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The non-linear systems that involve strong non-linearity have attracted a great deal of
attention because of their wide mathematical simulations. In the present study, the
dynamic response of two-degree freedom impact system subjected to external excitation
along the horizontal axis is considered. The intensity of the external forces is independent
upon the response of the system, which is called external excitation. The system
equations of motion include impact non-linearity and cubic structural geometric non-
linearity. The multiple time scale method is used to construct a first order uniform
expansion yielding two first order non-linear ordinary differential equations governing the
modulations of the amplitude and phase angle for the two resonance modes of excitation.
In the non-impact case, when the two modes are externally excited, the amplitudes
response follow the chaotic behavior depend on the damping ratio as the control
parameter. A small increase in the value of damping ratio will draw the system from the
snap-through form of chaotic behavior to the quasi-period and hoph-bifurcation forms
before reaching the steady state by another increase in damping ratio. In the presence of
impact forces, the system possesses a steady state response amplitude response within a
certain range of external detuning parameter. The study of the impact loading effect on
- response amplitude indicates that the impact suppresses the system response.
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normal mode frequencies.

The problem of

An interesting feature of some non-linear
systems is their capability of yielding chaotic
response to a deterministic input even in the
presence of damping. The strong non-linearity
system is considered as the most important
system, which gives rise to this phenomenon.
The importance of these systems is due to
their wide applications and representations for
many practical and structural dynamic prob-
lems, which are encountered in several
engineering applications. The design of these
systems may create two or more nonlinear
algebraic relationships between the system’s
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liquid sloshing involving an impact loading are
the most important dynamical systems which
can be simulated by these non-linear systems
of equations.

The strongly non-linearity due to impact
forces under parametric excitation are investi-
gated by using the multiple scales method.
The reader is referred to Sayad and Ibrahim
[1,2]. The generalized coordinates are denoted
un(t), and the equations of motion are as-
sumed to have the form:

Y1 + 7Yy =e{(-28101Y] +(¥11)gn

1
+(¥11)impact + (¥11)ex} > (1-a)
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mjg
maoo
+(¥22 Jimpact + (W22 )ex ! -

Y, +@3Y; =¢ {~2820, Y5 + (¥22)gn

(1-b)

The parametric excitation of an elevated
water tower experiencing liquid sloshing
hydrodynamic impact is studied by Sayad and
Ibrahim [1]. The impact loads were modeled
based on a phenomenological representation
in the form of a power function with higher
exponent. When the first mode is parametri-
cally excited the system experiences hard
nonlinear behavior and the impact loading
reduced the response amplitude. On the other
hand, when the second mode is parametrically
excited, the response switches from soft to
hard nonlinear characteristics. Under com-
bined parametric resonance, the system pos-
sesses a single steady state response in the
absence and in the presence of impact. Sayad
and Ibrahim [2] studied the nonlinear dynamic
interaction between the impact of the first
asymmetric liquid sloshing mode, represented
by an equivalent pendulum and the elastic
structural dynamics, the reader can be
referred to Pillpchuk and Ibrahim [3] and
Abramson[4]. Sayad and Ibrahim [2] consid-
ered the auto-parametric coupling in the
neighborhood of parametric and internal
resonance conditions. Depending on the initial
conditions and internal detuning parameter,
the response can be quasi-periodic or chaotic
with irregular jumps between two unstable
equilibriums.

Two degrees of freedom systems with
quadratic non-linearity subjected to paramet-
ric and self excitation is studied by Asrar [5].
The method of multiple scales is used to study
the response characteristics under the
simultaneous effect of a harmonic parametric
and self-excitation. The principle parametric
resonance of the first and second mode is
considered. = Amplitudes and frequency
response curves are presented with the
characteristics of the system stability. Liquid
sloshing in rectangular road tankers under
going turning of braking maneuver is dis-
cussed by Popov, Sankar and Vatistas [6].
The steady state solution in terms of liquid
forces and moments is derived analytically
from the hydrostatic equations. The modified

marker and-cell technique is used to study the
sloshing problem and to obtain the damped
frequencies and magnitudes of the sloshing
parameters. The nonlinear interaction of liquid
free surface motion with the dynamics of the
elastic supporting structure of elevated water
towers subjected to vertical sinusoidal ground
motion was examined in the neighborhood of
internal resonance by Ibrahim and Barr [7,8].
In the neighborhood of internal resonance
conditions, the liquid structure system
experienced complex response phenomena
such as jump phenomena, multiple solution,
and energy exchange. Resonance in non-linear
structural vibrations involving two external
periodic  excitations is investigated by
Haquang, Mook and Pluat [9]. The system
includes weak quadratic and cubic non-
linearity and is subjected to an external
excitation with two harmonic components.
Solutions are obtained using the method of
multiple time scales. Steady state response
amplitudes are determined and plotted as a
function of detuning parameter and the
excitation amplitudes. Ibrahim and Li [10,11]
studied liquid-structure interaction under
horizontal periodic motion. The system is
examined in the neighborhood of the fourth
order internal resonance. The method of
multiple scales is used to obtain the
amplitudes response for the first and second
mode. Soundararajan and Ibrahim [12]
examined more realistic cases, such as
simultaneous random horizontal and vertical
ground excitations. The mathematical model
includes the interaction of one sloshing mode
with one structural mode. The Averaging
method solution to harmonic functions for
strongly non-linear oscillators is examined by
Xu and Cheung[13]. The method is applied to
study the approximate solution of a strongly
non-linear system in terms of generalized
harmonic function. These functions are also
periodic and are the exact solutions of
strongly non-linear differential equations.
Some phenomena considered, and include
limit cycles of strongly non-linear oscillators
subjected to weak harmonic excitation [14,15].
The present paper extends the work of Sayad
and Ibrahim [1,2] in the horizontal direction
by applying the harmonic external force Fx(t)
acting along the X-axis. The intensity of the
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external forces is independent upon the
response of the system, which is called
external excitation The impact forces will be
represented by a high power model proposed
by Hunt and Crossley [16]. The system
response in the neighborhood of principal
horizontal resonance conditions will be
considered.

2. Formulation

For the given mathematical modeling
presented by Pillpchuk Ibrahim [3]. The
generalized coordinates are denoted X(t), and
the equation of motion are derived by the
Lagrangian equations according to the
structure shown in figs. 1-a, 1-b. This will
introduce the equations of motions for this
model as:

Yy +opYy = e{-2501Yy + (¥11)gn

+ (Y1 1)impact + (¥11)ex ) (2-2a)
" m - '
Yy +03Ys =€ 1; {28202 Y3 +(¥22)gn
+(¥22 Jimpact +(¥22)ex} » (2-Db)

where a linear viscous damping has been
introduced to account for energy dissipation of
the two modes, and the original damping
factors §, =&, €=pA /m,,.All other terms
and constants are given in appendex A. The
right-hand sides of these equations include
inertia and stiffness nonlinearities of cubic-
order which called geometric nonlinearities
and are denoted by subscript “gn”. They also
include impact nonlinearities of fifth-order
and are given by the expressions with
subscript “impact”.

According to the multiple scale method,
the solution is expressed in a uniform ap-
proximate expansion form:

X, = Xo(Ty, T,s Tysors) X (Tos Ty Ty ) # e 5 43)

where:

To =t, Ty = &t, Ty = 2t,...ieT, =e"t, =0,1,2...

We note that the T, represent different
time scales because e is a small parameter.
Using the Chain rule, we have:

M-m
-~

Xi(®

2
w
b L e = (+)sign
O M-0f) Ki
2
o
hd 1 3 = — = (-)sign
O AM-03) K2
i:i.}.gi.{.gz_a_..f.m:D0+8D|+82D2+...,
dt 0T, 0T, )
0
where D, = — | (4-a)
oT,
42

ke D2 +2eDyD, +&%(D? +2D,D,) +.... (4-b)

Substituting the solution of eq. (3) into eq. (2)
using the transformed time derivative, gives
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(D2 +2eDoD; +&%(D] +2DgDy)+..X; &
+ (DiQXi = ELPi .

Equating the coefficients of equal powers
of g0 and €! (en) gives a set of differential
equations to be solved for Xio, and Xi1. For eq.
(2-a) the zero- and first-order equations in &
are, respectively

DiX,, + 0 Xi9.=0. (6-a)

D3 X11 +0>fX11 =-2DoD1 X0 +11;1(Xj5)

-28,01X10, (6-b)

where Il stands for nonlinear and excitation

terms. For eq. (2-b) the zero- and first-order
equations in € are, respectively,

DX, + @3 Xy =0 (7-a)

D3 X21 +0)%X21 =-2DoD1 X350 +¥11(Xj0)

~2%509X90- (7-b)

The general solutions of (6-b) and (7-b) can be
written in the form:

X,, = A(T)exp(io,T,) + A(T)exp(-io,T,) . (8)

Xo0 = B(Ty)expliogTg) +B(Ti)exp(-ioaTo) - (9)

Where the over-bar denotes conjugate and

i=+~1. A(T1) and B (T1) are functions of the
time scale T and will be determined by
eliminating the secular terms from egs. (6-b)
and (7-b). Substituting eqs. (8) and (9) into
(6-b) and (7-b) gives:

D2X11 +02X11 = -2DoD) (A(Ty)exp(io; To)

+ A(Ty)exp(-io T ) + @11 (Xjo)

-2i0 2T (AT} )exp(ing To) + ...,
(10)

DgXZI +(D§X21
= -2DD; (B(T} )exp(inTo)
S 0 m
+ BTy exp(-iogTg) ) + —+ P25 (Xj0)
moo

-2i0 28 (B(Ty JexplingTo) + ... . (11)

Where Fi: and Fa; contain terms that produce
secular terms in X (i.e. terms with a small
divisor). Obviously the exponents on the right-
hand sides in eqgs. (10) and (11) decide the
resonance conditions associated with each
equation.. For this excitation case, we will
consider only the two relationships between
the horizontal excitation frequency Wx in the
external horizontal direction and the two
natural frequencies of the system w; and wa.
Under this external excitation, the following
resonance conditions will be considered:

1- Principal external resonance of the first
mode W= wy,

2- Principal external resonance of the second
mode Wy = wa.

The response characteristics corresponding to
these resonance conditions are considered in
the next sections.

3. First mode external excitation

For this case, and according to the
multiple scale method, it is important to
introduce a detuning parameter ox that
measures the nearness to the exact external
resonance:

QX =®] +E0Y

Extracting secular terms corresponding to this
resonance condition from eq. (10) gives

D(2)X11 +m%X11 =

~2DoD; {Aexplio] To )} - 2i0 1 Aexpling To) -

- (1Gy1 explilax Tol) ~o2 + (3G15 - 3G1220 7 IAZE -
-(12iCy509 —12iCj50, ~60C;6)A*ABB

+(6iCp 50, — 24iC 509 + 60C;)BAB?
+(2iC150, +10C;16)A°A?)}explingTo). (12)
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One can drop all terms including (B) in eq.
(12), since the first mode is excited only.

Now, according to the multiple scale
method, one can express the solution A (in the
time scale T,) in the complex polar form,

A= %exp(ioc) , A= —;—exp(—ia) : (13)

Substituting eq. (13) in eq. (12), setting all
secular terms to zero, and separating real and
imaginary parts gives the following two first-
order differential equations:

o

= (Gll)—fsin(oyTl -a)

3 S
——(Glzzwf ~Ggla® +-1€C16a5, (14-a)
gr—— =—Gy ))i cos(oy Ty — o)
o (0]
~0?fja+-LCi5a® (14-b)

16

The non- autonomous form of expression
for the egs. (14-a) and (14-b) can be
transformed into the following autonomous
form by introducing the parameter gi= sxT1 - a

p i
2 ZYTI =—loa+Ga—" A %siny, +G,a’ +l»g o (15)
aa X 2% (Dl 5
e = =G, L cogy, ~@: Ca+—C,a’, (16)
mlaTl 7, Y — 0,6 16 "
30)
where Gz = (— Gis ——8—G122), and the other

constants are defmed in Appendix A,B and C.
3.1. Non-impact response

In the absence of the strong non-linearity
(Cie and Cis are equal to zero), The two egs.
(15,16) are integrated numerically using
Runge-Kutta method (MACSYMA 2.3) for mass
ratio p=0.2, length ratio A=0.2, local frequency
ratio v=0.5, excitation amplitude ratio Xo =
0.1, sx = -1.0, ap = 0.02. A sample of time

history records of the amplitude and phase
angle is shown in fig. 2-a, b. It is seen that
the response reaches a stationary state after
very short transient period for a value of
damping ratio {; = 0.2. The response is
independent upon the initial conditions for ag
as shown in fig. 2-c, where ap = 1.0. Solving
eqgs. (14-a) and (14-b) for the steady state
response, one gives polynomial as:

Csa® +Cat + a2+ =0 . (17)

The dependence of the steady-state
amplitude on the detuning parameter s, is
shown in fig. 3, The dotted curve is belonging
to non-impact excitation case. For the non-
linear system, a small change in the control
parameter of this system can lead to sudden
changes in quantitative behavior of the whole
system. For the given excitation case, the
damping ratio {; is the control parameter
which control the steady state solution of egs.
(16, 17) and the expected time history
amplitudes and phase records. If the value of
damping ratio {; is less than 0.1, it is clear
that the response amplitudes do not reach any
fixed points. Fig. 4 shows a sample of the time
history record for damping ratio £; = 0.01; it is
found that the amplitudes take the behavior of
the chaotic response in the snap-through
form. The detuning parameter sy is limitting
this behavior over a certain range as
-20<04 <20. The amplitudes response

behaves as random looking out of this domain
as shown in fig. 5. Fig. 6 shows the Fourier
Fast Transform (FFT) for the chaotic behavior
of the the snap-through form after removing
the transient period. This FFT plotting
contains more than one frequency component.
For a damping ratio {; = 0.05, the time history
record displaying quasi-periodic behavior as
shown in fig. 7. These forms of the chaotic
behavior are independent upon the initial
values of ap that are called non-strange
attractors.

3.2. Impact response
It is clear that the presence of impact

forces creates steady state response only for
all the expected values of damping ratio (;,
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Fig. 2-a,b. Time history phase record for non-impact case
under 1%t mode external horizontal excitation (Xo=0.1,
p=0.2, A = 0.2, ox=10, £1=0.2, a, = 0.02, y, = 0.02).
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Fig. 2-c,d. Time history phase record for non-impact case
under 15t mode external horizontal excitation (Xo= 0.1, p =
0.2,A=0.2,0x=1.0, &1 =0.2, a, = 0.08, yo = 0.8).

0.00 T T Y T T I T
-10.00 0.00 10.00 oy

Fig. 3. Amplitude-frequency response curves under the
horizontal external excitations for the first mode
resonance case p=0.2, A = 0.2, {1= 0.2, X, = 0.1)
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Fig. 4. Time history phase record for impact case under 1st
mode external horizontal excitation (Xo=0.1, A = 0.2, {; =
0.2; % = 0.1}.
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Fig. 5. Time history phase record for non-impact case
under 1%t mode external horizontal excitation (X,=0.1,
p=0.2, A= 0.2, ox= 25.0, {10 = 0.05).
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Fig. 6. The fourer fast transform for non-impact case
under 1%t mode of external horizontal excitation ( (X.=0.1,

1=0.2, A= 0.2, oxx = 0.01.0, {1= 0.05).

0.00 400.0 8000 T

0.00

0.00 400.0 800.0 T

Fig. 7. Time history phase record for impact case under 1st
mode external horizontal excitation (Xo=0.1, p=0.2, A= 0.2,
ox=0.01, & = 0.05).

which is an important change for the case of
weakly geometric nonlinearities (non-impact
case). The steady - state response can be
obtained by setting the left-hand side to zero
in egs. (15, 16). In this case the following
equation is obtained:

Cwaw +Csaa ‘*‘Csaﬂ +C636 "'Caa4 "‘Czaz +Co=0. (18)

In order to understand the influence of
nonlinearity incurred by the presence of
impact loading, fig. 3 shows the amplitude-
frequency curves in the absence and in the
presence of impact loading. The solid curve is
belonging to impact manifold for impact
parameters Cis = - 0.05 and Ci6= - 0.5, -1.0,
while the dotted one is the non-impact case.
For fixed value of the detuning parameter sy ,
it is seen that the impact force increases the
response amplitudes by a considrable percent.
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4. Second mode excitation

Extracting the secular terms correspond-
ing to second mode external resonance
condition from eq. (11), and dropping the
terms contain A, one gives:

2
D%le +0)2X21 =

~ 2D oDy {B(T} )explioy To )}
-2i0 38, B(Ty )expliogTo) -

- (iGg;B)expli(Qx To — w2 To)} —59-
+{(3Ggg —402G210)B*B
+(10C;g +2i05C15)B3B?}exp(ing Tg) + CC.(19)

One can express the solution B (in the time
scale T;) in the complex polar form

B = gexp(iﬁ), B gexp(—iﬁ) : (20)

Substituting eq. (20) in eq. (19), setting all
secular terms to zero, and separating real and
imaginary parts, gives the following two first-
order differential equations:

o) Oyp _ 02 xO :
L4 phLL =—“<4boy +G sin
2ol 2 . s 4 (r2)

+Kab® 4 -1% Cieh® ) (21-a)

b X 3 e
S -Gg1 —‘—t‘lcoswz) : mECQb + %Clsbs (21-b)

3 m%
where Kj =(§G29——2—-G210), g = sxI1 -B.,

and the other constants are given in Appendix
C.

4.1. Non-impact response

In the absence of impact forces
(Ci5 =Ci16 =0), These two egs. (21-a) and
(21-b) are integrated numerically using
Runge-Kutta method. Under any possible
initial conditions the response is found to
achieve a steady state independent upon the

initial conditions for the selected values of
damping ratio, as {, > 0.1 as shown in fig. 8.

Solving egs. (21-a, b), The steady state
solution is identical to the roots of the
following equation:

* 4 2

cqa’ +Cpa“ +¢cg =0 . (22)

0.40

b 1

030 _

020 |

0.10 v + . : ' . v T v v v T
0.00 400.0 800.0 T 1200.0

1.00 J*”

Y2

0.50 ]

! v v . ' v . —

0.00 400.0 800.0 T 1200.0

Fig. 8. Time history phase record for non-impact case
under 274 mode external horizontal excitation (X.=0.1,
p=0.2, A= 0.2, ox= -1, {2 = 0.2).

Fig. 9
response over the range —20<o, <20, the

shows the amplitude-frequency

dashed curve is corresponding to the non-
impact case. It is clear from this study that
damping ratio is the main parameters that is
governing the behavior of the amplitudes
response records and time history curves. The
results will be examined for different values of
damping ratio {p similar to the first mode
excitation case, where 0.01<{, <0.2. Figs.

10-a, b, ¢, d and fig. 11 show that amplitudes
are independent upon the initial conditions
and the amplitudes exhibit chaotic solutions
for two different selected values of damping
ratio (2. These different scenarios introduce
the form of snap-through oscillating about
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non-zero mean value in fig. 10, and hopf-
bifurcation for two values of detuning

parameter Gy = -5.0, 0.01 as shown in figs.

11-a, b. The amplitudes are oscillating about
non-zero mean value, and the trend continues

for different values of detuning parameter Oy
over the range-20 <o, <20 . Fig. 12 show the

Fourier Fast Transform of the response, after
removing the transient period for the snap-
through behavior which is identical to fig. 10.

0.20—

0.10—

0.00 I . l g |

-40.00 ; 0.00 40.00 o
Fig. 9. Amplitude-frequency response curves under the
horizontal external excitations for the second mode

-resonance case ((Xo=0.2, A= 0.2, Xo= 0.1, {2 = 0.2)
Impact =~ = oo Non-impact.

4.2. Impact response

For the impact case, egs. (21-a, b) are
numerically integrated using Runge-Kutta
method (MACSYMA 2.3) for the amplitude b
and phase angle gs. The response records lead
to steady state solutions and that are
independent upon the damping ratio similar to
the first excitation mode that implies that, the
system possesses one stable fixed point due to
impact forces. The steady-state response can
be obtained by setting the left-hand side of
egs. (21-a, b) to zero. Squaring each side and
adding gives the following polynomial in the
amplitude b:

0.00 400.0 800.0 T
0.00
T2
100
-20.0 _.-
-30.0 - rotr—a? |
v . T - - v :
0.00 400.0 800.0 T,

Fig.10-a,b. Time history phase record for non-impact case
under 2 mode external horizontal excitation (Xo=0.1, p =
0.2,1=0.2,0x=0.01,42 = 0.01, bo = 0.5, 1, =0.02).

0.50 _}

0.00 | ’

-0.50

- P

0.00 400.0 800.0 T

00 |

-10.0

-200 _J

0.00 400.0 800.0 T

Fig.10-c,d. Time history phase record for non-impact case
under 2m mode external horizontal excitation ((Xo=0.1, p =
0.2,1=0.2,0x=0.01,42=0.01, a, = -0.5, yo =1.8).
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0.60

0.40

Fig. 11-a. Time history phase record for non-impact case
under 24 mode external horizontal excitation ((Xo=0.1, p =
0.2,1=0.2, ox = -5.0, {2 = 0.05).
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0.00 500.0 1000.0 1500.C

Fig. 11-b. Time history phase record for non-impact case
under 27 mode external horizontal excitation ((Xo=0.1, p =
0.2,A=0.2,0x=0.01, {2 = 0.05).

Ciob L EEsb® w8 bliuT, b° -
+Cab? +Cyb2 + G =0.

The amplitude-frequency response over
the range —20 <o, <20 is shown in fig. 9.

The solid curve is corresponding to the impact
case. It is important to note that presences of
the impact forces are increasing the
amplitudes response values than the non-
impact case. It is important to examine the
influence of impact coefficient Cis on the
system response dynamic characteristics. It is
noted that, for any selected value of the

detuning parameter ©,, the response ampli-

tude increases as the impact parameter
increases indicating that the impact

suppresses the system response. Fig. 9 also
shows the amplitude-frequency response for
impact parameters Cis= - 0.05 and Cy6= - 0.5,
-1.0. However, the response amplitudes and
their maximum recorded values for this
excitation case is less than the values which is
introduced for the first excitation mode.

0.40

0.30—

WO NP T e ]
!

0.00 | T

0.00 1.00 2.00 3.00

Fig. 12. The fourrer fast transform for non-impact case
under 2 nd mode of external horizontal excitation (X.=0.1,
p=0.2,1=0.2,0x=0.01, {2 = 0.05).

5. Conclusions

The behavior of an impact system
simulating liquid sloshing subjected to
external horizontal non-parametric excitations
was examined for two external resonance
conditions. The impact loads were modeled
based on a phenomenological representation
in the form of a power function with a higher
exponent. The system response has been
examined in the neighborhood of two external
resonance conditions. When the first mode is
externally excited, the response of the
amplitude behaved as quasi-periodic and
chaotic response with irregular jumps between
two unstable equilibrium positions. In the
presence of impact forces, the system
preserves fixed response amplitude response
within a certain range depends upon ‘the
external detuning parameter. For the
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excitation of the second mode, the amplitude
response mainly follows the same behaviors of
the first mode but the resulting values for the
amplitudes are .lower than values recorded in
the first mode. For the two resonance cases,
the response amplitude increased as the
impact parameter increased, indicating that
the impact suppresses the system response. It

is important to note that the different
characteristics for the amplitude and phase
angle were independent upon the initial
conditions. It is also important to show that
the linear damping ratio can play an
important factor in the behaviors of the
response characteristics.
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