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A new set of sufficient conditions for the Hurwitz and Schur stability of interval matrices is
established. These conditions are used to establish necessary and sufficient conditions for the
Hurwitz and Schur stability of interval matrices. A storage saving fast algorithm to check the
Hurwitz and Schur stability of interval matrices is introduced. The applicability of the

algorithm is demonstrated through examples.

pu—l LL,).: JL_;_I}&.LJ)-”‘ 0da Calaainl 15 _yidll Cld gheadl (5 )9l g ‘;)L*,)*Jl Qlﬂeg»,@&k;ﬁ@@‘
L 5 e a3l day pos g A0l Ayl Ll Cia ) oy 5 S50 G ghaaad (559800 5 5 g el OV TN 4y ) g pua g

Aaua 9

Car

Keywords: Robustness stability, Interval matrices, Hurwitz stability, Schur stability

1. Introduction

The stability of interval matrices has been
an active area of research for some time.
There is considerable literature on this topic
for both Hurwitz and Schur stability [1, 2-9].
Most of the existing results provide sufficient
conditions for the stability of interval matrices.
The very few results which offer necessary and
sufficient stability conditions are concerned
with low order cases, or involve criteria which
are not practical to check [6,10,11]. An
exception to this are the resultsin [7,12-14],
where necessary and sufficient conditions for
both Hurwitz and Schur stability are
established and an algorithm of testing is
provided.

An interval matrix is a real matrix in which
all elements are known only within certain
closed intervals. In mathematical terms, an

nxn interval matrix Af™ = [Bp,,Cp] is a set
of real matrices defined by

A = {A = [aij}biim <ag Scgihikis 1,...,n}.

The set A;™is described geometrically as
a hyperrectangle in the space R™*"of the

coefficients ajj. We say that a set A™Mis
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Hurwitz (Schur) stable if every Ae Af™ is
Hurwitz (Schur) stable. Associated with the set
A;™ we define the average matrix Vg, at the

center of the uncertainty hyperrectangle and
the deviation matrix D,, as

_|.m]_Cm +Bm _bm]_C =B
Vm-["u ]_T’ Dp, = (djj -“mz—m-
matrix A;™ can be
represented using the matrices Vy, and D, as
follows:

The interval

A™ =V +Em , [Em|<Dm.

Where [Ep,| denotes the modulus of the

perturbation matrix Ejand <denotes the

inequality of the corresponding elements of
matrices under consideration.

In this paper, we establish necessary and
sufficient conditions for both Hurwitz and
Schur stability. These conditions are based
on sufficient conditions introduced in section
2. Using the above necessary and sufficient
conditions we, in section 4, introduce an
algorithm to check the Hurwitz and Schur
stability of interval matrices. Efficiency of the
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proposed conditions and algorithm are
demonstrated through examples.

2. Sufficient conditions

We first establish sufficient conditions for
the Hurwitz stability and for the Schur
stability of interval matrices.

Lemma 1la: The interval matrix [Bl,Ci],for

some ieN is Hurwitz stable if the average
matrix V; is Hurwitz stable and M; has no

imaginary eigenvalues where

[ vi oy,
Pl T

Proof: The
represented in

interval matrix[B;,C;}can be
the form V; +E;
|Ej| < D; . Using the equality,

where

sI-(V; +E;)= (sI—-VO'lb—(;I—V‘)_lE‘],

it is clear that the Hurwitz stability of V; + E;

is satisfied if p[(sl -V )_lEi J\ 1 which is also
true if,

(CEAR A CRAR A

v o

< N(sx -V )‘1||m||ni||m <1

for all values of s on the right half of the
complex § —plane. Finally, recall that in the
book [15], Lemma 4.7), it is stated that if the
matrix M has no imaginary eigenvalues, then,

the infinity norm“(sl-v‘)_lu IDif, <1. This
@

completes the proof.

Next, we determine sufficient conditions
for Schur stability of interval matrices.
Lemma 1b: 'The interval matrix [B;,C;] for

some 1€N is Schur stable if the following are
satisfied
1. The average matrix V; is Schur stable.

2 Je-v) ] <
"91“
= v!—"D‘"“’zvi_T v‘—T has no
-Ipyf2vi™T vy T

eigenvalues on the unit circle.
Proof: The interval matrix [B;,C;] can be

represented in the form V; +E4

where|E;| < D;. Using the equality

21— (Y +E) = (@ - %) - (21 - v, ) LBy

it is clear that the Schur stability of V; + E; is

satisfied if pkzl-v‘)"lEi]<l for all 721
which is also true if

e-ve| <j@-w e, <1,

for all |zl >1. But if M has no eigenvalues on

the unit circle and "(I-—V‘ )'1"00 < ([15],

-
D],
Lemma 21.14), then "(zl V) 1“ B ”
This completes the proof.

3. Necessary and sufficient conditions :

In this section we capitalize on the results
of the former section to establish necessary
and sufficient conditions for the Hurwitz and
Schur stability of interval matrices.

Theorem la: An interval matrix [Bo,C,] is

Hurwitz stable if and only if there are finitely
many subinterval matrices
[Bi,Cl]c [Bo,Co], 1<i<k such that

[Bo’co] = iSI[Bi»Cl]

and for each 1<ic<k,[B;,C4]

stable in the sense of Lemma la.
Proof: Necessity; Because [B,,,co] is a

is Hurwitz

2
compact set in ®™ and every continuous
function on a compact set assumes it minimal
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value, there exists a positive constant n such

that '(sl—A)'lﬂ >n for all Ae[By,Co] on
[c2]

the right half of the s —plane. Since [Bg,C,]

is a hyperrectangle in R" , we can subdivide
it into a finite number of hyperrectangles
[Bi»cil 1<i<k, such that
k- 1

n < |(sI- Vi) H < )

-, <t
(i.e. the corresponding M for [Bi,Ci] has no
imaginary eigenvalues as in [15].
Sufficiency; Assume that for each
1<i<k, [Bi,Ci] is Hurwitz stable in the sense
and thus by [BO,C0]=

of Lemma 1la

k
,Ul[Bi’Ci]» the interval matrix [Bo,CO] is
=

Hurwitz stable. This completes the proof of the
theorem.

To establish necessary and sufficient
conditions for the Schur stability of an interval
matrix, we proceed similarly as in the case of
Hurwitz stability of such matrices.

Theorem 1b: An interval matrix [BO,CO] is

Schur stable if and only if there are finitely
many subinterval matrices [B;,Ci]c [Bo,Co)

k
1<i<k such that; [Bo,c°]=i31[3i,ci],

and for each 1<ic<Kk, [Bi,Ci] is Schur stable

in the sense of Lemma 1b.

The proof of Theorem 1b proceeds along
similar lines as in the proof of Theorem la. In
the interest of brevity, details are omitted.

Theorem la (Theorem 1b) enables us to
ascertain the Hurwitz (Schur) stability of an
interval matrix by subdividing this interval
into a sufficiently large number of subintervals
which are sufficiently small, and then, by
checking the Hurwitz (Schur) stability of each
subinterval, using Lemma la (Lemma 1b).
Lemma la (Lemma 1b) ensures that if the
interval matrix under consideration is Hurwitz
(Schur) stable, then we can always subdivide
the interval into sufficiently many subintervals
so that each subinterval is Hurwitz stable
(Schur stable). These observations are the
basis of the algorithm in the following section.

4. An algorithm

In this section we introduce an algorithm
which is based on Theorem la and 1b to test
the Hurwitz and Schur stability of interval
matrices. The algorithm is a slight
modification of the algorithm reported in [9].
However, efficiency of the necessary and
sufficient conditions provided, dramatically
reduces the number of subdivisions of the
interval matrix under study. The speed of
convergence is demonstrated using the same
two examples used in [12].

The algorithm can be summarized as
follows. For any given interval matrix
[Bo,Co], we first determine the Hurwitz

(Schur) stability of the average matrix Vg . If
Vo is not Hurwitz (Schur) stable, then the

algorithm terminates with the conclusion that
[Bo.Co] is not stable. If V, is Hurwitz

(Schur) stable, then the sufficient condition in
Lemma la (Lemma 1b) is checked with the
deviation matrix Dg. If the condition is

satisfied, then the interval matrix [Bo,Co] is
Hurwitz (Schur) stable. Otherwise, we divide
the interval [By,Co| into two equal

subintervals and repeat the above process for
each subinterval. The algorithm continues
unless each subinterval of [By,Co| is

determined to be Hurwitz (Schur) stable or at
least one of the subintervals of [Bg,Co]is

determined to be not Hurwitz (Schur) stable,
in the manner above.

The manner for dividing an interval matrix
[Bm,C m] into two equal subintervals L,

and Ry, is as follows. Let d;p™ = max{dijm}
L)

where D, = [d,'jm]= @—m—;—w >

the indices of the maximum element. Then
L, =[B,,C,Jand R(% = [B,C, ], where
Bg = Bmch =Cm,

C, = [Cijs]= {V‘Pm
m
cj

land p are

i=Lj=p
otherwise

and
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B —[bHQ]_ vip™ i=Lj=p
qQ "7y J™ b:M i1
ij otherwise

where Vg, = [vijm]= (Cm +Bm) ;Bm) i

The algorithm above is suitable for large
scale interval matrices because we only need
to compute the spectral radius of V, in the

case of Schur stability and the
eigenvalue of Vg,

largest
in the case of Hurwitz
stability.  Efficient algorithms for the
computation of spectral radius and largest
eigenvalue of a large scale matrix are
abandant in the leterature.

Example 1: Consider the interval matrix
[Bo,Co| where,

(-3 4 4 -1

-4 -4 -4 1
B, = and

-5 2 -5 -1
-1 0 1 -4

[— 2 B
-3 -griE g ..
—4 . GeEe S
0.1 1., 2uum=RE

This interval matrix has been determined
to be Hurwitz stable using the algorithm in
[12] where it required 19 cycles and 11,345
matrices (V;) to be checked. Using our

algorithm it only requires one cycle and 3
matrices (Vi) to be checked in order to
conclude the Hurwitz stability of the interval
matrix. This is indeed a noticeable saving in
terms of speed and storage.
Example 2: Consider the
[Bo,Co] where

interval matrix

-8 4 4 -6
-5 -69 -4 1
B, = and
-6 2 -87 -1
-34 O 4 -49

-2 7.7 6.8 -2
C, = — 10 28— 212 \
-4 55 -2 4

0O 3 56 -3

Using the above algorithm, we determine
that [BO,CO] is not Hurwitz stable. In fact, in

the cycle 6 (no. of subintervals in this level is |

2% = 64), we obtain the average matrix of one
of these subinterval

-6.5 5.85 5.4 -5
v,_| - -5675 -25 16

-5 375 -3675 275 |

-17 15 48 -395

which is not Hurwitz stable. This is exactly
the same result obtained in [12].

It is always the case that the proposed
algorithm and the one in [12] agree in their
conclusion if the interval matrix under study
is not Hurwitz (Schur) stable. Significant
improvement is obtained when the interval
matrix is Hurwitz or Schur stable.

5. Conclusions

New sufficient conditions for the Hurwitz
(Schur) stability on interval matrices are
established.  These conditions are used to
establish necessary and sufficient conditions
for the Hurwitz and Schur stability of interval
matrices. The algorithm introduced in [12] is
slightly modified in the light of the new
necessary and sufficient conditions. The
proposed algorithm  provides dramatic
improvement in terms of speed and storage
over the one of [12] in the case that the
interval matrix under study is Hurwitz (Schur)
stable. The applicability and efficiency of the
algorithm are demonstrated by means of two
examples.

Nomenclaturé

|A| is the modulus of the matrix A,

ice. |A| = fay|l.
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|A], is the infinity norm of the matrix A,

AT is the inverse and transpose of the
matrix A,

ola] is the spectral radius of the matrix
A,

I is the identity matrix of appropriate
dimension,

N is a non-negative integers,

R is a real space of dimension n ,

k
U [Bi,Ci] is the union of k interval matrices,
i=1

AR is an element matrix in the

subinterval matrix A;™ = [By,,Cm |
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