Efficient materialized view maintenance in mobile environments

using interleaved Pull-Push algorithm

Noha Adly, Yousry Taha, and Magdy Nagi

Computer Science & Automatic Control Dept.,Alexandria University, Egypt

Nancy Samaan
School of Information Technology and Eng., Ottawa University, Canada

This paper presents a novel algorithm, Interleaved Pull-Push, for incrementally maintaining
materialized views defined over information sources and stored in a Data Warehouse (DW),
where both sources and DW could be mobile. In contrast to other approaches, the
workload of updating the view is distributed among sources, thus alleviating the DW from
receiving and handling unnecessary intermediate messages. The proposed algorithm
ensures strong consistency of the view at the data warehouse in the presence of concurrent
updates, while reducing the number of messages needed as well as the communication
overhead. A simulation model based on the WHIPS architecture has been developed to
analyse the performance of the proposed algorithm and to compare it with a previously
proposed algorithm, Pure-Push, and the traditional Nested SWEEP algorithm. Several
experiments have been conducted to quantify the costs and benefits of the proposed
algorithm.

el 26 pely 5580 i) ol 50 gl JS5 Gunadl eGialy @il o ading cin g8 Gl piiy
gy el pate LS 008 o LS Yl TS Gl Gledgiae Jal B5adly Glaghedl giliax e
UL 3 giana iny My Cilagledl pilan G ULl JS5 Euaas s £ 59 z sl o558l ols s ,aY Ly
dals bl IS5 0 gl G s o6 £ S o5 a0 Ry il Dl Bl Galleny Jliid e
By VLN dany Dysllodl Sl 320 (g iy 96 gl s iy el Jh CBaal Da 3) Cle 3 s
JS Oe Aal 58l 5 AT 05) 530 4G liay & S8 05 g3l eld Jilail WHIPS 5 e e e BlSla Wl 345 5
@‘L‘J‘ «,.....SJ, dalal) ot Glad Bae Jany Lidd AP .Nested SWEEP qm‘ \,j)‘_,';]\, Lad cjﬂ‘ U.\r_ Adiza

g a5 3 e

Keywords: View maintenance, Data warehouse, Mobile environment

1. Introduction

With the huge growth in today’s knowledge
industry, data warehousing has become a
well-established key technology for many
applications spanning diverse domains such
as business, science, and education.

Combining the technology of DWs and
mobile computing can offer more flexibility,
time saving and efficiency to current business
applications. The introduction of the concept
of mobility to the field of data warehousing
plays a major key role to enhance the
efficiency of these applications.

Several architectures for data warehousing
in a mobile environment were suggested in [1].
Different degrees of mobility were introduced
ranging from having only mobile clients,

Alexandria Engineering Journal, Vol. 41 (2002), No. 6, 643-655
© Faculty of Engineering Alexandria University, Egypt

mobile sources, or mobile DWs at one end to a
fully mobile environment at the other end in
which clients, sources and the DW itself are
all mobile.

One of the major problems in data
warehousing is materialized view mainte-
nance. Algorithms that compute changes to a
view in response to changes in the base
relations are called incremental view
maintenance algorithms. Materialized view
maintenance has been the focus of increasing
research activities in recent years. Basic
approaches for materialized view maintenance
may be classified into two categories; self
maintenance and query-compensation algo-
rithms. In self-maintenance algorithms, [2-4],
the view is maintained at the DW without
accessing the sources. However, self-

943

N. Adly et al. / View maintenance in mobile environments

maintenance is restricted to certain types of
views and increases storage and maintenance
complexity by storing additional information
at the DW. On the other hand, query com-
pensation algorithms focus primarily on the
use of queries to sources. Query compensation
algorithms, e.g., ECA, STROBE, SWEEP, and
PSWEEP, can be found in [5-8].

Introducing mobility in data warehousing
systems poses unique challenges [9, 10] to the
above mentioned approaches. These chal-
lenges stem from the fact that these
algorithms are based on sources sending their
updates to the DW as they occur and from the
assumption that the DW can query these
sources at any time. This requires the DW to
be connected during the whole process of
calculating the view change. In mobile com-
puting environments, however, sources and
the DW are likely to be disconnected for long
periods of time. In addition, these approaches
relied on the assumption that the
communication channels between the DW and
sources are reliable and FIFO in nature; an
assumption that obviously no longer holds for
mobile environments.

Recently, several approaches for materi-
alized view maintenance in mobile environ-
ments have been proposed [11-14]. Although
these approaches were adaptable to the
unique characteristics of the mobile environ-
ments, they assumed a single stationery
database server, where the view change is
calculated, and did not handle the case of
distributed base relations. A detailed discus-
sion of these algorithms can be found in [15].

In [16], a “Pure-Push” algorithm has been
proposed to incrementally maintain material-
ized views stored in mobile DWs and defined
over multiple mobile sources. The algorithm
distributed the workload of the view update
process between the DW and sources,
tolerating periods of disconnection for both the
sources and DW. Moreover, the cost of
updating the view at the DW was reduced to n
messages, where n is the number of sources
contributing to the definition of the view.

This paper proposes a novel algorithm that
requires only each source to contribute with
two messages to perform the view updating
process in response to update batches of n
sources. The proposed algorithm, termed as

Interleaved Pull-Push, relies on having the DW
initiate the update process by pulling updates,
occurring during a certain period of time, from
the sources via sending two request messages
to only two sources. The two sources
contacted by the DW respond by initiating two
messages that propagate in the forward and
reverse directions along a chain of sources
contributing in the view definition. As the two
messages propagate, each source appends its
updates, to both messages, occurring during a
certain period of time specified by the DW.
Finally, the two messages reach the DW where
they undergo a special join operation to
calculate the view change.

In contrast to earlier approaches, the
proposed algorithm distributes the workload
between the sources and the DW and
eliminates the need for compensation queries
due to concurrent updates, which results in
reducing the processing overhead for the
mobile DW. Further, the number of messages
needed to update the view is reduced to 2n
and deferred updates are used rather than
immediate updates, which is more realistic in
mobile environment since it reduces the
communication overhead. In addition, the DW
and sources do not have to be connected all
the time, and can alternate between the differ-
ent modes of operation (disconnected, partially
connected, fully connected). Finally, the algo-
rithm does not require reliable communication
channels supporting FIFO property, which is
crucial for mobile systems. A simulation model
based on the WHIPS introduced in [17,18] has
been developed to analyze the performance of
the proposed algorithm.

The remainder of this paper is organized
as follows. Section 2 describes the system
model. Section 3 presents an overview of the
Pure-Push algorithm [16]. In section 4 the
proposed Interleaved Pull-Push algorithm is
described and a proof of its correctness is
illustrated. A simulation model along with
some experimental results and analysis are
introduced in section 5. Finally section 6
concludes the paper.

2. System model

Consider a system consisting of n informa-
tion sources Si, Sy,..., Sn each of which could

944 Alexandria Engineering Journal, Vol. 41, No. 6, November 2002

N. Adly et al. / View maintenance in mobile environments

be mobile. Each source Si contains a single

base relation Ri;, with the attributes
4=ty Az o Ayp)) The data warehouse
contains a materialized view

v="14, (0 ,(RiXRsXR3....R,)), Where P is a

selection predicate and A, ¢ UiAi is the set of
attributes required in the view. It is also
assumed that each source stores a copy of
part of the view definition and that the
sources and the DW have their clocks
synchronized via approaches proposed in the
literature (e.g. [19, 20]). In addition, each
source has a reliable fixed storage that can be
recovered in case of crashes.

" The problem can be stated as giving a set
of updates d%={6Ri, SRy, ..., SR.}, where JR; is
the set of updates of the relation R; It is
required to update the materialized view v at
the data warehouse in presence of 5%.

For each relation R, stored at source S;
two time tags cri, dri are used as in [13], criis a
creation time tag, recording the creation time
of the associated tuple in R, and dr is a
deletion time tag, marking the removal time of
the associated tuple from Ri; Thus, Ri; has
attributes A=A A2, ... 'A’;IA/‘I}U {cr}. In addi-

tion, for each relation R; a log, R;, that

collects deleted tuples removed from R; is
maintained, such that R, has the attributes

Ki = {Ai,l’ Ai,2 o5 o ,Ai,lAiI}U{cri} U {drl} .

3. Pure-Push algorithm

The basic idea in the Pure-Push algorithm
is to have the sources gather their updates in
batches and send them in messages that
propagate along a chain of sources. Each
source computes part of the view change by
joining the received message with its base
relation. When the view change is finally
calculated, the last source transmits the
result to the DW, where the view is updated.

Denote the batch of updates occurring at
source Si during the interval |k, tk+«1] by
SRub(tk , tik+1). Source Si selects source S; to
contact and sends it the message (6V, ti, tik+1,
i) where o6V =6Rub(tix , tik+1). Upon receiving this
message, source Sj updates 6V such that 6V =

ORub(ti , tik+1) yRi(tim), where Ri(tn) is the status
of relation R; at time tim , and tin is the time at
which source S; transmitted its last batch
update just before time #i:;. This is done to
avoid the effect of concurrent updates as
explained in [16]. This process is continued as
source S; forwards this message to its next
source Sh. The message is propagated along
the sources, gradually calculating §V until the
last source transmits to the DW the message
(6V, tix, ti+1, i), where,

8V =Tpy (opRyxRox-. X8R, (th, they b Rp))

At the DW site, a temporary relation
Temp_View along with an ordered list
Batches_Listfi) for each source S; are used to
store the received 6V’s and their corresponding
time intervals, respectively. Each
Update_Window time units, the DW updates
its view content up to the maximum time
where all the updates from the n sources were
received. This is easily achieved using the
contents of Batches List and cn and dri
attributes stored for each tuple in Temp_View.
A detailed description of the algorithm and a
proof of its correctness can be found in [16].

It can be seen that in the Pure-Push
algorithm, the DW stays passive waiting for
the view change to be calculated. This in fact
gives each source the freedom to determine its
suitable update periods and transmission
time, giving more flexibility that suits the
mobile environments. However, the cost of
updating the view in response to an update
batch occurring in one of the sources is n
messages, i.e., a total of n? messages are
required in response to the update batches of
the n sources. In addition, it requires the DW
to keep track of update messages arriving
from each source. The following section
presents a novel algorithm that aims at
overcoming these difficulties.

4. The interleaved Pull-Push algorithm

In the Interleaved Pull-Push algorithm, the
DW is responsible for pulling sources’ updates
occurring during a certain common interval.
The update process starts when the DW sends
an update request to sources S; and S.. In

Alexandria Engineering Journal, Vol. 41, No. 6, November 2002 945

N. Adly et al. / View maintenance in mobile environments

response to the DW request, source Si
initiates a message, Forward Message, that
propagates along the n sources in a forward
direction until it finally reaches source Sn. In a
similar manner, source S. initiates a second
message, Backward Message, which is
propagated along the n sources in the reverse
direction until it reaches source Si. As the two
messages propagate in the forward and
reverse directions, each source appends its
update information to both messages. Finally,
the two messages reach the DW where the
view is updated. The total number of messages
needed for the batches of the n sources during
an update interval is 2n messages, i.e., each
source needs only to transmit two messages
instead of the n messages required by the
Pure-Push algorithm.

For simplicity, we assume that the next
source is determined based on the view
definition. More sophisticated mechanisms
can be used to optimise the communication
cost, and the message size. Elaboration on
different methods for choosing the next source
can be found in [16].

4.1. Algorithm description

Each Update_Window time units, the DW
starts pulling the updates of the n sources
that occurred since the last time the DW
triggered an update request. In other words, if
the DW triggered an update request at time tx,
then the next update request will be triggered
at tke1 = t + Update_Window. The DW first
transmits an update request of the form (t,
tx+1) to two sources, Si and S.. When Si
receives the update request, it constructs a
message, frwrd_msg, containing its updates,
SRub(tk, tk+1), that occurred during the interval
Jte, txr1]. SR!ub(tx, tk+1) is calculated using the
creation and deletion time tags, cr1 and dri,
respectively, in the following way,

1
SRl.,b (ti ties1) = (ARY, (tic, tican)s VR Yy (tics tiea1))s

where AR,’,,, (ty . t; +1) is the set of insertions of Ri

occurring during the interval Jtx, tk+;/ and
could be easily calculated as the set of tuples

with the creation time tag belonging to that
interval, i.e.,

!
AR (tkitkrr) ={re Ry || ray) €fty tysr]}
Similarly, V/?Zb (ty . tr+1/)is the set of deletions

of R; occurring during the interval |tk tk+1] and
is calculated by;

VR! (thithsr) ={re Ry || rdy}ejty tyss]}

S1 forwards the message (0Vfwrd msg, tk, tk+1) to
source Sz where SVfwrd_msg = ORub(ti , tk+1), i.e.,
OViwra msg is part of view change that is
gradually calculated as the message propa-
gates in the forward direction.

To avoid the effects of concurrent updates,
instead of using the current status of Rz in
performing the join, S: restores the status of
R2 at time tk, R?(tx). This is achieved using crz,
dr2, and, R;. Source Sz then updates

SVinurd_msg such that it becomes

6Vfrwrd _ msg
i)
= (BRLp (tie, t s 1R2(tx)) USRZ, (tic, tyc 41,

and then forwards the message (6Vfwrd msg, tk,
tk+1) to the next source where the same
process is repeated with each source Si
performing both a join operation on 6Vjwrd msg
with its base relation restored at time tx, Ri(tx),
and then appending its own update batch

OR., (L,,t,,,)in the
transmitting the resultant message to its next
source Si+1. When frwrd_msg finally reaches
the last source, Sn, it is sent directly to the

DW. The contents of §Vfwrd_msg as it is received
in the DW is shown in eq. (1);

interval Jt,, tk+1/, and

Virwrd _msg =
ant o i+1 n (1)
,Ul dRyb (tk, tie+ 1R (tie) xR (tke)-

/=

In a similar manner, another message
propagates simultaneously in the reverse
direction with source S, receiving an update
request from the DW in the form (tk, k+1)
indicating that the DW is pulling for updates

946 Alexandria Engineering Journal, Vol. 41, No. 6, November 2002

N. Adly et al. / View maintenance in mobile environments

occurring during the interval Jtx, tx+1). As the
message travels in the reverse direction, each
source performs a join operation and appends
its own update in a similar manner to the
forward message. The contents of the reverse
message upon arrival at S; is shown in eq. (2)

vaahm/_ msg =

n . .
.UzRl(tk+1)X---XRJ—I(thrl)X‘SRf,b(tk,tk+1)- (2)
J:

where SVickwrd msqg is part of view change that is
gradually calculated as the message
propagates in the reverse direction.

When 5Vfrwrd_msg and JVbckwrd_msg reach the
DW, a special operator is applied to them
yielding the view change, SV, in response to
the update batches at the n sources. This
operator is referred to as special join operator
and denoted by ®. The special join operation
is performed by joining the individual terms of
eq. (1) with their corresponding parts in eq. (2)
such that i =j, in the following manner:

OV = (8Vbekwrd _msg stk tik, 1) ®
(avfrwrd _msg’tkrtk+1)
= (BRYb (tic tic+ 1R (tie Jx-- xR (g))
U (R (tie ¢ 1R 2 (tie, tic 41)IXBRZ (b, tye 1)
R3(tye ... xR™ (ty)
U
U (Rt 4 1)x-- X8R4 (tic, tie + 1DX(BR Y (i, tie 1)
ARty . xR ()
U
U (R} (ti 4 1)x--- X8R Gp (tic, te 4 1))
= (3R (tic, tie 4 1R 2 (g X X R™ (tyc)
U (Rt 1 X8R 2 (tic, tic 4 1R (tye b xR™ (1))
U
U (R (ti 4 1) X8R Ub (tie tie + 1Rt). xR (1))
U
U (R (tg 4 1)1+ X8R Db (tie, tic 4 1))

=8, o 2 i
=[‘U (R (txe 4 1IXR™(tie 4 1)X X8Rup (tic, tic +1)

i=1

Alexandria Engineering Journal, Vol. 41, No. 6, November 2002

i+1 n
xRt .. xR (tk))]_ (3)

For simplicity, in eq. (3) no duplicate rows
are assumed, however, the case of duplicate
rows can be handled by adding a row identifier
to eliminate producing the same row twice.

The DW stores the received éVjnurd msg and
OVbekwra_msg of different time intervals in two
temporary relations Temp_frwrd and
Temp_bckwrd, respectively, in order to handle
messages received in different orders. The DW
then applies 5‘/frwrd_msg and JVbckwrd_msg to the
materialized view only when both OVfrwrd_msg
and SVbckwrd_msg, of the time interval following
the last time the view has been updated, have
arrived and applied to the materialized view.
That is when both 5‘/ﬁ'wrd_msg and 5Vbckwrd_msg of
the time interval tx , tx+; are received and
stored, the DW will apply those messages to
the view if it has already been updated in
response to 5Vv[rwrd¥msg and 5Vbckwrd_msg of the
time interval tk-1 , Tk JV}'rwrd_msg and 5Vbckwrd‘msg
are then discarded from the temporary
relations.

Each source Si handles lost messages and
disconnection of next or previous source by
waiting A4t for an acknowledgement, if not
received, Siretransmits the same message.

To avoid infinite growth of sources’ logs,
the DW periodically broadcasts a message to
all n sources containing a time stamp t,
where ty is the ending time interval of the last
applied view change to the materialized view
at the DW. When source S; receives t, it can
delete from its log file all tuples deleted before
tu.

In contrast to the ”"Pure-Push” algorithm,
the creation and deletion time tags need not
be stored in each tuple in the received
messages. They are only used locally at each
source during the calculation of SRs. The only
overhead encountered in the message size in
both forward and backward messages is the
time stamps tk, tcr1. Figs. 1 and 2 provide a
pseudocode description for the Interleaved
Pull-Push Algorithm at source S; and the DW,
respectively.

947

N. Adly et al. / View maintenance in mobile environments

Algorithm 1: MODULE SOURCE(i)

procedure RECEIVE_FORWARD_MESSAGE()
repeat
Receive frwrd_msg(dVpuwrd_msg, t tk+1)
Compute Riftx),Compute Vinurd msg ¢~ 6Viurd_msg ¥ Ri(ty)
Append SRiub(tx, t+1) t0 SVwrd_msg
repeat
Send frwrd_msg (SVjurd_msg , te tee1) to next source
Wait At for an ACK
until an ACK is received
until Forever
procedure RECEIVE_BACKWARD_MESSAGE()
repeat
Receive bekwrd_msg(0Vbekwrd_msg 5 t; k1)
Compute Ri(tk1), Compute Vbckurd_msg ¢ Ri(ti+1) ¥ 6Vbckwrd_msg
Append 6Riub(tr, tc+1)to SViciawrd_msg
repeat
Send bekwrd msg(@Vbekurd msg , th, k1) to previous source
Wait At for an ACK
until an ACK is received
until Forever
procedure EMPTY LOG()
repeat
if a broadcast message (t.) is received from DW
then Delete all time stamps tx < tv
Delete from Ri tuples with dri< tu
until Forever
main
repeat
Start procedure RECEIVE_FORWARD_MESSA GE
Start procedure RECEIVE_BA CKWARD_MESSAGE
Start procedure EMPTY_LOG
until Forever

Fig. 1. Interleaved Pull-Push algorithm at source S.

Algorithm 2: MODULE DATA WAREHOUSE()

procedure REQUEST_UPDATES()
repeat
Each Update_Window Do
send request msg (tx, tx+1) to Si, Sa
until Forever
procedure RECEIVE_UPDATES()
Receive frwrd_msg(SVpwrd msg, i tke1)
Temp_frwrd «Temp_frwrd + 6Vfwrd_msg
Receive bekwrd_msg(Vickwrd_msg, tr, ter1)
Temp_bckwrd « Temp_bckwrd + SVbckwrd_msg
if (frwrd_msg(6Vinurd_msg, tr, the1) and bekwrd_msg(6Vickurd_msg, t, tir1) are received)
then
Compute SV ¢« 6Vbcravrd_ msg ® JWnurd_msg
Update the view v «— v + 6V
Temp_frwrd < Temp frwrd - 6Vjwrd msg
Temp_bckwrd < Temp_bckwrd -8 Vickwrd_msg
ty € trer
Broadcast t, to all sources Si
main
repeat
Start procedure REQUEST_UPDATES()
Start procedure RECEIVE_UPDATES()
until Forever

Fig. 2. Interleaved Puli-Push algorithm at the DW.

948 Alexandria Engineering Journal, Vol. 41, No. 6, November 2002

N. Adly et al. / View maintenance in mobile environments

Since only two messages propagate along
all sources, the total number of messages
needed to update the view in response to the
update batches of n sources, is 2n. In other
words, each source contributes with only two
messages.

Although, in this algorithm, the update
message size can be larger, collecting updates
of n sources in two messages has the
advantage of alleviating each source from the
overhead of calculating the view change and
constructing a separate message in response
to each update of other sources.

4.2. Correctness

In this section, we develop a proof of
correctness for the “Interleaved Pull-Push”

algorithm. Consider a view, v, defined over n
sources (Sy" 'Sa, - LLUUUOEN Neheh that,
v=RxR,x..YR x..xR,. Assume that at time
ti > & the content of the DW is
v(6) = R' ()R> (4) 1 2R () 2. 2R"(1,). At
time tk+1 the DW transmits an update request
(t, tk+s1) to S1 and S, and the process
continues as described before. When the DW
receives (6‘/f'nurd_msg) tk, tk+1) and (5Vbckwrd_msg, tx,
tiie1) it can first compute the result of joining
both messages using eqs. (1) and (2) resulting
in eq. (3). Applying the content of eq. (3), at
time t2 > tk+1 to the view v, results in:

v(tz) = v(ty) + (3Vbekwrd _msg otk tk + 1) ® (3Virwrg msg » U tie +1)

= (R (tye R 2 (tye bt xRty Jx-.. xR™ (tc U

i=

i=n : .
(_U (R (b1 1R (4 1 10 X8R (tics tie 4 1R ™ty oo xR™ (t40))

(4)

v(ta) = (R (bl R 2 (b b kR (tye oo XR™ (i DU (SR Y (i, e+ | R 2 (b3 oo xRty U

i=2

v(tz) = (R (tic JUBRY (tic, tic + 1 LR (tge)X R (tic o xR (5 JJU

v(ta) = Rty 4)R (b) xR (g Je- xR ™ (tye JU

1=

v(ta) = Rty 1 x[(R2 (b e xRty) xR ™ty YU

1=2

From eq. (4 and 5), by induction, eq. (5)
can reduce to,

vita) = Rty 1R (ty) ©)

L XR by 1 1 XR™ (e 4 7).

It is clear that eq. (6) represents the
correct content of the view after applying
effects of all update batches of the n sources
during the interval Jtx, tx+1]. Since the state

Ly IO 2 i i+1 n

U (ROt 4) R (tie 4 1) X8Ry (b, tie 4 1 R (tye). xR (te)
e i 2 i i+1 n
‘Uz(R (e + IR (i 4 1 12+ X8Ry (e, the 4)R (b - x R™ (e)
i=

i=n : ;
U (Rt 1R (b 4 110 X8R (tic, tie 1Rty b kR (tyc)

[TD" (R2(tk+1)x...x6RLb(tk,tk+1)xR“‘(tk)x...xR“aknJ J. (5)

transformation of the view occurs in the order
of the wupdates, the proposed algorithm
ensures strong consistency. Moreover, since
each source Si participates in Vjwramsg and
O6Vbckwrdmsg depending only on the time
stamps, tx ,fk+1, contained in the received
messages, the result of the view change 6V is
not affected by the order or the time 6Vjwrd msq
and JVbskurd_msg were received at each source
Si.

Alexandria Engineering Journal, Vol. 41, No. 6, November 2002 949

N. Adly et al. / View maintenance in mobile environments

In addition, due to the retransmission
used in the algorithm, i.e., missed messages
are retransmitted periodically wuntil an
acknowledgment is received, both forward and
backward messages are guaranteed to be
propagated along the sources and reach the
DW, which ensures that the algorithm is live.

Further at the DW, time stamps stored
with messages can be used to detect lost
messages. This allows the FIFO assumption
for the communication channel between the
sources and DW to be relaxed.

5. Performance analysis

A simulation model, based on an adapted
version of the WHIPS (WareHouse Information
Prototype at Stanford) model introduced in
[17, 18], has been developed. The performance
of the Interleaved Pull-Push is analyzed and
compared to the performance of both the
Pure-Push [16] and Nested SWEEP algorithms
[7]. The following subsections discuss the
modified WHIPS architecture along with the
experiments results and their analysis.

Adminstrator

View Specifier

S

Metadata
Store

5.1. Modified WHIPS architecture

Several modifications were introduced to
the WHIPS system model [17,18], as shown in
fig. 3. The WHIPS architecture is divided into
three layers: The information sources, integra-
tion modules, and the DW.

In the original WHIPS model, data sources
consisted of sources’ wrappers and monitors.
In the modified architecture, a meta-data store
is added in each source to store part of the
view definition, and information for how to
contact a certain set of other sources.
Wrappers are responsible for translating single
source queries from the internal WHIPS
representation into queries in the native
language of its source.

In the proposed algorithm, since informa-
tion sources communicate directly, an update
manager and a query manager are added in
each source. A source update manager is
responsible for the creation of the query
needed to join the received part of the view
with the base relation of the source.
Meanwhile, a query processor is responsible
for evaluating a query received from the
update manager of each source.

Warehouse
 Wiapper >

i
,—/V//

Fig. 3. Modified whips system architecture.

950 Alexandria Engineering Journal, Vol. 41, No. 6, November 2002

N. Adly et al. / View maintenance in mobile environments

The integrator module is responsible, at

- initialization time, for creating sources’ query

processors and the meta-data stored at both
the DW and the sources. When a new source
becomes available, the integrator receives a
notification from the source’s monitor and
wrapper. The integrator then stores the
sources’ information in the meta-data of the
DW and in the necessary other meta-data
stores in other sources.

In contrast to the original WHIPS model,

the view manager has its work distributed
among the update managers of the sources.
Thus, it is no longer responsible for the
creation of the global query. It can only receive
the calculated view change and sends the
appropriate view change to the DW manager
for execution. It also manages the temporary
relations, Temp_View in the Pure-Push
algorithm, and Temp_frwrd and Temp_bckwrd
in the Interleaved Pull-Push algorithm.
Since no global queries are generated by the
view manager, the job of the query processor
will be distributed among the query processors
stored at each source. As in the WHIPS
architecture, the DW wrapper receives view
update changes and applies them to the DW
views. Like source wrappers, the DW wrapper
also translates the view changes to specific
syntax of the DW database. A detailed
discussion of modules functionalities along
with model verification and validation can be
found in [15].

5.2. Experiments results and analysis

In this section, the performance of the
Interleaved Pull-Push is analyzed and
compared to the performance of both the
Pure-Push [16] and Nested SWEEP algorithms
[7]. Nested SWEEP has been chosen for
comparison as the SWEEP family [7, 8]
generally outperforms the previous families of
algorithms, ECA [5], and Strobe [6]. In
addition, Nested SWEEP is selected
specifically from the SWEEP family because
the SWEEP algorithm follows immediate
updating while the Nested SWEEP uses batch
updating and achieves the same degree of
consistency, strong consistency, as the two
proposed algorithms. The Nested SWEEP
algorithm was implemented using the WHIPS

model, while both the Pure-Push and
Interleaved Pull-Push algorithms were
implemented wusing the modified WHIPS
model.

Four base relations R(A,B,RX), S(B,C,SX),
T(C,D,TX), and U(D,E,UX) were chosen. AB
D, and E are key attributes of their
corresponding relations, and are 8 bytes each.
RX, SX, TX, and UX are 80 bytes each. Data
Warehouse environment settings are similar to
that used in the WHIPS model [17,18]. Experi-
ments were carried out in both stationary and
mobile environments, considering views de-
fined over different number of sources. Experi-
ments duration was set to 10,000 units of
time, and a confidence interval of 0.95 was
obtained. Table 1 defines the four views used
in the experiments and summarizes the ex-
periments parameters and their settings.
Values of input parameters and distributions
have been inherited from the WHIPS model.

A detailed description of the experimenta-
tion environment and more experiments re-
sults can be found in [15].

5.2.1. Experiment 1: update propagation time

This experiment was set to measure the
Update Propagation Time UPT, the total time
needed for an update batch to reach the DW.
The parameters used in this experiment were
fixed to the following values: F = 0.1
updates/sec for all sources, Update_Interval =
0.3 sec for all sources, probability of DW
disconnection (s) = 0.1, probability of sources
disconnection (s’) = 0.1. The UPT can be
divided into four components: trework, the total
time needed per batch to propagate through
the network, fcomputaion, the total time needed
per batch in computations, tguery, the total
time needed per batch to perform queries and
tinner_communication the total time needed per batch
in communication between the WHIPS’s inner
modules. The experiment was run under two
scenarios: non-interfering updates, where
updates from different sources do not
intersect, and interfering updates between
different sources, where updates of different
sources occur simultaneously, with a
probability of interference = 0.65. Results for
both cases are shown in figs. 4 and 5,
respectively of the four views Vi, V,, V3 and V4
comparing the three algorithms.

Alexandria Engineering Journal, Vol. 41, No. 6, November 2002 951

N. Adly et al. / View maintenance in mobile environments

Table 1
Parameters settings

Parameter Description Base setting
n Number of sources 4
Vi =11 B(R)
V2 =IR.A,RB,SB,s.C(RxS)
Vo =TIR.A,RB,SB,S.C,T.C,T.D (RxSxT)
1 = [1R.A,R B,S.B,S.C,T.C,T.D,U.D,U.E (RxSxTxV)
JIRII Base relation cardinality 1000 tuples
o selectivity 0<o<1
J Join Factor 1
S the fraction of the total time spent by a mobile 0~0.9
DW in the sleep mode.
@ 1/o is mean value of the exponentially 1800sec
distributed interval t after which the data
warehouse changes its status
s’ The fraction of the total time spent by a mobile 0~0.9
source in the sleep mode.
o’ 1/o is mean value of the exponentially 1800 sec
distributed interval t’ after which a source
changes its status
At time to wait for an acknowledgement 0.2
F Updates arrival distribution 0.1 ~1 per sec
Update_Interval Time between transmitting update batches 0.1~1 sec
Update_Window _DW update window : 0.1~1 sec

For the case of non-interfering updates, it
was observed that both tiwer communication and
teomputation increase with the number of sources
participating in the view definition for both
Pure-Push and Interleaved Pull-Push
algorithms. However, they remain almost
independent of the number of sources in the
case of the Nested SWEEP algorithm. This is
due to the fact that in the first two algorithms,
both the update manager and the query
processor modules are located at each source
rather than at the DW, as in the case for the
Nested SWEEP. As the number of sources

v BB 8 jnner communication
5 Computation
Pure-Push = B3 Query
v RERHR = Network
v4 RRAY A
vl]
V2
interleaved v3 R
Puli-Push ¢4 %Y yi\ ?\/:3
V1
SRR
Nested S IITR q
Swaan e S
v4 AR R AR T(se)

1] 02 04 06 neg 1 1.2 14 16

Fig. 4. UPT with non-interfering updates.

Vi E

b push V2 g Inner communication
ure-Pus
v3

Computation
B Query
3 Network

V4

Vi

V2
interleaved V3

Pull-Push V4

vi [
Nested v2
L TRRRzEy UPT(sec)

0 004 0608 214N e 8

Fig. 5. UPT with interfering updates.

increases, tnemwork and tquery dominate UPT with
tquery almost identical for the three algorithms.
However, trework is significantly smaller in the
case of the Interleaved Pull-Push algorithm
where it becomes roughly 25% of that of the
Nested SWEEP and almost 50% of the Pure
Push algorithm. Comparing the UPT of the
three algorithms in this case shows that the
Interleaved Pull-Push algorithm has the least
UPT. The superiority of the Interleaved Pull-
Push in that case is due to the relatively small
size of both forward and backward messages,
as at the end of the update batch process,
each of them contains almost half of the view

952 Alexandria Engineering Journal, Vol. 41, No. 6, November 2002

N. Adly et al. / View maintenance in mobile environments

change in comparison with the other two
. algorithms

It is observed that Nested SWEEP performs
poorly in the case of interfering updates,
where tquery increases sharply by almost 160%
for V3 and 170% for V4 over the case of non-
interfering updates. This is due to the local
compensation performed at the DW to
eliminate the effect of concurrent updates.
Interleaved Pull-Push shows an increase in
both tretwork and tquery due to the increase in
the size of both the forward and backward
messages which both carries a partially
calculated view change in response to several
update batches from different sources.
However it is better than Nested SWEEP by
15%. It is noticed that the Pure-Push
algorithm outperforms both algorithms, where
all components of UPT remain the same as in
the case of non-interfering messages. This is
because as an update batch propagates along
the sources, the view change is calculated in
the same way regardless of update
interference.

5.2.2 . Experiment 2: throughput

In this experiment, the throughput of the
three algorithms is demonstrated under
various batches update intervals. Figs. 6 and
7 show the average throughput for the three
algorithms in case of view V3 under, non-
interfering and interfering updates.

It is observed that for non-interfering
updates, the Interleaved Pull-Push outper-
forms both the Pure Push and Nested SWEEP
algorithms by achieving the best throughput,
especially for high update rates. This is mainly
due to the fact that the Interleaved Pull-Push
reduces the number of messages, while the
increase in the message size is not significant.
As the update interval increases beyond 0.8
sec, the time interval between two consecutive
updates reaching the DW is sufficient for the
completion of the update process in the three
algorithms. Therefore, as observed, the
throughput of the three algorithms becomes
almost identical.

In case of interfering updates, Nested
SWEEP shows the least throughput. This is
due to the local query compensation which
causes tquery to increase which in turn
reduces the throughput. The Interleaved Pull-

Push shows better throughput than Nested
SWEEP, but lower throughput than Pure-
Push. This is due to the increase in the size of
both forward and backward messages, which
in turn increase tnewsork. It is observed that the
performance of the three algorithms becomes
almost identical for update intervals greater
than 0.7 seconds.

Throughput

12
g

Pure Push
“* Interleaved Pull/Push
B 4 Nested SWEEP

0 ' . 1 . 2 . N I

0.1 0.2 03 c4 0.5 0s 0.7 08 0.9 1

Source updates arrival F

Fig. 6. Throughput (# of updates per second) with non-
interfering updates (view V).

Throughput
10
»¢ Pure Push
> Interleaved Pull/Push
-] & Nested SWEEP

. . . s . N 2 3 5
0.1 0.2 0.3 o4 0.5 os 0.7 os 0.9 1

Source updates arrival F

Fig. 7. Throughput (# of updates per second) with
interfering updates (view V).

5.2.3. Experiment 3: number of messages

This experiment demonstrates the
behavior of the three algorithms based on the
number of messages needed per an update
batch versus different probabilities of
disconnection for both the sources and the
DW. Figs. 8 and 9 display the number of

Alexandria Engineering Journal, Vol. 41, No. 6, November 2002 953

N. Adly et al. / View maintenance in mobile environments

messages needed per an update batch versus
disconnection probability at the sources and
the DW, respectively for the case of interfering
updates.

It is observed that as the rate of
disconnection for the sources or DW
increases, the number of messages needed for
update propagation increases, due to the
retransmission of messages. The interleaved
Pull-Push algorithm shows the least amount
of increase in the number of messages. This
desirable behavior comes as a result of the
accumulation of the updated batches in the
forward and backward paths as well as the
reduction of the involvement of the DW in the
update process. It is observed that both Pure-
Push and Interleaved Pull-Push follow the
same pattern with respect to the DW or
sources disconnection. However, the perform-
ance of Nested SWEEP deteriorates very
rapidly with increasing DW disconnection
probability. This is due to the fact that in

No. of
messages per
update
20 © Pure Pusk for V3
’— & Interleaved PullPusk for V3

»Nested SWEEP for V3

15 | > Pure Push for V4

4+ Interleaved Pull/Push for V4
~+Nested SWEEP for V4

0 0.2 0.4 0.6 0.3

Fig. 8. Number of messages vs. sources disconnection
probability.

No. of
messages per
update
2 - & Pure Push for V3

& Interlesved PulliPusk for V3
- Naested SWEEP for V3

| ¢ Pure Push for V4

<4 Interleaved Pull/Pusk for V4
| ~Naested SWEEP for V4

] 02 0.4 0.6 0.8

Fig. 9. Number of messages vs. DW disconnection
probability.

Nested SWEEP the DW assumes a major role
in sending and receiving intermediate mes-
sages while calculating the view change.

6. Conclusions

In this paper we presented a novel algo-
rithm, Interleaved Pull-Push, for incrementally
updating materialized views defined over
sources and stored in a DW, where both the
DW and sources could be mobile. The total
number of messages needed to update the
view in response to the update batches of n
sources, is 2n, i.e., each source contributes
with only two meéssages. Query compensation
messages used by previous approaches have
been eliminated. In addition, having the
update messages propagate along the sources
eliminates intermediate results from reaching
the DW and thus eliminating the time a
message spends in the network.

To analyze the performance of the
proposed algorithm, a simulation model based
on an adapted version the WHIPS architecture
was implemented. The experiments performed
showed that the update propagation time, the
time needed for an update to reach the data
warehouse is less than the time needed in
traditional view maintenance algorithms. In
addition, better throughput is obtained
specially in cases of higher frequencies of
updates in sources.

References
[1] D. Stanoi, S. Agrawal, A. Abbadi,
Phatak and B. Badrinath, “Data

Warehousing Alternatives for Mobile
Environments”, in Proc. Of MobiDE’99,
Seattle, Washington, pp. 110-115
(1999).

[2] N. Huyn, “Efficient self-Maintenance of
Materialized Views”, in Proc. of the ACM
Workshop on Materialized Views:
Techniques and Applications, Montreal,
Canada (1996).

[3] D. Quass, A. Gupta, I. Mumick and J.
Windom, “Making Views Self
Maintainable for Data Warehousing”, in
Proc. Fourth Intl. Conf. On Parallel and

954 Alexandria Engineering Journal, Vol. 41, No. 6, November 2002

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(1]

(12]

N. Adly et al. / View maintenance in mobile environments

Distributed Information Systems (PDIS)
(1996).

R. Hull and G. Zhou, “A Framework for
Supporting Data Integration Using the
Materialized and Virtual Approaches”,
in Proc. ACM SIGMOD 96, pp. 481-492
(1996).

Y. Zhuge, H. Garrcia-Molina, J.
Hammer and J. Windom., “View
Maintenance in a Warehousing
Environment”, in Proc. ACM SIGMOD
95, pp. 316-327 (1995).

Y. Zhuge, H. Garrcia-Molina and J.
Wiener, “The Strobe algorithms for
multisource warehouse consistency”, in
Proc. Fourth Intl. Conf. on Parallel and
Distributed Information Systems (PDIS)
(1996).

D. Agrawal, A. Abbadi and A. Singh,
“Efficient view maintenance at data
warehouses”, in SIGMOD Conference,
pp. 417-427 (1997).

X. Zhang and E. Rundensteiner,
PSWEEP: Parallel View Maintenance
Under Concurrent Data Updates of
Distributed Sources, Tech. Report WPI-
CS-TR-99-14, Worcester Polytechnic
Institute, Dept. of Computer Science
(1999).

T. Imilienski and R. Badrinath, “Mobile
Wireless Computing: Challenges in
Data Management”, Communication of
ACM, Vol. 37 (10) (1994).

G. Forman and J. Zahorjan, “The
Challenges of Mobile Computing”, IEEE
Computer Journal, Vol. 27 (4), pp. 38—

47 (1994).
S. Lauzac and P. Chrysanthis,
“Programming views for mobile

database clients”, in Database and
Expert Systems Applications(DEXA)
workshop, Vienna, Austria, pp. 408-

413 (1998).
O. Wolfson, P. Sistla, A. Dao, K.
Narayanan and R. Raj, “View

Maintenance in Mobile Computing”, in
SIGMOD Record 24(4), pp. 22-27
(1995).

Alexandria Engineering Journal, Vol. 41, No. 6, November 2002

(13]

f14]

[15]

[16]

[17]

[18]

(19]

(20]

H. Chung and H. Cho, “Maintenance of
Materialized Views in Mobile Computing
Environments”, in Intl. Tech. Conf. On
Circuits/Systems, Computers and
Communications ITC-CSCC, pp. 617-
620 (1996).

K. Lee, A. Si and H. Leong, “Incremental
View Update for a Mobile
DataWarehouse”, in ACM Symposium
on Applied Computing (SAC), Atlanta,
Georgia, USA, pp. 394-399 (1998).

N. Samaan, Incremental View
Maintenance Algortihms for Data
Warehouses in Mobile Environments,
M.Eng. Thesis dissertation, Alexandria
Univ., Egypt (2001).

N. Adly, Y. Taha, N. Samaan and M.
Nagi, “An Incremental View
Maintenance Algortihm for Data
Warehouses in Mobile Environments”,
in IEEE International Symposium on

Signal Processing and Information
Technology(ISSPIT), Cairo, Egypt
(2001).

J. Wiener, H. Gupta, W. Labio and Y.
Zhuge, “A System Prototype for
warehouse View Maintenance”, In Proc.
of the ACM Workshop on Materialized
Views: Techniques and Applications
(1996).

Y. Zhuge and H. Molina, “Performance
Analysis of WHIPS Incremental
Maintenance.”, Technical report,
Stanford University, http://www-db.
stanford.edu/pub/papers/zgwhipsperf.
ps (1998).

D. Mills, “Internet time synchronization:
the network time protocol.”, IEEE
Trans. on Communications, Vol. 39 (10)
(1991).

E. D. Kaplan, Understanding the GPS:
Principles and Applications, Artech
House, Boston, MA, ISBN:0-89006-793-
7 (1996).

Received August 6, 2002
Accepted October 26, 2002

955

" e i,
' : | ’
|
p ! .
§. .
¥ s R 5 : ;
- e
4
: ‘ ; l] oyl

