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The method most commonly used for simulating dispersed phase systems is the
population balance technique by itself or in conjunction with CFD. Unfortunately, the
accuracy of this technique has rarely been investigated and the computational effort
associated with its use renders its integration into CFD code very cumbersome. One of
the errors encountered in solving Population Balance [PB] simulations is that resulting .
from the numerical solution of the integro-differential PB equations. One of the major
factors affecting the stability and accuracy of the resulting numerical solution is the
method used to describe the drop size distributions encountered in the system. Most
investigators use a limited number of fixed drop size intervals and the drops present
within that interval are represented by an appropriately selected class average
(arithmetic, geometric or logarithmic mean). Significant errors are introduced through the
use of classes and the inappropriate selection of the average value representing a class.
Reasonably stable and accurate numerical solutions were obtained by using optimal
number of classes in the drop size domain (10 to 200 classes). However, this improvement
requires excessively large computational effort, particularly when low residual errors are
required. However, highly accurate and rapid numerical solutions were obtained when the
drop size distribution is described as a continuous function that is sampled at regular
interval. In this case, numerical integration over a selected section of the drop size
domain is used to calculate breakage and coalescence rates at different drop sizes.
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1. Introduction describing multiphase systems, and has been

used to describe multi-phase operations such

The Population Balance Equation [PBE] is as crystallization; grinding, inter-phase heat
the most effective fundamental tool for
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and mass transfer operations, multi-phase
reactions, and flotation.

The advantages of PBE are, (i) it is based
on the principles of conservation of mass and
physically consistent phenomena, (ii) it can be
used to calculate dispersed phase size
distribution, and the variation of temperature
and concentration within the various sizes,
(iii)it can account for heat and mass transfer
as well as the extent of reaction, (ivjcan
account for back mixing, convection, and
diffusion, (v)a significant advantage of the PBE
is that a vehicle is provided to include the
details of the drop/bubble breakage and
coalescence processes in terms of the physical
parameters and conditions of operation, fig. 1.
However, the PBE has not been extensively
used by industry because of insensitivity to
model assumptions and gross modeling
simplifications.

Sovova [1], and Rod and Misek [2] derived
exact solution for the PBE in a batch mixer,
assuming simple power functions in drop size
for breakage and coalescence. Generally, PBE
requires numerical solution. Lee et al. [3]
applied the population balance equation
coupled with the proposed breakage kernel
and the previously developed breakage model
to the analysis of bubble size distribution for
non-coalescing systems in a bench-scale airlift
column. They solved the steady-state
population balance equation using Simpson’s
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integration technique. Niyogi et al. [4] solved
the population balance equation numerically
using adaptive fourth-order Runge-Kutta
method. Chatzi et al. [5] described the steady-
state drop size distribution in a batch stirred
vessel by PBE. They solved PBE using
composite Simpson’s rule.

The objective of the present work is to
develop a user friendly population balance
program capable of accurately simulating
multi-phase contactors, accurate numerical
solution, better representation of the
hydrodynamics of industrial units, and having
modeling  flexibility = for  various sub-
components.

2. PBE formulation

In a dispersed phase system, the material
domain comprises a continuous phase and a
dispersed phase, the latter as a population of
particles (drops, bubbles, or solid) in which
the identities of individuals are continually de-
stroyed and recreated by breakup and coales-
cence processes. Considering the control

volume in fig. 2. The population balance model
is based on an equation for the continuity of
particle numbers in a dispersed phase and is
developed from the
equation.

general conservation

Transfer Coeff., Phase Distribution

Hédt& Mass ™

+ Energy ‘Supply
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Fig. 1. Role of breakage and coalescence in multi-phase systems.
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Accumulation rate = Flux in (convection &

diffusion)-Flux out+ Net generation rate. (1)
Death by O __ Birth by
Breakage (- ( ')Breakage

/

/

Convection | Convection

Birthby O

™\ Death by
. Coalescence

_/ Coalescence

Fig. 2. Control volume.

Consider the distribution of entities n(r, &,
&2,..., &m, t) or the population of particles of the
dispersed phase at position r, where r
represents the spatial coordinates or “external
coordinates”, t is the time, and & represents
the i th other property of the entity. &; is also
called the internal coordinate and used to give
a quantitative description of the state of an
individual particle, such as its mass,
concentration, temperature, age, volume, etc.
In addition to time, there are (3+m)
independent variables involved that can be
thought of as a (3+m) dimensional space.

The PBE in its most general form [6]

O »

---- " Ve 1_»' n) -B +D = 0. (2)
ot

Where V is the coorditwete velocity in phase
space. For well mixed batch mixing tank, fig.
3, with no reaction or heat/mass iransfer, the
problem simplifies to the following two
dimensional situation [7]

d [N(t) f(a,t)]
— = Bs(a,t)-Ds(a,t)*+ Bc(a,t)- Dc(a,t).
dt

(3)

Where: N(t) is the total number of particles at
time t, f(a,t) is the fraction of particles have
diameter between a and at+Aa, and Bsg(a,t),
Dg(a,t), Bc(a,t), and Dc(a,t) are the birth rate
by breakage, death rate by breakage, birth
rate by coalescence, and death rate by
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coalescence, of particles of diameter a at time
t, respectively.
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Fig. 3. Batch mixer (agitated tank).
3. Breakage rate

Breakage results in both “death” as well as
“birth” within a certain drop size range.

Amax

Bs(a,t) = | B(a,a) ¢(a) Q(a) N(t) f(a’,t) da’ (4)
a

Ds(a,t) = Q(a) N(t) flat) . (5)

From egs. (4, 5), the breakage rate is
affected by [8]:
i- breakage frequency Q(a), which is function
of energy dissipation rate per unit mass g,
surface tension o, density of dispersed phase
pp, density of continuous phase pc, viscosity of
dispersed phase up, and viscosity of
continuous phase pc.
ii- number of daughter drops ¢(a), where ¢(a’)
may be (2,3,4,...).
iii- size distribution of daughter drops B(a,a)),
where B(a,a’) is assumed (equi-sized, Normal,
Gamma, Beta,...).

4. Coalescence rate

Coalescence results in both “death” as well
as “birth” within a certain drop size range.

a/2
Bc(a,t)=[ Ma-a’, a) o(a-a’, a’) N(t)f (a-a’,t) N (t) f(a’,t)da
0 (6)
' ama_x"a
Dc(a,t)= N(t) fla,t) | A(a, @) o(a, a) N(t) f(a’,t)da.
0 (7

Here: AMa, a’) is the coalescence efficiency
between drops of size a and a’, and o(a, a)) is
the collision frequency between drops of size a
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and a’. From egs. (6,7), the coalescence rate is
. affected by [8]:

i- collision frequency o(a, a’), which is
function in energy dissipation rate per unit
mass &, density of dispersed phase pp, density
of continuous phase pc, and diameters of
colliding drops (a, a’).

ii- coalescence efficiency A(a, a’), which is
defined as the fraction of collisions between
drops of diameter a and a’ that result in
coalescence. It is function of contact time
between drops and coalescence time which is
the time required for drops to coalesce.

5. Errors in population balance simulation
5.1. Formulation errors

Formulation errors are due to:
i-disregard of the large spatial variation in
energy dissipation rate (g).
ii-emphasis on binary breakage and coales-
cence.
ili-presence of large numbers of models
describing the various sub-processes (often
conflicting).
iv-lack of experimental data in which coales-
cence or breakage mechanisms dominate (to
discriminate amongst the various sub-
processes).
v-lack of information on the factors affecting
the accuracy of numerical solutions.

5.2. Solution errors

The sources of error in numerical
solutions are:

i-discretization errors in time and drop size
domain,

ii-truncation errors, due to approximating
exact mathematical procedures,

iii-round off error, due to inexact representa-
tion of floating point numbers,

iv-propagated errors, due to errors from
previous steps carried through to succeeding
steps, and

v-the underestimation or overestimation to the
time of equilibrium state between breakage

and coalescence processes.

6. The Rod and Misek analytical solution

Rod and Misek [2] obtained analytical
solutions for the transient and equilibrium
drop diameters by assuming simple power
functions for breakage and coalescence rates,
expressed by:

Q(a)) = K, ad®e*h), (8)
B(a,a) = 3 a?/a’®, 9)
sa) =2, (10)
Ma-a’, a) o(a-a’, @) = K¢ (a3 + a?)p . (11)

Where Ks and K. are the breakage and
coalescence rate constants. The analytical
solution of the steady-state PBE using the
above models, leads to the steady-state drop
number density:

3 a? a
f(@) = ------- exp [-(----). (12)
a?l a

Mean volume drop diameter a, as the
parameter of the distribution, is given by:

o 3 K. ¢

a=(---- -------- J1/6 . (13)
n Ks

Where ¢ is the volume fraction of the

dispersed phase. The transient distribution
developing during the transition from one
steady state, chelracterized by the mean
volume diameter a, to another steady state,
characterized by the mean volume diameter
a,,, can be described by:

3 a? P
fla,t) = ---------- exp [- (a/ (V). (14)
[ a())?
The time variation of the value a,

depending on the exponent p, is described by
differential equation,

BB el i Ks a%2(a,6- a%. (15
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The solution of eq. (15), for p=0, has the
form:

1+Aexp(-2Ks a?t)

Blf) = By~ siinant i )13, (16)
1-Aexp(-2Ks at)
where;
a3 - al
A= cmmmmeeee (17)
a,® + a3

The analytical solution of Rod and Misek
[2] was used to identify the factors controlling
the accuracy of numerical solutions and
develop algorithms that can minimize them.
The rate at which equilibrium is achieved
depends on the value of the coalescence and
breakage rate constant (K¢ & Ks).

Fig. 4 shows the effect of sudden variation
in the RPM of the impeller, on the volume
mean diameter in the batch mixer.

7. Discretization of drop size distribution

The Drop Size Distribution (DSD) is
descretized into drop size classes, fig. 5. The
arithmetic mean diameter usually used to
describe the class. The number of classes
used to describe DSD as low as 7. No clear
rules exist for the drop size range over which
calculations should be conducted.
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©
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@
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Fig. 4. Effect of RPM on volume mean diameter.
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8. Use of DSD classes in PBE

At a particular drop size a;, fig. 6:

N
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Fig. 5. Discretization of DSD.

scalculate birth rate by breakage (Bs), by
summation of birth rates resulting fromdisin-
tegration of larger drop sizes,

ecalculate death rate by breakage (Ds), at the
class represented by a;,

ecalculate birth rate by coalescence (Bc), by
summation of birth rates resulting from the
coalescence of small drop sizes, and

ecalculate death rate by coalescence (Dc), by
summation of death rates resulting from the
formation of larger drops by coalescence with
all other drop classes.
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Fig. 6. Net generation rate at particular drop size.
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9. Size of the drop size domain

Most investigators used a fixed maximum
drop size range with 10-20 drop size classes.
The effect of varying the fixed calculation
range was investigated using 10 classes and
DSD with 99%<1800 pm, fig. 7. The effect of
the assumed value of amax Oon the accuracy of
the numerical solution is shown in fig. 7. The
overestimation and underestimation of the
amax, increases the solution error. The optimal
range of amax # 2000 pm. Starting from a DSD
range of 4000 pm, instabilities were observed.

o 3.00e+72
E o612
%‘ 2008412
§ 1:Ee2
E 1.00E+12
g S.00E+11

Z 00oer00

0 500 1000 1500 2000 2500 3000 3500 4000
Diameter, um

3.50E+10
3.00E+10
2.50E+10
2.00E+10
dn/dt 1.S0E+10
) .3 VOOE+10
S 1M 5.00e+09
0.00E+00 &
-5.00E+09
-1.00E+10
-1.50E410
-2.00E+10

1500 2000 2500 3000 3500 400
Diameter,um

Volume mean diameter, pm

Time, s

Fig. 7 Net breakage from a, = 1000 pm to another steady
state, characterized by the mean volume diameter a, =
500 pm. Fixed time step size, 1000 time intervals.

10. The need to limit the size of the DSD

In the region where the net rate of change
is very small, fig. 8, truncation error was
found to play a significant role. This is caused
by the net rate of change being the difference
between two large drop-birth and drop-death
rates.

11. Adaptive integration range

Limit the integration range in the drop size
domain to values that do not exhibit instabili-
ties:

At each time interval, limit the integration
range at the drop size where the netrate of
change is less than 0.01% of the maximum
net rate, or

oAt each time interval, limit the integration
range at the drop size where the number
density is less than 0.001% of the maximum
number density (>99.99% mass conservation).
eRelative error was reduced from 17.6 to
10.7% (at 36s) when 10 drop size intervals
and classed DSD were initially used (fixed
interval size in the DS domain).

°As a result of the decreasing amax value, the
number of sampling intervals used to describe
the DSD decreased. This leads to enhancing
the error.

12. Use of sampled DSD in PBE

In this approach, fig. 9:
eThe continuous DSD is sampled at selected
points.
oCubic spline interpolation is wused if
information is needed in between sampling
points (e.g. birth by coalescence).
eBirth rate by breakage (Bg), birth rate by
coalescence (Bc) and death rate by coalescence
(Dc) are determined by integration over the DS
domain.
oSimpson’s integration formulae are used.

13. Comparison of sampled and “classed”
DSD

See figs. 10 and 11:
eUse of sampled DSD improves accuracy
(reduces error from 17.9 to 5.4% at 36s).
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e Instability caused by other sources of error

such as, fig. 10:
¢Only 50 fixed time steps,
#10 drop size intervals, and

/ Population balance numerical solutions

eBoth solutions are stable, fig. 11, if 1000
fixed time steps are used instead of 50, and
accuracy was improved (%error was reduced
from 17.6 to 1.64% at 36s).

e A fixed DSD range was used in drop size

domain calculations.
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Fig. 8. Region of small net rate of change.
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Fig. 9. Sampled drop size distribution.
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2000
Fig. 10 Net breakage 1000 to 500 pm (amex 3000um,

ks/kc=1.6369E-19).
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14. Number of drop size classes

See fig. 12; increasing the number of drop
size classes results in increasing accuracy.
However, computational time is significantly
increased 1.6-fold (from 10 to 25 classes), and
8.7-fold (from 10 to 100 classes).

1000

g

o 4

2

@

E 800 | Classed DSD

b= ]

e

®

-]

£

@

g 600 |

'>o" Sampled DSD

Analytical

400 ,

0 100 200 300 400
Time, s

Fig. 11 Net breakage 1000 to 500 pm (8max 3000pm,
ks/kc=1.6369E-19).

1100
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£ 900
=
&
g oo}
=
b -
H 700
s &
: M-10—/
E
% 600 F =100 /M:ZS(S)
> /'
500
Analytical solution
200 : A A i
0 100 200 300 400 500 600

Time, s
Fig. 12 Net breakage 1000 to 500 pm (1000 fixed time
steps, classed DSD, 10 drop size intervals, amax 3000pm,
ks/kc=1.6369E-19).
15. Adaptive drop size intervals

The number of sampling intervals need to
be maintained at a suitable value to enhance

1066

accuracy without excessive computational ef-
fort:

eIn the case of net breakage processes, the
number of sampling intervals is doubled
whenever it decreases below 50% of its initial
value (using cubic spline interpolation).

oIn the case of net coalescence processes, the
number of sampling intervals is cut by half
whenever it exceeds twice its initial value.

16. Optimum sampling intervals

See fig. 13; using the sampling approach
to describing DSD in combination with a self-
adjusting range in the drop size domain, and
self-adjusting drop size interval, optimum
drop size interval should be 30-80.

S % Relative error of sampled DSD l' o
% Relative error of classed DSD
Computing time of sampled DS|
Computing time of classed DSD
a + puting | 800
b w
] o
£ 34 1600 E
: =
-]
2 £
= 3
2 2 - 400 E‘
*® 3
11 - 200
04 . ¢ 0
0 50 100 150 200

M

Fig. 13 Net breakage from 1000 to 500 pm, and 1000 fixed
time steps.

17. Conclusions

1-To achieve accurate solution, it is
recommended to increase the number of
classes or sampled points to the maximum
allowable by computing time (e.g. 80 sampled
points or 120 classes for 1.0% error in the
case study).

2-For rapid calculation, sampled points
approach gives much more accurate at equal
CPU time (error of 3.7% versus 37% for 10s
CPU time).

3-Large number of sampled points or classes
are needed for more severe or higher breakage
and coalescence rates.
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4-Using an adjustable integration range in the
drop size domain enhances the stability and
accuracy of PBE solutions.

5-Optimal number of sampling points appears
to be 30-80 points.

6-An algorithm for maintaining the number of
sampling point within their optimal range, as
the drop size range increases or decrease, was
developed.

7-The error resulting from numerically solving
PBE can be as low as 0.10% by using the
above mentioned features in combination with
other approaches that address the remaining
sources of error.
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Nomenclature

a,a’ diameter of drop,

a volume mean diameter of drop,
amax Maximum drop size,
Kc coalescence coefficient,
Ks break-up coefficient,
t time,

N(t) the total number of particles at time t,

f(a,t) the fraction of particles have diameter
between a and at+Aa,

Bs(a,t) birth rate by breakage, of particles of
diameter a at time t,

Dg(a,t) death rate by breakage, of particles of
diameter a at time t,

Bc(a,t) birth rate by coalescence, of particles
of diameter a at time t,

Dc(a,t) death rate by coalescence, of particles
of diameter a at time t,

¢(a) number of drops formed per breakage
of drop of size a’,

B(a,a) number fraction of droplets with size a
formed by breakage of drop of size a,

Q(a) breakage frequency of drop of size &’,

Ma, a) coalescence efficiency of drops of size a
with drops of size a’,

’

o(a, a’) collision frequency between drops of
sizes a and a’, and

¢ volume fraction of the dispersed phase.
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