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Due to the continuous development in the construction industry, crushing plants are 
studying to replace the used equipment to fulfill the construction projects requirement. The 
replacement objective is to increase the target quality. The capacity for the crushing plant is 
selected to produce a given rate of heaviness of output. The financial management of liquid 
money and cash like assets is an important consideration in the crushing plant 
management. The cash holdings are considered an inventory like the inventory of other 
commodities. It should be incorporated in a mathematical model to help in making financial 
management decisions. The main objective of this paper is to provide an understanding of 
capital effective use in crushing plants. The sources, types, and means of acquiring funds 
and capital are described. Examples illustrating the capital invested are given. A case study 
illustrating the accounts for a typical construction company is given. 
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1. Introduction 
 

Linear and dynamic programming are 
mathematical techniques for determining 
optimal allocation of scarce resources. Linear 
Programming (LP) is a mathematical 
procedure that has found practical application 
in almost all facets of construction projects, 
from feasibility studying to project closing. 
Construction methods and financial planning 
problems are the most typical objects of LP 
analysis. 

Most of the construction projects have 
been essentially only one-period problem. The 
formulations act as if decisions of this period 
were influenced by decisions in future periods. 
Commonly, the crushing plant produces more 
of a certain product in this period than a 
constraint requires. That extra production will 
not be worthless. However, it can probably be 
used in the next period. A common word with 
the same meaning for multi-period is dynamic. 

Therefore, a multi-period LP may be referred 
to as a Dynamic Programming (DP) model. 
These interactions between periods can be 
represented within DP models. 

In most of construction projects, the need 
to represent the multi-period aspects is 
obvious. One setting in which multi-period DP 
has been used for a number of years is crush-
ing plants. Production decisions must be 
made yearly or even monthly. However, the 
production time for many aggregate types may 
be months depending upon the required 
grading. 

The crusher takes the raw material and 
breaks it into small sizes. To do this the 
machine is set to the maximum size required. 
However, the rocks will fragment into a range 
of sizes down to dust. Then, it can be fed away 
for further reduction or screening and sorting. 
The machine is usually described in terms of 
its crushing ratio. 
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crusher for Setting

opening feed of Size
Crushing = .          (1) 

  

The ranges of crushing ratios for various 
types of machine are shown in table 1. 

 
Table 1 
Crushing ratios [1] 
 
Crusher machines Smaller units Larger units 
Jaw 4-8 3-10 
Gyrator 5-8 4-6 
Impact 5-25 5-50 
Cone 3-14 4-14 
Twin-roller 1-4 2.8 

 
There are several different types of 

crushing machine for handling different size 
feed and material. The production output from 
each varies between types for a given crushing 
ratio. Therefore, careful costing is necessary 
when several stages of reduction are required. 
For primary crushing, (i.e., breaking material 
down from large pieces) either a jaw or gyrator 
is preferred while secondary or further 
reduction, the cone, hammer mill or roll 
rusher is usually selected. 

For example, fine sand may need to be 
stored as inventory for up to ten months. 
Coarse sand may take from two to four 
months, and for other grades of sand obtained 
it depends upon the number of weeks held in 
storage. 

 
2. Multi-period aspects 

 
Most multi-period (dynamic) models chop 

off the analysis at some finite time in the 
future. The manner in which this chopping off 
is done can be important. In general, project 
manager cares about the state in which things 
are left at the end of a planning model (e.g., 
inventory levels, capital investments, etc.). If 
the project manager arbitrarily make a 
planning model at the fifth year in the future, 
an optimal solution to our model may be an 
optimal solution to how to go out of business 
in five years.  

Grinold [2], provides a comprehensive 
discussion of various methods for mitigating 
end-of-horizon effects. Some of these options 
for handling  the  end  effect  are  discussed in  

later (a) Truncation which simply drops from 
the model all periods beyond a chosen cutoff 
point (b) Primal limits that are the placed 
reasonable limits on things such as inventory 
level at the end of the initial period (c) Salvage 
values or dual prices are the placed 
reasonable salvage values on things such as 
inventory level at the end of the final period (d) 
The final-period represents (models) a period 
of infinite length for which the same decisions 
applies throughout the period. Net present 
value discounting is used in the objective 
function to make the final period comparable 
to the earlier finite periods.  

This was the approach used by Carino et 
al. [3] and Schrage  [4] in their mathematical 
models. 
 

3. Financial management 

 
Mathematical models for financial 

planning divide the project life cycle into a 
number of periods. The portion of the model 
corresponding to a single period might include 
some combination of crushers, screening 
process, etc. An inventory variable and 
material balance links these single periods or 
static models. The linking (inventory) variable 
represents the amount of commodity trans-
ferred from one period to the next. 
 

3.1. Material balance  

 
A material balance (or “sources = uses”) 

constraint is applied for each commodity and 
period. The simplest form of this constraint is 
as follows. 

 
Production e  AggregatInentory   Beginning +  

= Ending inventory + Aggregate sold.        (2) 
 

Multi-period models are usually used in a 
rolling or sliding format. In this format, the 
mathematical model is solved at the beginning 
of each period. The recommendations of the 
solution for the first period are implemented. 
As one period elapses and better data and 
forecasts become available, the model is slid 
forward one period. The period that had 
number two becomes number one, etc. 
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3.2. Types of capital 

 
The small construction companies begin-

ning operations will normally need to find the 
initial capital to start the business from 
private resources. Few others are willing to 
take the risks associated with an unknown 
enterprise. Gradually, though, as the firm 
prospers by ploughing back retained profits, 
the usual lenders of capital may then consider 
providing loans and investments. 

Loan capital can be classified into short-
term and long-term borrowings.  
 
3.3. Capital sources 
 
3.3.1. Long-term finance 

Long-term finance is that capital required 
for up to 5 years, either to start the business 
or to carry out expansion programs. Broadly, 
the capital is used to purchase buildings, 
plant, and equipment and to carry stocks of 
materials. 
 
3.3.2. Short-term finance 

Short-term loans usually carry lower 
interest rates, by virtue of the fact that 
repayment periods are short of the order of 
months, and therefore open to much less risk 
than loans granted over a period of years. 

The firm when established often needs 
short-term capital to overcome immediate 
cash flow problems. Materials have to be 
purchased, plant hired, labor and subcontrac-
tors paid and so on before payment is received 
for the finished product. Furthermore, capital 
may be required to smooth out the strains on 
cash flow resulting from rapid fluctuations in 
the market demand for the company’s goods. 
 

3.4. Period length 

 
There is nothing sacred about having all 

periods of the same length. For example, when 
the crushing plant plans the production rates 
for the coming year, it is sensible to have the 
periods correspond to the seasons of the year. 

Some companies, which based on mineral 
resources, plan as much as 50 years into the 
future. In such a case, one might have the 
first two periods be one year each. The next 
period is two years. The next two periods are 

three years each. The next two periods are five 
years each. Moreover, the final three periods 
ten years each. 
 

3.5. Inter-period interactions 

 
Inter-period interactions are usually 

accounted for in DP by the introduction of 
inventory decision variables. These variables 
link adjacent periods. As an example, suppose 
a single explicit decision has to be made for 
each period, namely, how much to produce of 
a single product (i.e. coarse sand).  

Let Pj be the amount of production for 
period j. Further, suppose we have contracts 
in period j to sell dj (known amounts) of this 
product. Define the decision variable Ij as the 
amount of inventory left over at the end of 
period j. By this convention, the beginning 
inventory in period j is Ij-1.  

The simplest form of this constraint is as 
follows. 
 
Ij-1 + Pj = Ij + dj .             (3) 
  

In that case, the DP formulation will 
contain one constraint “sources of product = 
uses of product” for each period. For period 
#2, the sources of product are beginning 
inventory, I1, and production in the period, P2. 
The uses of product are demand, d2, and end-
of-period inventory, I2. For example, if d2= 
60.00 and d3= 40.00, the constraint for period 
#2 is I1 + P2 = I2 + 60.00 or 

 
1.00 I1+1.00 P2– 1.00 I2= 60.00.     (4) 
     
The constraint for period 3 can be expressed 
as: 
 
1.00 I2+1.00 P3– 1.00 I3= 40.00.                     (5) 
     

Notice how I2 links appears in both the 
constraints for period #2 and period #3. 
 
3.6. Cash flow stream 

 
In some problems, the net outflow need 

not exactly equal the net inflow into the next 
period. For example, if the product is cash, 
one of the linking variables may be short-term 
borrowing or lending. For each dollar that is 
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carried over from period #2 by lending, we will 
enter period #3 with $1.05 if the interest rate 
is 5.00% per period. 
 

3.7. Predictable attrition rate 

 
On the other hand, if the product is 

workforce and there is a predictable attrition 
rate of 10.00% per period, the above two 
constraints would be modified to the 
followings: 

 
0.90 I1+ 1.00 P2– 1.00 I2= 60.00,   (6) 
     
0.90 I2+ 1.00 P3– 1.00 I3= 40.00.                   (7) 
     

The following simple but realistic case 
study illustrates the formulation of a financial 
planning for a crushing plant based on DP. 

 
4. Model formulation 
 
    Suppose that, because of a careful planning 
exercise the project manager has concluded 
that to meet certain commitments. Hence, he 
will need the following amounts of cash for the 
current plus next 14 years, table 2. 

A common example where such a 
projection is made is in a person injury 
lawsuit. Both parties may reach an agreement 
that the injured party should receive a stream 
of payments such as above or its equivalent. 
Other examples where the above approach has 
been used are the design of bond portfolios to 
satisfy cash needs for a pension fund. Or for 
so-called balance sheet defeasance to satisfy 
cash needs for a pension fund, or for so-called 
balance sheet defeasance, where one kind of 
debt is replaced by another having the same 
cash flow stream. For administrative simplic-
ity in the personnel injury example, both 
parties prefer an immediate single lump sum 
payment that is equivalent to the above 
stream of 15 payments. The party receiving 
the lump sum will argue that the lump sum 
payment should equal the present value of the 
stream using a low interest rate. Such as that 
obtained in a very low risk investment, for 
instance a government guaranteed savings 
account. For example, if an interest rate of 
4.00% is used, the present value of the stream 
of payments is $230,437.00. The party that 

must pay the lump sum, however, would like 
to argue for a much higher interest rate. To be 
successful, such an argument must include 
evidence that such higher interest rate 
investments are available and are no riskier 
than savings accounts. The investments 
usually offered are government securities. 
Generally, broad spectrums of such 
investments are available on a given day. For 
simplicity, assume that there are just two 
such investments available with the specific 
features, table 3. 
 

Table 2 
Cash for the current plus next 14 years  

 

Year Cash ($) 
 

0 $10,000.00 
1 $11,000.00 
2 $12,000.00 
3 $14,000.00 
4 $15,000.00 
5 $17,000.00 
6 $19,000.00 
7 $20,000.00 
8 $22,000.00 
9 $24,000.00 
10 $26,000.00 
11 $29,000.00 
12 $31,000.00 
13 $33,000.00 
14 $36,000.00 
Total $319,000.00 

 
Table 3 
Features of available investments 
 
Investment 
section #1 #2 
Current cost $980.00 $965.00 
Yearly return $60.00 $65.00 
Years to maturity 5 12 
Principal repayment at 
maturity $1,000.00 $1,000.00 

 
The paying party will offer a lump sum 

now with a recommendation of how much 
should be invested in sections #1 and #2. In 
savings accounts, the yearly cash require-
ments are met with the minimum lump sum 
payment. 
 

4.1. Methodology 
 

To construct the mathematical model, the 
following three questions must be answered. 
Firstly, what does the model ask to determine? 
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In other words, what are the decision variables 
(unknowns) of the problem? Secondly, what 
constraints must be imposed on the variables 
to satisfy the limitations of the modeled 
system? Thirdly, what is the objective (goal) 
that needs to be achieved to determine the 
optimum solution from among all the feasible 
values of the variables? 
 

4.2. Defining decision variables 

 
The following decision variables are useful 

in solving this problem. B1 is the amount of 
invested now into investment section #1, 
measured in face value amount. B2 is the 
amount invested now into investment section 
#2, measured in face value amount. Si is the 
amount invested into account in year I. L is 
the initial lump sum. 
 

4.3. Model constraints 

 
If we assume that idle cash is invested at 

4.00% in, a savings account and all amounts 
are measured in $1000s. The following set of 
constraints is required to achieve the financial 
strategy for the current plus next 14 years. 

 
Current year 
L-0.980 B1-0.965 B2-S0=10.                      (8) 
   
First year 
0.060B1 +0.065B2+1.04 S0-S1=11.             (9) 
 
Second year 
0.060B1+0.065B2+1.04 S1-S2=12.                (10) 
      
Third year 
 0.060B1+0.065B2+1.04 S2-S3=14.               (11) 
      
Fourth year 
 0.060B1+0.065B2+1.04 S3-S4=15.              (12) 
 
Fifth year 
 1.060B1+0.065B2+1.04 S4-S5 =17.              (13) 
 
Sixth year 
0.065B2+1.04 S5-S6=19.            (14) 
      

Seventh year 
0.065B2+1.04 S6-S7=20.           (15) 
      
Eighth year 
0.065B2+1.04 S7-S8=22.           (16) 
      
Ninth year 
0.065B2+1.04 S8-S9=24.                    (17) 
     
Tenth year 
0.065B2+1.04 S9-S10=26.                    (18) 
      
Eleventh year 
0.065B2 +1.04 S10 -S11 =29.                    (19)
  
Twelfth year 
1.065B2+1.04 S11-S12=31.                    (20) 
      
Thirteenth year  
1.04 S12-S13=33.                                    (21) 
      
Fourteenth year 
 1.04 S13-S14=36.                                    (22) 
      

The constraint coefficients give a better 
appreciation of the problem structure. In order 
to fit as much information on a page, table 4 
represents numbers bigger than 10 and less 
than 100 by “B”; and numbers bigger than 
1.00 but less than 10.00 by an “A.” Numbers 
less than 1.00 but at least 0.10 are 
represented by a “T.” Numbers less than 0.10 
but at least 0.01 are represented by a “U.” 

Notice that in row #7, B1 has a coefficient 
of 1.06. This represents the principal 
repayment of $1000.00 plus the interest 
payment of $60.00 measured in $1000.00s. 

Variable S14 (investment of funds in a 
savings account after the final payment is 
made) appears in the problem although at first 
you might think it is useless to allow such an 
option. S14 is effectively a surplus cash 
variable in the final period. Nevertheless, it is 
not usual for the solution that minimizes the 
lump sum payment to have cash left over at 
the end of the problem. This is because a bond 
may be the most economical way of delivering 
funds to intermediate periods. This may cause 
the big principal repayment at the end of a 
bond’s life to “overpay” the most distant 
periods. 
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Table 4-a 
Constraint coefficients 
 
# L B1 B2 S0 S1 S2 S3  
1 1       min 
2 1 -T -T -1    A 
3  +U +U +A -1   B 
4  +U +U  +A -1  B 

5  +U +U   +A -1 B 

 
Table 4-b 
Constraint coefficients 
 
# L B1 B2 S3 S4 S5 S6  
6  +U +U +A -1   B 

7  +A +U  +A -1  B 
8   +U   +A -1 B 

 
Table 4-c 
Constraint coefficients 
 
# L B1 B2 S6 S7 S8 S9  

9   +U +A -1   B 

10   +U  +A -1  B 
11   +U   +A -1 B 

 

 
Table 4-d 
Constraint coefficents 
 
# L B1 B2 S9 S10 S11 S12  

12   +U +A -1   B 

13   +U  +A -1  B 
14   +A   +A -1 B 

 
Table 4-e 
Constraint coefficients 
 
# L B1 B2 S12 S13 S14   
15    +A -1   B 
16     +A -1  B 

 
4.4. Objective function 

 
The objective function will be to minimize 

the initial lump sum, L. There will be a con-
straint for each year, which forces the cash 
flows to net to zero. By assuming all amounts 
of cash are measured in $1000s, then the ob-
jective function is minimizing L, as in eq.  (23). 

 
MIN. Z= 1.00 L   (23)   
    

5. Tools and techniques 

 
The process of solving the proposed math-

ematical model requires a large number of 
iterations. Therefore, a computer program best 
performs it. LINDO for Windows is the 
computer program that was used. The acro-

nym stands for Linear, Interactive, and 
Discrete Optimizer (LINDO). The main purpose 
of LINDO is to allow an end user to quickly 
input a DP formulation, solve it. In addition, it 
assesses the correctness or appropriateness of 
the formulation based on the solution. Then, 
LINDO quickly make minor modifications to 
the formulation and repeat the process. 
LINDO features a wide range of commands, 
which may be invoked at any time. LINDO 
checks whether a particular command makes 
sense in a particular context.  

 
6. Dynamic programming outputs 
 

When you direct  the computer to solve a 
DP, the  possible  outcomes  are  indicated   in  
fig.1. 

For a properly formulated DP, the solution 
procedure will first attempt to find a feasible 
solution. Feasible solution is a solution that 
simultaneously satisfies all constraints but 
does not necessarily optimize the objective 
function. If a feasible solution has been found, 
the procedure attempts to find an optimal 
solution.  

If the unbounded solution termination 
occurs, it implies that the formulation admits 
the unrealistic result that an infinite amount 
of profit can be made. A more realistic 
conclusion is that an important constraint has 
been omitted or the formulation contains a 
critical typographical error. 

No feasible solution will be found if the 
formulator has been too demanding. That is, 
two or more constraints are specified which 
cannot be simultaneously satisfied. In 
practice, the “No Feasible Solution” outcomes 
might occur in a large complicated problem. 
 
6.1. Solution reports  

 
When the proposed mathematical model is 

solved with the LINDO computer program, the 
following solution report is produced as shown 
in table 5. 

Of the $195,683.70 lump sum payment, 
$10,000 goes to immediate requirements, 
$4,804.50 goes into a savings account, and 
0.980 * 95,795.77 + 0.965 * 90,154.74 = 
$180,879.20 goes into longer term securities. 
By considering a wide range of investments 
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rather than just savings accounts, the amount 
of the lump sum payment has been reduced 
by about $34,750 or 15%. 

 
6.2. Portfolio constraints 

 
In actual solutions, one may find that a 

major portion of the lump sum is invested in a 
single investment section. For example, ap-
pending the constraint enforces limiting the 
amount invested in investment section #1 to 
half the initial lump sum. 

 
+0.98 B1-0.50 L<= 0 .                    (24) 
 

Such constrains are typically called 
portfolio constraints. 

An additional complication may arise due 
to integrality requirements on the B1 and B2 
investments.   For   example,   bonds   can   be 

 

Possible 

outcomes 
for a DP 

    

  Feasible 
Solution 

  

     

    Optimum 
Solution 

     

    Unbound 
Solution 

     

  No Feasible 

Solution 

  

     
Fig. 1. Possible outcomes for a DP. 

 
Table 5 
Solution report 

 
Variable Value Reduced costs 
L $195.683700 0.000000 
B1 $95.795770 0.000000 
B2 $90.154735 0.000000 
S0 $4.804497 0.000000 
S1 $5.604481 0.000000 
S2 $5.436464 0.000000 
S3 $3.261727 0.000000 
S4 $0.000000 0.106979 
S5 $90.403574 0.000000 
S6 $80.879776 0.000000 
S7 $69.975025 0.000000 
S8 $56.634084 0.000000 
S9 $40.759506 0.000000 
S10 $22.249944 0.000000 
S11 $0.000000 0.141246 
S12 $65.014792 0.000000 
S13 $34.615385 0.000000 
S14 $0.000000 0.379637 

 

bought only in $1000.00 increments. Gener-
ally, with a modest amount of judgment, the 
fractional values can be rounded to 
neighboring integer values with no great 
increase in lump sum payment. For example, 
if B1 and B2

 are set to $96.00 and $90.00 in 
the previous example, the total cost increases 
to $195,726.50 from $195,683.70. When this 
is done, S14 becomes nonzero; specially, the 
last period is overpaid by $40.00. 

Useful computations are a number of 
opportunities or marginal cost figures that 
appears in the third column, listed in table 6. 
The interpretation of these “reduced costs” 
and “dual prices” is discussed in the next 
sections. 

 
Table 6 
Marginal cost 

 
Constraint Slack Dual prices 
#   1 0.000000 -1.000000 
#   2 0.000000 -0.961538 
#   3 0.000000 -0.924556 
#   4 0.000000 -0.888996 
#   5 0.000000 -0.854804 
#   6 0.000000 -0.719063 
#   7 0.000000 -0.691406 
#   8 0.000000 -0.664814 
#   9 0.000000 -0.639244 
# 10 0.000000 -0.614658 
# 11 0.000000 -0.591017 
# 12 0.000000 -0.568286 
# 13 0.000000 -0.410615 
# 14 0.000000 -0.394822 
# 15 0.000000 -0.379637 

 
7. Sensitivity analysis 

 
A substantial amount of interesting 

economic information can be gleaned from the 
solution report of a model. In addition, 
optional reports such as range analysis can 
provide further information. The usual use of 
this information is to do quickly “what if” 
analysis. The typical kinds of what if 
questions are as follows. Firstly, what would 
be the effect of increasing a capacity or 
demand? Secondly, what-if a new opportunity 
becomes available? Thirdly, is it a worthwhile 
opportunity?   

Realistic mathematical models require 
large amount of data. Accurate data are 
expensive to collect and so we will generally be 
forced to use data in which we have less than 
complete confidence. A time-honored adage in 
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data processing circles is garbage in, garbage 
out. A user of a model should be concerned 
with how the recommendations of the model 
are altered by changes in the input data. 
Sensitivity analysis is the term applied to the 
process of answering this question. 
Fortunately, an LP solution report provides 
supplemental information that is useful in 
sensitivity analysis. This information falls 
under two headings, reduced costs, and dual 
prices. 

Sensitivity analysis can reveal which 
process of information should be estimated 
most carefully. For example, if it is blatantly 
obvious that a certain product is unprofitable, 
little effort need be expanded in accuracy 
estimating its costs. Schrage [5] concluded 
that do not waste time accurately estimating a 
parameter if a modest error in the parameter 
has little effect on the recommended decision.    

 
7.1. Reduced costs 

 
The reduced cost is a quantity associated 

with each variable in any solution. If the units 
of the objective function are dollars and the 
units of the variable are tons, the units of the 
reduced cost are dollars per ton. The reduced 
cost of a variable is the amount by which the 
profit contribution of the variable must be 
improved before the variable in question 
would have a positive value in an optimal 
solution. Obviously, a variable that already 
appears in the optimal solution will have a 
zero reduced cost. 
 
7.2. Profitability 

 
Correct interpretation of the reduced cost 

is the rate at which the objective function 
value will be hurt if a variable currently at 
zero is arbitrarily forced to increase a small 
amount. Suppose the reduced cost of x is 
$2.00/ton. This means that if the profitability 
of x could be increased by $2.00/ton, 
increasing the amount produced of x by one 
unit (if 1 unit is a “small change”) would not 
change the total profit. The profitability can be 
increased by some combination of raising its 
selling price/unit and decreasing its 
cost/unit.   Clearly,  if  we  did  not  alter   the  

original profit contribution of x, the total profit 
would be reduced by $2.00 if x is arbitrary 
increased by 1.00.    
 

7.3. Dual prices 

 
The dual price is a quantity associated 

with each constraint. If the units of the 
objective function are dollars and the units of 
the constraint in question are tons, the units 
of the dual price are $/ton. The dual price of 
constraint is the rate at which the objective 
function value will improve as the right hand 
side or constant term of the constraint is 
increased a small amount. 
 
7.4. Sign conventions 
 

Different LP packages may use different 
sign conventions with regard to the dual 
process. LINDO uses the convention that a 
positive dual price means that increasing the 
right-hand side in question will improve the 
objective function value, whereas a negative 
dual price means increasing the right-hand 
side will cause the objective value to 
deteriorate. A zero dual price means that 
changing the right-hand side a small amount 
will have no effect on the solution value. 

It follows that under this convention, <= 
constraints will have non-negative dual prices, 
>= constraints will have non-positive dual 
prices, and = constrains can have dual prices 
of any sign. 
 

8. Concluding remarks 
 

One of the fundamental assumptions of LP 
is that all input data are known with 
certainty. There are situations, however, 
where certain essential data are highly 
random. For example, when a crushing plant 
makes its grade size production decisions for 
the coming month, the demand for that 
aggregate is very much a random variable. If, 
however, the distribution probabilities for all 
the random variables are known, there is a 
modeling technique for converting a problem 
that is an LP except for the random element 
into an equivalent deterministic linear 
programming. 
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Notations 

 

Bm is the amount invested now into in-
vestment section #m measured in face 
value amount, 

dj  is the amounts of aggregate selling in  
period j, 

Ij  is the amount of inventory left over at  
the end of period j, 

L  is the initial lump sum, 
Pj  is the amount of production for period  

j, and  
SI  is the amount invested into account in  

year I. 
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