuron 2 

Output 
neuron 3 

Fault 
classification 

-1 -1 -1 Normal 
state 

1 -1 -1 Phase a 

-1 1 -1 Phase b 

-1 -1 1 Phase c 

1 1 -1 Phases a,b 

1 -1 1 Phases a,c 

-1 1 1 Phases b,c 

1 1 1 Phases 
a,b,c 

 

 
 

Fig. 5.  3-phase voltage and current waveforms for a phase-to-phase fault (phases a and c) occurring after 0.517 s time 
mark at 10 km from SE. 

 

smaller structure for a neural network, and 
still obtain all the required output, it has been 
decided to have 3 output neurons only. In 
table 1 all the outputs of the proposed Elman 
ANN based fault detector and classifier 
module are shown. 

A few different network structures, all 
having three outputs but with a different 
number of inputs and different number of 
neurons in the hidden layer, were considered 
and trained. Training patterns were generated 
by simulating different types of faults using 

the power system shown in fig.  3. Independ-
ent test patterns were also generated to 
validate the networks’ performance. The tansig 
nonlinear function was chosen for both hidden 
and output layers of the network in order to 
achieve the requirements shown in table 1 [7]. 

Consecutive samples of three phase 
voltages and currents are usually chosen as 
inputs to the neural network [2-5, 10]. The 
appropriate input data window length is a 
major factor, which should be considered. In 
[2] each phase voltage and current was 
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represented by its 5 consecutive samples (data 
window of 5 ms) and a 30 input MFNN with 
two hidden layers was designed. The Elman 
network has some kind of memory in its 
structure. Therefore, compared with the previ-
ously proposed 30 inputs network it should be 
able to use a smaller size of window and less 
number of inputs to cover the necessary input 
information to the network. 

Various networks considered were trained 
to detect and classify a fault on a TL. The 
network that showed satisfactory results, 
while not having a big size, had just 24 inputs 
(4 consecutive samples of all three phase 
currents and voltages), 24 hidden neurons 
and 3 output neurons. The data window used 
in this case is only 1.25 ms.  

The Elman ANN was trained using 120 
different fault and normal state cases. Each 
case has 2 consecutive cycles; the first cycle is 
a pre-fault normal operation while the 
remaining cycle represents a fault. As each 
cycle is represented by 64 samples, so each 
case consists of 128 samples. The total 
training patterns were thus 15360. The back 
propagation algorithm as indicated in [7,8] 
was used for training the Elman ANN. 
However, the weights of the recurrent 
connections, fig. 2, are fixed at 1 and are not 
subjected to adjustment.  

It should be noted that the proposed 
Elman ANN has a much smaller size than the 
MFNN fault classifier proposed in [2]. As it has 
24 inputs, 24 hidden neurons and only 3 
output neurons, while the MFNN has 30 
inputs, 20 neurons in the first hidden layer, 
15 neurons in the second hidden layer and 11 
output neurons. Moreover, the Elman ANN 
required only 15360 training patterns to train, 
but the MFNN required 45360 patterns to 
train. Also the data window of the Elman 
network is 1.25 ms while that of the MFNN is 
5 ms. Comparing the Elman ANN proposed in 
this paper with the other ANN proposed in 
[2,5,10], it is found that it has the smallest 
size and smallest data window, in-addition-to 
the least number of training patterns.  

The trained network was tested with 
different independent test patterns and 
promising results were obtained. The results 
obtained indicate that the proposed network is 
able to detect and classify the fault very fast 

and reliably. Some of the simulation results 
are presented in the next section.  
 
5. Simulation results 

 
The proposed Elman network was tested 

with a set of 100 different faults including very 
extreme cases like faults at the far end of the 
TL with high amount of fault resistance. In all 
cases the network was able to detect and 
classify the fault accurately. The network 
output for a few faults with different power 
system conditions is presented in this section. 

The output of the network for different 
types of faults on the TL is shown in fig. 6. 
Fault location was 300 km from the relay 
location at the SE, with fault resistance of 10 

Ω and fault inception time of 20.6 ms, which 
correspond to sample number 66. For each 
fault, the output of the recurrent network is 
represented for the prefault condition and 
then during the first three cycles after the 
fault inception. Different faults involve 
different phases and ground as well. Fault 
type ag indicates a single phase to ground 
fault (phase a to ground), while fault type bc 
indicates a phase to phase fault (phases b and 
c). This figure shows that the detection and 
classification is very fast and reliable. The 
output of the network is stable for 3 cycles 
after fault inception, although the network 
was trained with the data samples of the first 
cycle after fault inception. 

A feed forward network structure classifies 
different input patterns independently. The 
order in which the patterns are presented to 
the network is not considered. There is a 
possibility that for some extreme cases two 
consecutive input patterns would be classified 
into different classes. During such extreme 
cases the network output may become 
oscillatory [1-4]. To further increase the 
reliability of a network, a post processing 
output averager is usually used [2-5] to 
smooth up the output of the feed forward 
neural network. For the recurrent network, 
the output of the network depends on the 
present input as well as the previous history 
of the inputs. Its track is smooth; it does not 
jump from one region to another region. The 
output smoothly increases/decreases from 
zero towards 1 or -1. For the recurrent 
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network, therefore, averaging would not be 
necessary and it can be used as a stand-alone 
unit. 

There are 3 neurons in the output layer, 
where each neuron is associated with one 
phase as indicated in table 1. So, it has been 
decided that the neuron output with a value 
higher than zero will be interpreted as a 
faulted phase. For the faults presented in fig. 
6, it takes at most 5 samples and at least 3 
samples for the output of the recurrent 
network to classify the fault. On average the 
fault classifier module needs less than 2 ms 
after fault inception to detect and classify the 
fault. 

The next set of simulation results test the 
performance of the Elman network for faults 

at the far end of the protection area with 70 Ω 
fault resistance. Different faults were applied 
at 335 km from the relay location and the 
results are shown in fig. 7. It shows that the 
network performed correctly for the far end 
faults even in the presence of very high 
amount of fault resistance. 

Fig. 8 shows the output of the network for 
different faults during about five cycles after 
the inception of a fault. The sending end 
source impedance was reduced by a factor of 
5. Outputs of the network in all cases classify 
the fault correctly. The fault detection and 
classification is very fast. The output of the 
network is stable, although the network was 
not trained with the data samples  of  reduced  

 

 
 

Fig. 6.   Elman network response to faults at 300 km from 

SE, fault resistance is 10 Ω and fault inception time is 
20.6 ms (sample number 66). 

 
 

Fig. 7.   Elman network response to faults at 335 km from 

SE, fault resistance is 70 Ω and fault inception time is 5 
ms (sample number 16). 

 

source impedance at the sending end. This 
study demonstrates that the proposed method 
is not affected by the variation of the source 
impedance. This means that the Elman 
network can work accurately for other 
transmission systems without the need for 
further training.  

The results presented demonstrate the 
performance of the network for some extreme 
fault cases. In general, the network performs 
better and faster for more usual cases such as 
low resistance faults around the middle of the 
protected area. 
 
 

 
 

Fig. 8.  Elman network response to faults at 200 km from 
SE, fault resistance is zero and fault inception time is 

51.5 ms (sample number 164). 
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6. Conclusions 

 
A novel fault detection and classification 

module for protecting transmission lines is 
described in this paper. The proposed 
approach is based on the use of recurrent 
neural network technique. The recurrent 
connections provide the neural network with 
memory. The designed neural network uses 
samples of all three phase voltages and 
currents from one end of the line to classify 
the fault. The classification module network is 
extensively tested by independent test fault 
patterns and promising results are obtained. 
The performance of the Elman network is also 
checked for faults including high amount of 
resistance. Extensive studies indicate that the 
network is able to classify faults in less than 2 
ms. The classification is not affected by the 
type and location of the fault, the variation of 
the source impedance and the presence of 
fault resistance. The results show that the 
network is very powerful in processing the 
voltage and current temporal input signals. 
Elman neural network based approach can 
thus be successfully used as a part of a new 
generation of high-speed relays for power 
systems.  
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