View maintenance policy using data aging in data warehousing

Hussien H. Aly, Yousry Taha and Mohamed A. Mohamed

Dept. of Computers and Automatic Control, Faculty of Eng., Alexandria University, Alexandria, Egypt

Materialized views and view maintenance in Data Warehouses (DW) are becoming
increasingly important in practice. Selecting the most convenient time to carry on view
maintenance is a very crucial issue. In this paper we propose a new view maintenance
policy that allows the DW user to define the data freshness requirements. The aging of the
data in the DW is controlled using SQL-like user-defined Data Aging Constraints (DACs)
that are associated with views in the DW. As soon as a DAC is violated, the view
maintenance process takes place to improve view freshness. Given the distributed nature of
DW, we propose a distributed evaluation scheme for the DACs that divides the burden of
tracking the data aging between the sources and the DW. DACs are decomposed into
propagation rules, each of which depends on a single source so that they can be tested
locally. A new proposed component, called DW-Agent, running on the source, will be in
charge of tracking the changes in the source. The agent collects the changes from the
monitor, evaluates the propagation rule, and notifies the DW manager only if the rule is
violated. The performance of the new method is evaluated using simulation. The proposed
policy indicates a good performance in terms of view maintenance cost, communication
cost, with high probability of reading up-to date data by the DW users.

Glagles o Jgaanlly bl Jilad (o e gty o 2 Gl Giled sin uw.:ml @55l G il i
e Loldl Gl siaall 038 el wyy oSl g siua () A ol 6 5a Dol Sl giadl ey daya (5 ilaal (§ias
g..:._.uu.m“ C.__.\sjan _)L;a'a“, t_).\L..aan 0da CJL\L_\.J )‘)S 2 ‘..QJLJ‘ uL’:‘,.La.Q“ o34 u!.\ h.._l_, Mh;.n ub\._l._x“ ).}L.Aa uLnL_\g
ol Glubdl e bl 2a iy Jagaley S JSE G Fasiue eld o S5 b iad) 38 Llay Euaadl
LY Bl jrad clily @ Jaaad gl e 25 5 & pdl) Dlall 1 fie Salal G giadll 038 Ll i lasY
Al alald) u.adS\;i, cOne () ),)eh.ar.ug.m)u))ﬂ|Mbd\)u\au\&d,w@eml dsm‘a.uo_db
il palas (A T G il LGAS) ge g Sl DBlas laie Garg UL £ 3 shue AU el D) 5e ellia 5SS
bl wli e 35 a8 e e Aubidl oda edpalal) il gind) Dbl asaa Aubpes 21 58 0 gk i dl 134 S
Sl g e eddiue JF Ge ol s Gaee 3a ek Y GUL 038 236 O Suay Gl e g 6 4 55
= s UL L0l 4 seday Lglaa Saladn Aalall il i) Sy Euaad] Ala Jaay JUail) o 66 2] 138 (gaa5 2ic
— A 13 Slat) el 8 A el )y e UL T 48 Ay a3 pEE Tane e adiay Y i) 138 6 Al
= Bl ad e ald) Gl siaadl (8 ULl L0 6 Aoy (delite a5 Y Paa JI5 Ll UL 038 S S
JL_L\ rA—=23y L_a_):la.“ Ll o ey Galll 138 Uj\a)ﬁ} Agle Lol Cl\._l_,:l:u;“ c-L'I:l(;l“Fﬂ\ bl )J\‘A“Lf‘; pue)
(SQL) iiSelt aoi LY 4 paaied Aagey A8 ey UL 205 358 e el LSy Lelae LS 7 il ae L Jead)
il e 3dul) 4G e adiady ¢ SULN 20l 358 daslia 3eUS Glasal da jitall Lubpd) ) 23 g0 21 8 Cila () 138
¥l il 03a w58 g Cae Slly an pald bS5 sia eie US ksl a5 320 ) UL A0S o8
Yy _).\__..aads‘;i.\}._\ﬂlo:\h u\)ur)ésﬁpawdsgﬁéh\:u“&{;ualhﬁhép,ehﬁan <l ).\La“u.h
Al 35 L oy Ala o3 i 2l 138 DG s 13 V) aadl 8 T A0 Dbl Jla )l o5
i T paall Lty L ipaatl) Slany o gl S 3 inna Y DUl 038 Sy el i 25 5l
25— a3 Guyh e Blaalloda 8 aSadll cuily () Leae Jaladll a3y Al UL &Blaa (5 e 4 jae SUL) £ s
Loy Saaal el 36 S S1Skaall jlad il Ay L £ 3 gina (A 3353 gl DLl Gl giaad) e L) 06
el giaad) Dlgea Glee 0 UL E 3 s 3] ge @Dlgid 5 UL Blaa o Bliall Cua (e Wlla 5350 sal) clulid) aa
DL g3 ey bl dlian o itV RS Sy Aol

Keywords: Data warehouse, Data aging, View maintenance

1. Introduction 1- Immediate maintenance: where the view
is maintained immediately upon an update to
There are three common policies, which one of its base tables.

deal with view maintenance timing [1,2]:

Alexandria Engineering Journal Vol. 40 (2001), No. 6, 823 -834 823
© Faculty of Engineering Alexandria University, Egypt.



H.H Aly et al. / View maintenance policy

2- Deferred (on-demand) maintenance:

where the view is maintained at the time of
view query.

3- Periodical maintenance: where the view is

maintained periodically, e.g., every an hour,
once a day or once a week.

In the immediate and deferred policies, a
DW query read up-to-date data. However, the
response time and the communication cost
are usually unacceptable. In the periodical
scheme, queries may read data that is not
up-to-date with base tables during the
periods between successive refreshments.
The level of data freshness is not well defined
between successive refreshments. However,
this policy is the most common used in
current commercial data warehousing
environment because of simplicity and the
view maintenance can be done in times of
low workload [3].

If we use the notion of change-based age
instead of time-based age, some critical OLAP
and DSS application may be useless unless
when using the periodical scheme. This is
because there is no guarantee of how much
the data in the DW differs from the actual
operational data in the sources. For example,
assume that some OLAP are required or a
decision should be taken as soon as the total
sales in the regional offices exceed $100,000.
If the view maintenance periodically is done
every week, it may be too late decision. Also,
if sales transactions during the week are
small, there is no need to maintain the view.
On the other hand, maintaining the view
every day is considered costly.

In this paper, we consider the problem of
deciding when to do the view maintenance.
We consider allowing the user to specify how
much difference between the data in the DW
and the operational data is allowed before a
view maintenance operation is carried out.

The rest of the paper is organized as
follows: Section 2 presents the data aging
constraint framework. Section 3 introduces
the proposed view maintenance policy.
Section 4 presents the propagation rules
derivation method. Section 5 presents the
simulation results of the experiments
conducted to compare the proposed policy to
the existing ones. Section 6 concludes the

paper.

2. Data aging constraint framework

Time-based data freshness is discussed in
[4]. In our research, we adopt the notion of
change-based age instead of time-based age,
where the age of the derived data increases
only due to base data updates [5]. A data
aging constraint (DAC) is a predicate that can
be defined for each data warehouse view in
terms of the view and the underlying sources
data values. This predicate can be described
as an SQL-like expression as follows:

CREATE DAC ON <DW Object w>
REFRESH WHEN EXISTS<SQL SELECTquery>

Where w is any materialized view defined in
the data warehouse. The REFRESH clause
queries are of SPJ (select, projection, and
join) class that may contain aggregates.

The constraint is violated if the query is
evaluated to a non-empty set. In this case, it
denotes stale data. Materialized view is
considered valid as long as this aging
constraint is not violated by the updates
issued against base data.

Example: Suppose that there are two
relations WRS and ERS that belong to
different data sources S); and S; respectively.
WRS represents the sales transactions at the
western region, and ERS represents the sales
transactions at the eastern region. Suppose
that both of them have the same structure:

S1.WRS (part_no, quantity, sales_value)
S,.ERS (part_no, quantity, sales_value)

Suppose the following view is defined over
these base relations and materialized at the
head office DW.

CREATE VIEW Total_Part_Sales (part_no,
part_sales_value) AS

SELECT WRS.part_no, SUM(WRS.sales_value
+ ERS.sales_value) AS part_sales_value

FROM WRS, ERS

WHERE WRS.part_no = ERS.part_no

GROUP BY WRS.part_no

This view represents the total sales
achieved for common parts at the western

824 Alexandria Engineering Journal. Vol. 40, No. 6, November 2001



H.H Aly et al. / View maintenance policy

and eastern regions. Suppose that this view is
represented at the DW as w. The DW users
want to refresh w every time the total current
sales for common parts at western and
eastern regions diverge from total sales
recorded at w by $10,000. This can be
expressed using the following DAC.

CREATE DAC ON w
REFRESH
WHEN EXISTS (SELECT abs (W.total -
Source.total) FROM (SELECT Sum
(part_total) AS total FROM
(SELECT WRS.part_no,
um(WRS.sales_value +
ERS.sales_value) AS part_total
FROM WRS, ERS WHERE
WRS.part_no = ERS.Part_ no GROUP
BY WRS.part_no)) Source,
(SELECT Sum (part_sales_value) AS
total FROM Total_Part_Sales) W
HAVING abs (W.total — Source.total) > 10000)

This constraint is violated if there are
tuples resulting from the execution of the
query at the REFRESH clause indicating that
total new sales, not reflected at DW, exceeds
$10,000.

3. Data aging view maintenance policy

To track the data aging constraints, the
query results of the DAC REFRESH clause
should be checked against every change at all
involved sources. Moreover, the computation
of the DAC query implies the computation of
a distributed query, which is usually costly.
To minimize the overhead of DAC checking,
we divide the burden of tracking the DAC
between the DW and the data sources. The
idea is to break down the DAC query that
involves multiple data sources into smaller
queries that involves only one data source.
These smaller queries are called propagation
rules (PR) and their semantics is very similar
to the DAC. Each PR is checked locally at
each data source by a DW agent. As long as
the PR query does not result in any tuples,
the PR is still valid and there is no need to
propagate source changes to the DW.

3.1. Data warehouse architecture

It is assumed that the DW uses monitors
at the sources as a way to detect source
changes [2, 6, 7]. These monitors are
supposed to detect only relevant changes to
the DW materialized views. Fig. 1 depicts the
major components of a data warehouse that
uses the data aging constraint policy. The
main relevant components are the view
specifier, warehouse agent and warehouse
manager. We omit other components in the
DW architecture that are irrelevant to the
aging constraint policy for the sake of
simplicity, such as wrappers, query
processors, and view managers.

A Y
Users

/ \ Client

VS applications

Specifier

DW

Warchouse
MetaData Manager

Source 1

@ @
&

Fig.1. The proposed data warehouse system architecture.

View specifieris a front-end tool for the DW
user or the DW administrator. Through the
view specifier, the user can define in a
declarative way the desired data aging
constraint to be imposed on any DW object.
The user may enter the DAC with the syntax
mentioned before or through a user-friendly -
interface like a DAC builder that formulates
the entered DAC into a query as described
before.

Warehouse manager (WHM) is the main
component of the DW architecture. Some
literature refers to it as the integrator. This
name was originated from its responsibility
for integrating source updates into the DW
materialized views during the view
maintenance operation. However, we prefer
to call it the warehouse manager since its

Alexandria Engineering Journal. Vol. 40, No. 6, November 2001 825



H.H Aly et al. / View maintenance policy

responsibilities exceed view maintenance
actions.

The tasks of the WHM can be summarized
as follows:
1. Computing the materialized views from
the underlying sources. For the first time,
this computation starts from scratch since
there is no prior available information can be
utilized.
2. Deriving the propagation rules from the
aging constraint imposed on any DW object.
The WHM forwards each propagation rule to
the corresponding data source.
3. Receiving status reports sent by the
warehouse agents about the propagation
rules violation at the data sources.
4. Carrying on view maintenance for the
defined DW objects.
Warehouse agent (WAG)is a new component
added to the typical data warehouse
architecture in order to help tracking aging
constraints. The warehouse agent is added at
the source side beside the source monitor.
The main objective of the warehouse agent is
to lessen the communication traffic between
the data sources and the data warehouse
during aging constraint tracking. The agent
uses the propagation rule assigned to it to
conduct a local test on the new source
changes. As long as the propagation rule
condition is not violated, the test is
successful and there is no need to propagate
this change to the warehouse. As soon as the
propagation rule condition is violated, the
test fails and source changes are forwarded
to the warehouse.

3.2. DW management and agents relationship

As data warehouse users define new DW
objects, they impose data aging constraints
on them. The WHM receives these
constraints, analyze them, and generate the
corresponding PRs. Each PR is forwarded to
the agent in corresponding data source to be
tracked locally. This section outlines the
scenario of tracking aging. Actually, the
scheme is working in a distributed
environment where the actions are divided
between the data warehouse and the agents
in the data sources. Therefore, it is
convenient to describe such simultaneous

actions by separating the perspective of each
side and discussing it individually. The
following two perspectives present the aging
constraints tracking from the point of view of
the DW and the data source.

The data warehouse perspective The
warehouse manager (WHM) represents the
data warehouse side in this scheme. The
following steps describe the actions taken by
the WHM to track any aging constraint using
the proposed policy.

* First, the WHM receives the view
definition and its associated aging constraint
from the metadata store. The WHM uses
derivation method, presented in the next
section, to derive the propagation rules from
the aging constraint. |

* The WHM queries data sources and
computes the materialized view v from
scratch for the first time only since there is
no prior available information.

* The WHM sends each propagation rule to
the corresponding data source agent and
marks the view v as a valid and up-to-date
view.

* The WHM waits until one of the agents
claims that its propagation rule has been
violated. At this point, the WHM sends a
FLUSH signal for other agents involved in the
view definition to send their buffered
modifications.

* The WHM may decide to carry on view
maintenance for the DW object v upon the
first propagation rule violation or may defer
it. After maintaining the view, v restores its
data freshness. Then it is marked as valid
and up-to-date.

s The same cycle is repeated.

The data source perspective. The warehouse
agent (WAG) represents the data source side
in this perspective.

* First, the WAG receives the PR definition
from the WHM.

= As the monitor at this source detects new
changes, the WAG validates the PR condition
against these changes. Since the PR condition
is represented by a query, the WAG executes
this query over source changes. The PR is
said to be valid if its query returns an empty
set of tuples. At this time, there is no need to
propagate these changes to the data
warehouse.

826 Alexandria Engineering Journal. Vol. 40, No. 6, November 2001



H.H Aly et al. / View maintenance policy

* As soon as the PR query returns a non-
empty set, the WAG notifies the WHM with
the violation of its PR and forwards all stored
changes. The agent restarts buffering new
changes

* If the agent receives a FLUSH signal from
the WHM, it sends all source changes and
restarts the checking process. This case
occurs when one or more of the other source
agents notify the WHM with their PR
violation.

4. Propagation rules derivation method

A propagation rule (PR) is a predicate
derived from the data aging constraint (DAC)
predicate. The PR is intended to be tested
locally at the data source. A predicate is said
to be local if all the attributes referenced in
the predicate are from the base relations
residing on the same data source.

Effectively, the DAC query is decomposed
to a number of subqueries or PRs equals to
the number of data sources involved in the
DAC definition. We will use the following
notation to define a PR:

PROPAGATION RULE <PR name> ON<Source>
FORWARD WHEN EXISTS <PR condition
expressed as an SQL-Select query>

The semantics of the above rule is similar
to the DAC. The rule condition is represented
by a select SQL query that results in a non-
empty set if it is violated. If the query does
not return any tuples, the PR still holds and
there is no need to forward source changes.

To formally describe the derivation method,
we need some definitions.

A Data warehouse object is any
materialized view defined at the DW. The
Generalized projection operator (denoted as ma)
is used to represent aggregation attributes in
the projected attributes [8, 9]. This is an
extension to the distinct projection, where the
projected  attribute set A may include
aggregate functions as well as regular
attributes. We use GB (A) to denote the set of
group-by attributes in A. For example, we can
write 4, max(s) (R) as the query:

SELECT d, MAX (s) FROM R GROUP BY d

In this example, A = {d, MAX (s)} and GB (A) =
{d}.

The Contribution factor (CF) is a way to
describe the share of a data source element in
a DW object value. They are used to derive
propagation rules for each source from the
DAC. Any contribution factor takes a value
between [0, 1] and the sum of all contribution
factors involved should be 1. So CFyuw
denotes the contribution factor of the data
source element x on the DW object w.

Contribution factors can be specified on a
low level of granularity like the level of
relation columns or a higher level like a whole
data source relation. In our research, we
consider contribution factors on the whole
data source relations.

4.1. Aggregate functions types

In [10], aggregate functions are divided
into three classes: distributive, algebraic, and
holistic. Distributive aggregate functions can
be computed by partitioning their input into
disjoint sets, aggregating each  set
individually, and then further aggregating the
partial results from each set into the final
result. Amongst the distributive aggregate
functions found in standard SQL are COUNT,
SUM, MIN, and MAX.

Algebraic aggregate functions can be
expressed as a scalar function of distributive
aggregate functions. Average is an algebraic
aggregate function since it can be expressed
as SUM/COUNT.

Holistic aggregate functions cannot be
computed by dividing into parts. Median is an
example of a holistic aggregate function.

A function f(xi,...,.xn) of n independent
variables is separable if it can be expressed
as the sum of n single-variable functions
fixi), ..., fulxn), that is,

f(x1,%2 ,...,%n) = fi(x1) + fa(x2) +...+ fu(Xn).

The same concept can be applied on
conjunctive predicates that may appear in
DAC. We deal with source relation columns
as the variables. The objective of this property
is to be able to decompose the predicate
appear in the DAC conditions into smaller

Alexandria Engineering Journal. Vol. 40, No. 6, November 2001 827



H.H Aly et al. / View maintenance policy

predicates that involve only variables from
each individual source.

4.2. Assumptions and restrictions

Our proposed scheme for view
maintenance using data aging depends on
some assumptions and restrictions that
must hold to ensure correct operation.
1-Any change occurs at the source is
available for the WAG at this source as
reported by the monitor.
2-The WAG receives the changes from the
monitor with a notification indicating the
class of this change (insert, delete, or update).
3-It is the responsibility of the monitor to
detect the source relevant modifications.

4- Aggregate functions used in the DAC
expression are either distributive or algebraic.
5-The DAC REFRESH clause is conjunctive.
6-The DISTINCT keyword cannot be used in
the DAC expression, e.g., SUM (DISTINCT
sales_amt) is not permitted.

7-All functions and expressions used in the
DAC should be separable. For example, the
use of multiplication and division between
involved source variables is restricted, e.g.,
SUM (X*Y) is not allowed.

4.3. Deriving the propagation rule

Throughout the rest of this paper, the
following conventions will be used:
S is the data source (a set of relations)
we derive the PR expression for,

Z, Y are simple relations,

a, b are simple attribute,

w is the DW object intended by the DAC,

CFsw 1is the contribution factor of the source

S to the values of the object w,

P is a predicate containing conditions on
regular attributes and/or aggregated
attributes,

A is the any set of attributes.

The syntax of A and p are described by
the following simple grammar shown in the
table 1 below. The following algorithm shows
the steps used to derive the PR expression for
each involved data source from any DAC
definition. This algorithm is computed at
compile-time when the user defines the DAC.

The algorithm steps refer to the rules appear
in table 2.

Table 1.
Selection predicate and projected attributes grammar

1 P = Item; compare Item: |
2 p1 AND p2
3 Item = ColumnName |
4 constant |
5 Agg-Fn (Item) |
6 Fn (Item;, Itemz) |
7 WarehouseCalculatedit
em
8 Compare = =|l=|<|>]|<=]|>=
. - *Sum | min | max |
2 Agg-Fn avg | count
D Fn _ *+ | - | any separable
user-defined function
1 A = Item;, Itemz |
2 Item
B WarehouseCalculate Agg-Fn
ditem (w.ColumnName)
Table 2
Rules to derive PR expression from DAC expression
Construct
in the , .
Rule DAC Construct in the PR expression
expression
(i) ma(S),whenZ e S
(i) CFsw . ma(w) ,when Z =w
and A on the form of
I na (Z) WarehouseCalculatedItem
appearing in production (7) in fig.
4-1.
(iii) Nil ,otherwise
(i) op (Z),when Z e S, where p’
like p but multiplying all items
2 oe (2) on the form mentioned in
E productions (4) and (7) by CFs.w
(i) Nil, when Z does not belong
toS
() ZxYorZwzavysY,whenZY
3 ZxY €S
ZozaynY (i) Z,whenZeSandY e S
(iii) Nil, when Z,Y ¢ S
If the Item (refer to production 3
in Fig. 4-1) is a column belongs to
a removed relation, replace Agg-
a Agg-Fn Fn(Item) with NIL.
(Item) Otherwise, if Item is a column in

a relation that belongs to S, put
Agg-Fn(ltem) as it is in the PR
expression.

828 Alexandria Engineering Journal. Vol. 40, No. 6, November 2001



H.H Aly et al. / View maintenance policy

Algorithm 4.1 Generate propagation rules
Input: (Data Aging Constraint (DAC) definition,
S data source to derive its PR)

Result: (The propagation rule for the data
source S)

Method:

1. Initialization

eConstruct the parse tree of the DAC
expression (in its relational form) mentioned
at the REFRESH clause.

sLet PR parse tree equal to DAC parse tree.

2. Traverse the PR tree using postorder
scheme. FOR EACH parent node (operator
nodes) in the parse tree REPEAT

3. Apply one of the above rules (for the
source S) on the parent node and its children.
4. Remove the nodes according to the rules.
5. If there is a binary operator, e.g., x
(Cartesian product), and one of its operands
has been removed then remove the binary
operator node and reconnect its subtree to
the parent of the removed node. \

It is important to notice that the PRs
derived are not equivalent to the DAC from
which they are derived. However, they
represent a necessary condition for the DAC.
In other words, if the DAC is violated then at
least one of its PRs is violated. To prove this,
we need to prove that it is impossible to have
all derived PRs hold while the DAC at the DW
is violated. At the point of time that the DAC
at the DW is violated there should be at least
one PR at any data source is violated.

Lemma 1

Modified tuples at source S that violate
the DAC will also violate the PR for the same
source.

Proof

This lemma can be proved through the
following reasoning using the rules appear in
table 1.
1- The selection predicate for source S
appearing in the DAC expression is
preserved. This means that any modified
tuple accepted by the DAC query will be
accepted by the PR query at source S.
2- The equijoin operations, with other
sources or with the DW view, are removed
from the derived PR expression. This implies

that the set of tuples belong to the relation at
source S and joined with relations at other
sources is subset of the tuples at this
relation.

3- The use of contribution factor in PR
expression does not reject tuples that are
accepted by the DAC expression. Suppose
that we have two source elements X andY
belong to different data sources that derive a
DW object V. Assume that the contribution
factor of X is CFxyv € [0,1], the contribution
factor of Y is CFyy e [0,1] and CFxy + CFy,v
=1.

If the DAC predicate states that: X+Y <Kk,
(where k is any numerical value)

We can deduce that:

PRx contains a predicate X < k.CFxy and

PRy contains a predicate Y < k.CFy,v.

Theorem 1
If a DAC is violated, then there exist at
least one violated PR.

Proof

The objective here to prove that it is
impossible to have all PRs valid while the
DAC is violated. This theorem can be proved
using contradiction.

Assume there is a tuple t at source S that

is changed by some operation (inserted,
modified, or deleted). Assume also t violates
the DAC expression and does not violate the
PR expression at S. This can be achieved if
the tuple t belongs to the set of tuples
selected by the DAC query and does not
belong to the set of tuples selected by the PR
query at S.
According to lemma 1, any tuple, changed at
any source and appears in the results of the
DAC query, should belong to the set of tuples
selected by the PR query at this source. This
implies that the PR is violated at this source .
which contradicts the assumption of no PRs
are violated.

The idea of the above theorem can be
captured from the following Venn diagram in
fig. 2. The diagram illustrates the relationship
between different derived PRs and the DAC.
The diagram assumes that there are only two
PRs derived from the DAC just for clarity of
the diagram. g

Alexandria Engineering Journal. Vol. 40, No. 6, November 2001 829



H.H Aly et al. / View maintenance policy

PR1

Fig. 2. Venn diagram illustrates the relationship between
different database state sets.

As illustrated in the fig. 2, we note that
the DAC area must be contained within the
union of PR; and PR; areas. In other words, it
is impossible to have a database state that
makes all PRs valid while the DAC is violated.

5. Performance study

In this section, the simulation
experiments and their results are discussed
and analyzed. More details of this study can
be found in [11]. The simulation considered
the following view maintenance policies:

1- Immediate,

2- Deferred,

3- Periodical with different refresh times (1
minute to 20 minutes), and

4- Data aging constraint (DAC) with different
propagation rule (PR) violation probabilities
(0.1, 0.5, and 0.9). When we denote DAC(0.1),
we mean DAC policy with PR violation
probability 0.1. Where the PR violation
probability represents the probability of
violating the propagation rule (PR) condition
against each source update transaction.

For each view maintenance policy, the
source update transactions workload and the
data warehouse query workload are varied to
inspect their effect on the behavior of the
different policies. The performance indices are
measured for each experiment.

Each simulation experiment runs for
approximately 24 hours of simulation time
and generates only one data point. We are
interested in the following performance
indices:

1- Communication cost between the data
sources and the data warehouse.

2- View maintenance cost represents the
view lock time at the data warehouse.

3- The probability of a warehouse query to
read stale data is a measure of data
freshness.

4- The warehouse query service time.

5.1. Varying source workload v

5.1.1. View maintenance cost

View maintenance cost is important to
measure the efficiency of any view
maintenance policy. The importance of the
view maintenance cost is originated from that
it represents the availability of the data at the
data warehouse [12]. During the view
maintenance operations, the view is locked
and it is not available for querying so that
users see a consistent snapshot of the data.

At this experiment, the average view

maintenance time is measured for each
simulation run. This time is divided by the
total simulation time to get the percentage of
the time the data warehouse engine spent in
maintaining the view. This also represents the
average percentage of data unavailability time
of the data at the data warehouse. Fig. 3
depicts the results of these experiments.
We can notice that the DAC (0.1) is the policy
with the least view maintenance cost at high
source workload. This is because it is a low
probability to violate the data aging constraint
and carrying on the view maintenance
operation. So the rate of view maintenance is
very low. .

On the other hand, the immediate policy
shows the highest view maintenance cost
because of the very high maintenance rate.

The periodical policy shows a good
performance at high source workloads.
However, at low source workloads the
periodical refresh rate may be greater than
source workload. Consequently redundant
view maintenance operations will be done.

The DAC policy performance depends on
the PR violation probability. On the average
DAC (0.5) shows a reasonable performance
compared with immediate, deferred, and
periodical polices.

5.1.2.Communication cost

The communication cost is represented by
the average network delay. This average time
is normalized by dividing it by the total

830 Alexandria Engineering Journal. Vol. 40, No. 6, November 2001



H.H Aly et al. / View maintenance policy

simulation time. By this way, we can know
the time percentage the communication
channel between the data warehouse and the
data source is busy. Fig. 4 depicts the results
of these experiments.

The immediate policy shows the highest
communication cost. The DAC (0.1) policy
shows a low communication cost at the high
source workload.

The deferred and the periodical policies
show a similar behavior as long as their
refresh rate is less than the source update
transactions rate.

The DAC policy shows an adaptive
behavior to the source workload. As source
workload increases, the communication cost
increases.

=
©

Average View Maintenance Cost

o © N o
© © © © o
.

Percentage of view maintenance

20

me to the tota! simulation ime
rs
=)

Source Transactions Interarrival Time (sec)

} & mmediste —— DAC(O.) ——DAC(0S) DAC(09)
e Periodical (80) & Perodcal (120) v Perodcal (180) = Deterred (60)

Fig 3. Average view maintenance cost vs. source update
transactions workload.

5.1.3. Data warehouse query service time

The data warehouse query service time is
a measure that indicates how the view
maintenance policy is responsive to the data
warehouse workload. Fig. S5 depicts this
experiment results,

All view maintenance policies show good
service time except the deferred policy. The
deferred policy carries on the view
maintenance operation when a new data
warehouse query is issued and the query
answer will be fetched from the materialized
view after its maintenance. On the other
hand, other policies answer the data

warehouse query as soon as it comes from
the current materialized view data even it is
not fully refreshed and synchronized with the
underlying data sources.

o
3

Average Communication Cost

e o o
& 8 8
-

Percentage of network delay o
the total simulation time
o 1=
8 8

1 2 3 4 5 6 7 ) ] 10
Source Wransactions Interarrival ime (sec)

v immediale ——DAC(.1) ——DAC.5) DACP9)
-2 Peniodical(120) == 80)

d

Fig. 4. Average communication cost vs. source update
transactions workload.

£l Average Warehouse Query Service Time
2
=
iz 1
i >- |
e
§2 0
25 .
= .. = an
o L - A = LN T " LN 5 v LY - LY T LN . LS
1 2 3 4 5 6 7 8 9 10
Source Transactions Interarrival Time (sec)
‘ * immedate . DACQO.) ——DAC(0S) DAC09)
« Penodical (50) + Periodical (120) Pedodical (180) * Delemed (60)

Fig. 5. Average warehouse query service time vs. source
update transactions workload.

5.2. Varying warehouse workload

5.2. 1.view maintenance cost

The way we measure the view
maintenance cost is similar to the one
explained before. Fig. 6 depicts the results of
these simulation experiments.

All policies show almost the same
behavior except the deferred policy. The
reason behind the nearly constant cost of

Alexandria Engineering Journal. Vol. 40, No. 6, November 2001 831



H.H Aly et al. / View maintenance policy

each policy is that the view maintenance
cost is highly dependent on the source
workload.

The deferred policy depends on the data
warehouse workload and is insensitive to the
source workload. That is why the deferred
policy view maintenance cost decays as the
data warehouse workload decreases.

5.2.2. Communication cost

Fig. 7 depicts the results of the
simulation experiments responsible for
measuring the communication cost.

The results show a similar behavior to
the view maintenance cost. Since the rate of
communication messages is either constant
as in the case of the periodical or depends
on the source workload as in the DAC and
immediate policies.

The deferred policy communication cost is
proportional to the data warehouse workload.

Avgerage View Maintenance Cost

£

£

&

time to total simulation time
~ -
8 8

Avg percentage of view maintsnance

“ ° «© 0 100 130 180 190 20 50 80
Warehouss Query Inerarrival Time (sec)

A mmediate —o—DAC(0.1) —+—DAC(0.5) DAC(0.6)
L x Penodical (60 sec) ®  Periodical (120 sec) 1 Periodical (180 sec) *  delened

Fig. 6. Average view maintenance cost vs. warehouse
query workload.

5.3. Data freshness

The best view maintenance policy in
terms of data freshness is the one that keeps
up-to-date materialized views most of the
time. Measuring the data freshness of any
materialized view is not trivial.

Intuitively, the materialized view is
considered fresh when it is not different from
the underlying data sources.

To facilitate such measurement process,
we take the assumption that all source

updates affect the source data values
uniformly. In other words, each source
update transaction affects the data values
with the same amount.

One important metric is the count of
source update transactions that are not
reflected at the materialized view at the time
of answering an incoming data warehouse
query. These source update transactions are
called source-missed transactions.

At the time a new data warehouse query
is served, the source update transactions that
are stored at the source monitor are counted
and considered misses. This miss count is a
quantitative measure of the data freshness
read by the data warehouse query. As small
misses occur, the data warehouse query
reads fresher data.

0.10 Avarage Communication Cost
008
008
!! i \ L] .
ll 006 { = Lo L ] A . . .
Ef 005 =
R o B e e
§ o ¥
001 1
0.00 .

0 o n 100 130 160 190 no 250 280
Warehouse Guery Inerarsival Time (sec)

P—— —e—DACQR.1) e DACDS) DACOS) l
- Penodical{80 sec) 2 Periodical(120 sec) Penodical(180 sec) = Deferied | ‘

Fig. 7. Average communication cost vs. warehouse query
workload.

In these experiments, the average count
of misses is calculated for each data
warehouse query. A histogram is built to
classify the data warehouse queries according
to their miss count. Buckets of 20 misses are
created and the number of data warehouse
queries in each bucket is calculated. i

To unify the results, the count of data
warehouse queries in each bucket is divided
by the total number of queries occurs during
the whole simulation time.

Similarly, the miss buckets will be divided
by the total number of source transactions
occurs during the simulation experiments.
The data age of data read by a query = (count
of source transaction misses) / (total source
transactions)

832 Alexandria Engineering Journal. Vol. 40, No. 6, November 2001



H.H Aly et al. / View maintenance policy

By this histogram, we can get a family of
curves describing the probability density
function of the data freshness. Each curve is
created for specific data warehouse and
source workloads.

Fig. 8 depicts the probability density
function and Fig. 9 depicts the cumulative
density function (CDF) of the data freshness.
It can be noticed that as the curve is skewed
to the left this means a high probability for
data freshness. As the curve goes to the right,
the data freshness becomes poorer.

It is obvious that the immediate and the
deferred policies show a high probability of
reading fresh data. The DAC shows a good
behavior also. For the DAC (0.5) under the
given data source and warehouse
configuration, about 45% of warehouse
queries read fresh data and the majority,
about 54%, of queries read data with data
age of 0.23%.

We may have a family of curves like these
ones that describe the pattern of data
freshness. Using these curves, we can deduce
the probability of a warehouse query to read
a specific data freshness level under specific
workloads. Tuning the PR violation
probability means tuning the DAC predicate
conditions either loosing it to have low PR
violation probability or tightening it to have
high PR violation probability.

Data Freshness Probability Denisty Function

‘ o= DAC(0 1. Wn240. S1510)

| 1 s DAC(OS. Wa240. Sic10)

0] J o+ DAC(0.9. Wh240, Sic10)

\ e Immediaie(Wh 240, Sic10)
—w——Penodical(360 sec WB240. Sici0)
~& - Penodcal() 200 sac. Wn240. Sic10)/
Penodical() 80 ssc. Wh240. Sicil)

Warshouse Queries Percentage

ST
(O Sy T 1 Wegph S Sy
04 0ss 08 116 13 162 188 208 n

Data sging percentage

Fig. 8. Probability density function of the data freshness
(warehouse workload interarrival time = 240 sec, source
workload interarrival time = 10 sec).

Data Freshness Distribution

—— DAC(0.1, Wh240, Sic10)

& DAC(05, Wh240, Sic10)

o DAC(0S, Wh240, Sic10)
—x%— Immediale (Wh240, Sic10)”
—3—Periodical(360 sec, Wh240, Sic10)
—& - Periodical{1200 s ec, Wh240, Src10)
.00 .. Periodi sec, Wh240, S¢10)

Percentage

Cumulative Warehouse Query

000 023 046 069 093 116 139 162 185 208 231
Data Aging Percentage

Fig. 9. cumulative density function of the data freshness
(warehouse workload interarrival time = 240 sec, source
workload interarrival time = 10 sec).

6. Conclusions

Data warehouse applications have
specific requirements for data freshness of
the stored objects. We have indicated that
existing view maintenance policies cannot
fulfill user requirements regarding DW object
freshness with reasonable cost.

The proposed DAC policy allows the DW
users to control the view data aging. An
implementation scheme for the DAC policy is
proposed to track the aging constraints
efficiently using the PR(s) and warehouse
agents. This scheme ensures that the DAC
tracking process is divided between the
source and the data warehouse. A simulation
study is conducted and it is shown that the
DAC policy cost is intermediate and depends
on the user requirement of data freshness.
Other policies are extremes in the sense that
they deliver either up-to-date data with-
unacceptable cost or stale data with
minimum cost.

There are many issues need further
studying. For example, generalize the PR
derivation method by relaxing some of the
assumptions of the DAC expression to
accommodate a wider range of expressions.
Also, search for a proper assignment of
contribution factors to the sources. This
assignment optimizes the performance of the
proposed scheme.

Alexandria Engineering Journal. Vol. 40, No. 6, November 2001 833



H.H Aly et al. / View maintenance policy

Investigating the problem of keeping
mutual view consistency at the data
warehouse is also a problem for future
research. For example, we may have a view
that is defined on the same base tables like
another view. We should consider keeping the
two views consistent so that there is no lag
between them.

References

[1] L.S. Colby, A. Kawaguchi, D.F. Lieuwen,
[.S. Mumick, and K.A. Ross, “Supporting
Multiple View Maintenance Policies,” ACM
SIGMOD (1997).

[2] Y. Taha, A. Helal, and K. Ahmed, “Data
Warehousing: Usage, Architecture, and
Research Issues,” ISMM Microcomputer
Applications Journal, 16 (2) (1997).

(3] R. G. Bello, K. Dias, A. Dowring, J.
Feenan, J. Finnerty, W.D. Norcott, H.
Sun, A. Witkowski, and M. Ziauddin,
“Materialized Views in"  Oracle”
proceedings of the 24th VLDB conference,
New York, USA (1998).

[4] J. Cho and H. Garcia-Molina,
“Synchronizing a Database to Improve
Freshness,” Proceedings of 2000 ACM
International Conference on Management
of Data (SIGMOD), May (2000).

[5] B. Adelberg, B. Kao, and H. Garcia-
Molina, “Database Support for Efficiently
Maintaining Derived Data,” proceedings of
the international conference on Extending
Database Technology (EDBT) (1996).

[6] J. Hammar, H. Garcia-Molina, J. Widom,
W. Labio, and Y. Zhuge, “The Stanford
Data Warehousing Project,” IEEE Data
Engineering Bulletin, June (1995).

[7] J. Widom, “Research Problems in Data
Warehousing,” Proceedings of the ACM.
CIKM, November (1995).

[8] Dallan Quass, “Maintenance Expressions
for Views with Aggregation,” Stanford
Research Report (1996).

[9] A. Gupta, V. Harinarayan, and D. Quass,
“Generalized  Projections: A Powerful
Approach to Aggregation,” In Proceedings
of the 21st International Conference on
Very Large Databases, Zurich,
Switzerland, September 11-15 (1995).

(10] D. Agrawal, A. El Abaddi, A. Singh, and
T. Yarek, “Efficient View Maintenance at
Data Warehouses,” SIGMOD RECORD
(1997).

[11] M.A. Mohamed, “View Maintenance Policy
Using Data Aging in Data Warehouse”,
M.Sc. Thesis, Alexanria University,
September (2001).

[12] W. J. Labio, J. Yang, Y. Cui, H. Garcia-
Molina, and J. Widom, “Performance
Issues in  Incremental Warehouse
Maintenance,” Technical Report, Stanford
University (1999).

Received September 29, 2001
Accepted November 29, 2001

834 Alexandria Engineering Journal. Vol. 40, No. 6, November 2001



