An algorithm for accurately solving population balance problems
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High accuracy in'solving population balance equations was achieved in the present paper by
using an algorithm as that follows, reduces the error resulting from discretization in the
drop size domain, maintains optimum drop size integration range and the number of
intervals used to describe the population, automaticaliy adjusts the step size in the time
domain to account for varying the mean drop diameter, and identifies when quasi-steady
state is approached.
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1. Introduction

Population balances is a technique used
for modeling and analyzing the behavior of
dispersed systems. It was originally developed
as a tool for describing biological systems and
since 1964 was used to analyze and control
processes involving solid particles, drops, bub-
bles and combinations thereof. The Population
Balance Equation (PBE) can be used to de-
scribe multi-phase operations such as crystal-
lization, grinding, inter-phase heat and mass
transfer, multi-phase reactions, and flotation
1].

& There is however some unhappiness with
this approach, particularly within the indus-
trial sector. This is mainly due to the ability to
obtain “good” fit to experimental data using
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models that bear little resemblance to reality
(e.g. spatial variation in local energy dissipa-
tion rates, binary daughter drops, collision
models). -

The overall objective of this project is-to
develop a user friendly Population Balance
(PB) program that can be used to analyze/
design industrial multi-phase contactors in a
more realistic fashion. Phase I aims to identify
the factors affecting the accuracy of numeri-
cally solved PB problems. Based on the find-
ings obtained, a user friendly algorithms capa-
ble of accurately solving PBE was developed.

2. Problem formulation

In a dispersed phase system, the material
domain comprises a continuous phase and a

1069



A. M. Altaweel et al. / Population balance problems

dispersed phase, the latter as a population of
particles (drops, bubbles, or solid) in which
the identities of individuals are continually
destroyed and recreated by breakup and coa-
lescence processes. Considering the control
volume in fig. 1. The population balance model
is based on an equation for the continuity of
particle numbers in a dispersed phase and is
developed from the general conservation equa-
tion.

Accumulation rate = Flux in (convection &
diffusion) — Flux out + Net generation rate. (1)

Birth by
Breakage

Bithby O O
Coalescence

Death by
Coalescence

Fig. 1. Control volume,

Consider the distribution of entities n(r, &,
€2,..., Em, t) or the population of particles of the
dispersed phase at position r, where r
represents the spatial coordinates or “external
coordinates”, t is the time, and & represents
the i th other property of the entity. &; is also
called the internal coordinate and used to give
a quantitative description of the state of an
individual particle, such as its mass, concen-
tration, temperature, age, volume, etc. In
addition to time, there are (3+m) independent
variables involved that can be thought of as a
(3+m) dimensional space.

The PBE in its most general form [1]:

M, ve(Vn)-B+D=0 - (2)
at

Where Vis the coordinate velocity in phase
space. For well mixed batch mixing tank, with
no reaction or heat/mass transfer, the
problem simplifies to the  following two
dimensional situation [2]:

i[N__(Ed){E‘_»QJ =Bp(a,t)-Dgla,t)-D¢(a, t)+
Bc(a,t). (3)

Where: N(t) is the total number of particles at
time t, f(a,t) is the fraction of particles have
diameter between a and atAa and Bsg(a,t),
Dsg(a,t), Be(a,t), and Dc(a,t) are the birth rate
by breakage, death rate by breakage, birth
rate by coalescence, and death rate by
coalescence, of particles of diameter a at time
t, respectively.

3. Breakage rate

Breakage results in both “death” as well as
“birth” within a certain drop size range.

Bsfa,t) = | P laa) c@)Q(@) Nt ) da’, (4)

Ds(a,t) = Q(a) N{t) f(a,t). (5)

From eqgs. (4) and (5), the breakage rate is

affected by [3]:

i- breakage frequency Q(a), which is function
of energy dissipation rate per unit mass g,
surface tension o, density of dispersed
phase pp, density of continuous phase pc,
viscosity of dispersed phase pp, and
viscosity of continuous phase pc,

ii- number of daughter drops ¢(a), where g(a’)
may be (2,3,4,...), and

iii-size distribution of daughter drops P(a,a’),
where f(a,a’) is assumed (equi-sized,
Normal, Gamma, Beta,...).

4. Coalescence rate

Coalescence results in both “death” as well
as “birth” within a certain drop size range.

Bo(at) <°f" a(h-a% a)aia-a, ) Ny fla-a’,) da’,
3 (6)

Defa,t)= N(t) f(a,t) amjx ) (a,2’)o(a,a’)N(t)
; fla’t) da’ . (7)
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Here A(a, a) is the coalescence efficiency
between drops of size a and a’, and o(a, a)) is
the collision frequency between drops of size a
and a’. From egs. (6) and (7), the coalescence
rate is affected by [3]:

i- collision frequency o(a, a’), which is
function in energy dissipation rate per unit
mass &, density of dispersed phase pp, density
of continuous phase pc, and diameters of
colliding drops (a, a’), and

ii- coalescence efficiency A(a, a’), which is
defined as the fraction of collisions between
drops of diameter a and a’ that result in
coalescence. It is function of contact time
between drops and coalescence time which is
the time required for drops to coalesce.

5. Net generation

It is the difference between overall “birth”
and “death” that affects the overall rate of
drop size change. Fig. 2 shows the net
generation term from a monodispersion of
(a=1000 pm).

1.0
Birth
by breakage

e
P

e
(9

s
N

by coalescence

Rate of generation (normalized), 1/s

by breakage

0 500 1000 1500 2000 2500
Diameter, pm

Fig. 2. Components of the net generation term.
6. Methods used to solve PBE

PB equations are usually complicated
nonlinear integro-differential equations for
which there is seldom an analytical solution
available. The most commonly used solution
methods are [4]:

i- statistical simulation (e.g. MontCarlo), and
ii- numerical integration. ’

Sovova [5] and Rod and Misek [6] derived

exact solution for the PBE in a batch mixer,

assuming simple power functions in drop size
for breakage and coalescence. Generally, PBE
requires numerical solution. Lee et al. [7]
applied the population balance equation
coupled with the proposed breakage kernel
and the previously developed breakage model
to the analysis of bubble size distribution for
non-coalescing systems in a bench-scale airlift
column. They solved the steady-state popula-
tion balance equation wusing Simpson’s
integration technique. Niyogi et al. [8] solved
the population balance equation numerically
using adaptive fourth-order Runge-Kutta
method. Chatzi et al. [9] described the steady-
state drop size distribution in a batch stirred
vessel by PBE. They solved PBE using
composite Simpson’s rule.

The numerical methods present consider-
able computational difficulties. The MontCarlo
techniques are extremely flexible, powerful
and free of convergence problems, but they
require so much computer time that they are
not practical for many purposes.

7. Errors involved in numerical methods

i- discretization errors (time and size
domains),

ii- truncation errors (approximating exact
mathematical procedures),

iii- round off errors (inexact representation of
floating point numbers),

iv- propagated errors (errors from previous
steps carried through to succeeding steps),
and

v- when is quasi-steady state reached? the
quasi-steady state means that the mean
diameter of the drops stop changing with time
any more, meanwhile breakage and coales-

cence processes still working.

8. Solution methods used in the new
algorithm

i- Integration in size domain
¢ Trapezoid rule : O(h3f”),
¢ Simpson’s rule & 3/8t rule,
¢ Simpson’s extended rule : O(1/n%).
ii- Cubic Spline interpolation (to minimize
discretization errors).
iii- Integration in time domain
¢ 4th order Runge-Kutta method O(h5)

Alexandria Engineering Journal, Vol. 41, No. 6, November 2002 1071



A. M. Altaweel et al. / Population balance problems
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Fig. 3. Discretization of size domain.
9. The Rod and Misek analytical solution ‘,

Rod and Misek [6] obtained analytical
solutions for the transient and equilibrium
drop diameters by assuming simple power

functions for breakage and coalescence
processes, expressed by: '
0(a) = Ko a0+ | 1 (8)
B(a,a) = 3 a2/a®, V : (9)
@) =2, | (10
AMa-a’, a') o(a-a’, a’) = K. (a3 * a’3)£’ o (11)

Where Ks and K. are the breakage and coales-
cence rate constants. The analytical solution
of the steady-state PBE using the above
models, leads to the steady-state drop number
density:

fla) =¥exp[— (g—)a]:, (12)
a a

Mean volume drojﬁ ‘aiaméter a, as the pa-
rameter of the distribution, is given by:

-~ K

a=(__c¢)1/6 ; (13)
n K,

Where ¢ is the volume fraction of the

dispersed phase. The transient distribution
developing during the transition from one

steady state, characterized by the mean
volume diameter a, to another steady state,
characterized by the mean volume diameter
5,,,, can be described by:

fla,t) = 32 exp |- (a/ a(t)?). (14)
()

The time variation of the value a , de-
pending on the exponent p, is described by
differential equation,
da _T(p+2) g, a3%2(a,6- a9 (15)
dt 3

The solution of €q.;(15), for p=0, has the
form: - ;

1+A .2K Aot e
R prkli e L P (16)
| 1- Aexp(-2K 4 ax3t)
where;
ool T
A=2e —2=2_ (17)
ap +aw

The analytical solution of Rod and Misek
was used to identify the factors controlling the
accuracy of numerical solutions and develop
algorithms that can minimize them. Fig. 4
shows the percentage error in calculating a,
using numerical methods, under different
values of Aa and At, compared with analytical
one from eq. (16). The value of a,=570 pm,
and a,=826 pm.

Fig. 5 shows the effect of the number of
sampling points (M) on numerical solution to
calculate a(t). The step time interval At= 1s,
and the value of a,=1000 pm and a,=880
pm. As M increases, the error in determining
the quasi-equilibrium drop size, a,=880, will
decrease.

Fig. 6 shows the effect of the number of
sampling points (M) on numerical solution to
calculate a(t). The step time interval At= ls,
and the value of a,=775 pm and a,=875 pm.
As M increases, the error in determining the
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quasi-equilibrium drop size, a,=875, will

decrease.

1000 { O S-S
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Fig. 4. Effect of discretization on solution error.
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Fig. 5. Effect of M on quasi-equilibrium drop size (net
breakage).

Fig. 7 shows the effect of M on the error
and computing time of a,, compared with
analytical solution. As M increases, the error
decreases at the expense of increasing the
computing time.

Fig. 8 shows the effect of amax on the error
and computing time, for both breakage and
coalescence processes. Where amax is assumed
maximum drop size, where the drops will not

exceed.
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Fig. 6. Effect of M on quasi-equilibrium drop size (net
coalescence).
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Fig. 8. Effect of amax on error and computing time for
breakage and coalescence processes.
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Fig. 9 shows the effect of net change rate,
under fixed and adaptive time step. In the
adaptive time step, the time step. At is
adjusted according to the net change rate.
Thus, as the net change rate increase, the
error of the adaptive time step is less than the
fixed time step. ;

1000
e fixed tine step
400 t
= = = = gogpiative tie siep
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R
%
1
- ® " i
01 =
0.01
0 10 20 30 40

“INTIAL. SLOPE, pumisec

Fig. 9. Effect of net change rate on the error.
10. Identification of quasi-steady state

Theoretically speaking, equilibrium is
never achieved in real time. However, it is
approached after time that is controlled by the
value of the net coalescence/breakage rates.
Waste of CPU time, and the onset of numerical
instabilities were observed to occur as the
solution was continued beyond this point.

11. Conclusions

High accuracy in solving population
balance equations was achieved by using an
algorithm that:

i- reduces the error resulting from
discretization in the drop size domain (e.g.
cubic Spline interpolation),

ii- Maintains optimum drop size integration
range and the number of intervals used to
describe the population, ¢

iii- Automatically adjusts the step size in the
time domain in accordance with the rate of
change of the mean drop diameter, and

iv- Identifies when quasi-steady state is
approached.
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Nomenclature

a, a’ diameter of drop,

a volume mean diameter of drop,
amax ~maximum drop size,
Kc coalescence coefficient,
Ks break-up coefficient,
t time,

N(t) the total number of particles at time t,

f(a,t) the fraction of particles have diameter
between a and atAa,

Bg(a,t) birth rate by breakage, of particles of
diameter a at time t,

Dg(a,t) death rate by breakage, of particles of
diameter a at time t, "

Bc(a,t) birth rate by coalescence, of particles
of diameter a at time t,

Dc(a,t) death rate by coalescence, of particles
of diameter a at time t,

¢(@) number of drops formed per breakage
of drop of size a’,

B(a,a’) number fraction of droplets with size a’
formed by breakage of drop of size a,

Q(a) breakage frequency of drop of size a’,

Ma, a’) coalescence efficiency of drops of size a

 with drops of size a’,

o(a, a’) collision frequency between drops of
sizes a and a’, and

¢ volume fraction of the dispersed phase.
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