Modeling pressure transients in viscoelastic pipes
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In this study, a numerical model based on the Method of Characteristics (MOC) is developed
for modeling pressure transients in viscoelastic pipes. The model is capable of dealing with
unsteady friction and viscoelastic behavior of the pipe walls. These complex phenomena
cause strong distortion of the pressure waves traveling through fluids that may not be
predicted by the standard MOC. A universal model, developed by the authors, for unsteady
friction for both laminar and turbulent flows is used in the analysis. The viscoelastic behavior
of the pipe wall is modeled through a one element Kelvin-Voigt viscoelastic model that is in
good agreement with the experimental data. The viscoelastic effect was shown to be the
dominant damping factor of the pressure oscillations in transient flows through pipes
exhibiting a viscoelastic behavior. The analysis showed also that unsteady friction has a
minor effect on the damping of the pressure. transient in viscoelastic pipes while it has a
dominant damping effect in case of elastic pipes. An experimental setup was constructed to
provide reliable experimental data for transient flows in PVC (viscoelastic) pipes to verify the
numerical model. Eventually, the numerical model was experimentally verified to be capable
of accurately and efficiently reproducing the experimentally measured pressure oscillations in
viscoelastic pipes.
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1. Introduction

This study is concerned with studying the
pressure transient propagation within fluids
flowing in viscoelastic pipes. The viscoelastic
behavior of the pipe walls was studied
thoroughly to eliminate the discrepancy
between the experimental data and the results
predicted numerically using the standard
MOC.

The MOC is a general mathematical
technique that can be used for solving a pair
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of quasi-linear hyperbolic partial differential
equations. The equations describing the
pressure-transient wave propagation through
fluid flows in pipes belong to this family of
problems. This method was first proposed by
Rieman in 1860. By the early 1970s, the
method was established as the standard
method for transient analysis. Studies
covering the application of the MOC to
transient problems such as water hammer
problems developed continuously over the last
50 years.
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Watters [1] provided the detailed
theoretical basis for estimating the wave speed
in different types of pipes. Also, Wylie and
Streeter [2] summarized the various methods
of solution for the water hammer problem.
They stated that the MOC is considered to be
the standard numerical method by which
other methods may be judged, for accuracy
and efficiency, for pressure transients. Also,
Kaplan et al. [3] showed that transients
arising in long oil pipelines could be
adequately simulated by the MOC.

A noticeable distortion was observed
between the experimental data and the results
of the numerical models based on the
standard MOC. This problem attracted several
researchers to enhance the modeling of
unsteady friction together with accounting for
the additional damping due to viscoelastic
behavior of the pipe wall.

For example, Zielke [4] developed a
weighting-function model, for friction losses in
transient laminar pipe flow, based on an exact
analytical solution of laminar flow equations.
Later, Zielke’s model was greatly modified by
Trikha [5]. Also, Suzuki et al. [6] presented an
alternative approach for improving Zielke’s
weighting function model for laminar flow.
Vardy et al. [7, 8] developed a weighting
function model for transient turbulent pipe
friction at moderate Reynolds numbers (< 109)
in a manner similar to Zielke’s expression for
laminar flows. Another weighting-function
model for transient turbulent friction in
smooth pipes was developed by Vardy and
Brown [9].

Another unsteady-friction model was
developed by Brunone et al. [10, 11] for
turbulent flows in the form of an additional
term to the momentum equation. Brunone et
al. [12] introduced a modified characteristics
method where they applied the wusual
equations of the MOC and evaluated the new
added term in an explicit manner.

Recently, the above mentioned unsteady
friction models were tested by Warda et al.
[13] for both laminar and turbulent flow cases.
They concluded that none of the available
models could be wused accurately and
efficiently for both laminar and turbulent
flows. A universal model was developed by
introducing a modification to Vardy et al.’s
model originally developed for turbulent flow.

The modified model was experimentally
verified [13] to be capable of modeling
unsteady friction in elastic pipes while some
differences were observed for viscoelastic
pipes.

The methods of studying viscoelastic
effects may be divided into two categories; one
is based on the MOC while the other is based
on frequency-response method. According to
Suo and Wylie [14], Rieutord and Blanchard
(1979) applied the MOC to study the effect of
the viscoelastic behavior of the pipe walls on
the transients. Gally, Guney and Rieutord
(1979) compared the calculated water hammer
in polyethylene pipes with laboratory test
data, showing a good agreement between
numerical and experimental results. Guney
[15] addressed the problem of water hammer
created by closing a valve at the downstream
end of a viscoelastic pipe. He proposed a
modified MOC model that takes into account
the effects of time-varying diameter and
thickness. However, the model does not
include any modeling for unsteady friction in
case of turbulent flow and it was not verified
against turbulent flow experimental data.

Pezzinga and Scandura [16] presented a
theoretical and experimental study on the
reduction of unsteady flow oscillations by
using additional pipes of high-density
polyethylene (HDPE), inserted at the upstream
end of the pipeline, in a pumping installation.
The mechanical behavior of the HDPE is
described by both a linear elastic model and a
Kelvin-Voigt viscoelastic model. The results of
the mathematical model were in good
agreement with the experimental data, even
with only one Kelvin-Voigt element.

Warda et al. [13] studied the water
hammer problem in elastic and viscoelastic
pipes in the presence of unsteady friction.
They used a universal model for unsteady
friction that can be used for both laminar and
turbulent flows. The model gave excellent
results with elastic pipes. However, there was
a noticeable difference between the results of
the model and the experimental measure-
ments in the case of PVC pipes. Therefore, the
numerical model has to be modified to account
for the viscoelastic effects of the pipe wall.

From the previous review, it is noted that
no modified MOC has been verified
experimentally to be capable of handling water
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hammer problems in viscoelastic (PVC) pipes
in the presence of unsteady friction. Therefore,
the model developed in this study has to
overcome the drawbacks of previous studies.
To achieve this goal, the following steps are
performed:

1) An unsteady friction model capable of
accurately simulating unsteady friction for
laminar and turbulent flows is used in the
analysis.

2) The MOC is modified to account for the
viscoelastic effects of the pipe wall.

3) Extensive experimental work was
performed to produce reliable experimental
data for testing and verifying the numerical
model.

2. Experimental analysis
2.1. Experimental setup

An experimental setup was constructed in
the Fluid Mechanics Laboratory at the Faculty
of Engineering, Alexandria University for
providing reliable experimental data for
verifying the numerical model. The setup is
schematically shown in fig. 1. The setup
consists of the following main parts:

1) A constant-head tank of 9-cubic-meter-
capacity installed on the roof of the laboratory.
The tank holds a maximum head of 11 meters
above the test-pipe centerline. A centrifugal
pump continuously feeds the tank with water
to maintain a constant free-surface level. The
tank is connected via a 10-cm-diameter

vertical pipe to a pressurized tank (ground
tank) of 0.2 cubic meters capacity.

2) A PVC pipe of 25.4-mm inside diameter,
4.2-mm thickness and 25.6-m. length. The
water flow rate through the PVC pipe could be
controlled using a gate valve. The flow rate is
measured using a calibrated tank and a
stopwatch.

3) A normally closed solenoid-operated valve
with a closure time of 0.08 seconds.

4) Measuring, monitoring and recording
equipment that include: two piezoelectric
pressure transducers mounted on the PVC
pipe at locations 0.03 m and 15.3 m upstream
of the solenoid valve. Each transducer is
connected to a one-channel charge amplifier
(Type 5011). The charge amplifier is
responsible for converting the electric charge
produced by the piezoelectric transducer 1nto
a proportional voltage signal.

The output signal from the charge amplifier is
transmitted to a LeCroy (Type 6810) waveform
recorder that converts analog waveforms into
digital data. The signal recorded by the
waveform recorder is then transferred to a
personal computer through a GPIB interface
card. Software packages are then used to
display and analyze the recorded pressure
data.

2.2. Expenimental test cases

The test cases performed using a test pipe
of a length of 25.6 m, an inside diameters of
0.0254 m and a wall thickness of 0.0042 m,
are summarized in the following table.

I ;

i
ikt 7.
H h P.C.
l Charge amplifiers
Solenoid valve D H
Gate valve P ressure
fPé transducer
S

Calibrated tank
o

PVC Pipe
2 R
Ground tank

recorder

7

(e e
L

<=

: Pressure §
¢ transducer

Fig. 1. Diagrammatic sketch of the experimental setup.
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Test case no. 1 2 3 4 5
Steady state velocity, Vo (m/s) 0.062 0.233 0.285 2.2695 0.0235
Reynolds Number, Ry 1575 5918 7239 57645 597
Coefficient of friction, f 0.04 0.035 0.032 0.03 0.107
In test cases (1, 2, 3, and 4) measurements AL
were taken at the solenoid valve only. In test 120
case (5) measurements were taken at both the i =
valve and a point 15.3-m upstream of the _ b / T
valve. E % AGN \
L) 4 \ |
S 60 / :
2.3. Measurement of the wave speed = . ,[ = N -
B £N -
2 J N
The wave speed was measured by initiating E 2 ,/ L a1
a transient and recording two pressure signals = A - -7 N
N 0 0.03 m upstream of the valve PO
through the two transducers and measuring
the differential time between the start of the -20 e e .
transient in both signals. By knowing the 40 s s s st Pl T——T— |
distance between the two transducers, the .

wave speed “a” (The ratio of distance between
the two transducers to the differential time
between the start of the transient in both
signals) could be calculated

The previous procedure was applied to a
laminar flow case with a velocity of 0.071 m/s
(Rv=1803), and a turbulent flow case with a
Reynolds number of 57645, as shown in figs.
2 and 3. In both cases the differential time
between the two signals was found as 0.0295
seconds, which means a wave speed of 518
m/s.

I

A k\‘ -
10 \

Pressure Head (m)

0.03 m upstream of the valve \

15.3 m upstream of the valve

60 80 100 120 140 160 180 200
Time (milli-second)

Fig. 2 Wave speed measurement for laminar flow data, Ry
= 1803.

100 120 140 160 180 200 220 240 260
Time (milli-second)

Fig. 3. Wave speed measurement from turbulent flow
data, Ry = 57645.

3. Standard method of characteristics
The governing equations are

Watters [1] as follows:
Continuity equation:

given in

sielifp a0 (1)
p dt s I

Euler (Momentum) Equation:

W 1P, de £y o @
dt p0os ds 2D
Introducing () as a linear scale factor, the

governing equations may be combined in one
equation as follows:

i lQ+g-q-z-+—f-—V|V| 0.
dt pos ds 2D P

)

By expanding the terms (dV/dt) and
(dP/dt) down into their components and
regrouping terms, eq. (3) becomes:
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(A—a—!+(kV+a2 a—v)+ lg_l’_+(!+l)6_P
ot os pot p p Os

dz Af
WL TS 4
+Ag o+ o WV ()

Some manipulations are then performed to
this equation to replace the original two partial
differential equations with two ordinary
differential equations as follows:

v  gdH g e f

+-Lvv| =0,
dt adt a ds 2D
for gs—=V+a, (5)
dt
and,

ﬂ_g_gi{_+_g_v_d£+_f.VIV|=o,
dt adt a ds 2D
ds

for —
dt

V-a (6)

Where the pressure (P) was replaced by its
equivalent term pg(H-z).

Eq. (5) is usually known as the C*
characteristic equation while eq. (6) is known
as the C- characteristic equation. Eqs. (5) and
(6) can now be expressed in a finite difference
form, as follows:

The C* equation becomes

ot 14 Vi [V
Vp-VL g Hp HL_§VL£+__LM=O,(7)
At a At a ds 2D

The C- equation becomes

Vo-Vp _gHp-Hp gy dz NRIVRI_, g
At a At a ds 2D

To apply the finite difference numerical
technique, the pipe has to be divided into a
number of sections. Grid points along the s-
axis represent points that are spaced by (As)
along the pipe.

4. Viscoelastic materials
Viscoelasticity describes a property of the

material that simultaneously exhibits a
combination of viscous and elastic behaviors.

When a sudden load is applied to a
viscoelastic material, there is an initial rapid
extension and the material continues to
extend with time; this phenomena is well
known as creep. When the load is removed,
there is an initial rapid contraction that
quickly slows down. Conversely, the stress
required to maintain constant strain decreases
with time. This is known as stress relaxation.

A common approach to modeling
viscoelastic behavior is by means of combining
elements representing ideal elastic behavior
and ideal viscous behavior. This can be done
by using springs representing ideal elastic
properties and a dashpot representing ideal
viscous properties.

4.1. Modeling of pipes exhibiting a linear
viscaelastic behavior

If the pipe material exhibits a linear
viscoelastic behavior, then a Kelvin-Voigt
model [8] can be adopted to simulate this
phenomenon. A  Kelvin-Voigt model is
represented by a series of elements, the first
element is a simple spring that represents the
instantaneous strain component and the other
clements comprise a spring combined in
parallel with a viscous damping mechanism
(dash-pot) and represent the retarded strain
component.

The total strain can be expressed by
summing the instantaneous and retarded
strain components:

£=¢,+€. 9)

Where, ¢ is the strain in pipe wall, € is the
instantaneous strain, and er is the retarded
strain. Using a Kelvin-Voigt model with (n)
elements, the retarded strain could be
expressed as:

D (10)
il

Where, g; is the strain of the " Kelvin-Voigt
element.

The instantaneous strain component can
be expressed as:
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== (11)

o

Where, E, is the Modulus of Elasticity for the
instantaneous strain, and o is the stress at
the pipe wall. The retarded strain component
can be obtained from the following differential
equation:

de
c=EJej+njd—l’. (12)

Where, 7, is the viscosity of the generic

element and E; is the modulus of elasticity of
the generic element. This equation can be
written in the following equivalent form:

de; = Jilhige e
& " E e (12

J J

T k .
Where, 1 j= —L is the retardation time of
J
the fh Kelvin-Voigt element.
When the pipe is subjected to the internal
pressure (p), one can get the following

equations:

€] = _pDL 2 and (14)
2icEa

de;

o 521 -P—%—ej- ' (15)

dt Tj QCEj

Where, D is the pipe diameter, e is the pipe
wall thickness and A is the constraint
coefficient in the wave-speed formula.

The introduction of the linear viscoelastic
behavior of the pipe walls modifies only the
continuity equation.

4.2. The modified continuity equation

A control volume coinciding with the
interior of the pipe and of length (ds), as
shown in fig. 4 is considered for deriving the
modified continuity equation.

Conservation of mass gives:

0 0
PQ (pQ T (pQ)dSJ = E(pAdS),
which is simplified to the following form:

- (pQMs = 2 (pAds).

Fig. 4. Control volume for deriving the continuity equation

The ends of the control volume are allowed
to move longitudinally with the pipe as it
stretches. This concept is employed because
the pipe stretching affects the available
storage volume.

Now, by expanding the parentheses the
equation becomes:

-p%ds—Qngs = pAgt—(ds)

op

OA
+pds — + Ads —
pds 5 ot

Regrouping and dividing by (pAds) give,
l(.a_p +V a_p) e
p\ ot Os

Since (ds) is fixed to the pipe walls, therefore it
varies only with time then the continuity
equation could be further simplified to:

10A 1Q 132

—(ds) =
Aot AJds dsot

Tdo il O, 1 90l S asl0. (16)
pdt Aot Ads dsdt
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To express the density and area terms in
terms of pressure, the Bulk Modulus of

Elasticity of the fluid, K = ap , is introduced

dp

p
in the form:
ldp_1dP i
pdt K dt

To develop an expression for (0A/dt), in terms
of pressure, in eq. (16), consider the stretching
of the cross-sectional area (A), where

A = %D 2 1+ 2)2 , differentiating w.r.t.

time gives:

A = oe

— ==DElase

a -2 %% (18)

The modification of the viscoelastic

behavior of the pipe wall will now be
introduced through the temporal partial
derivative of the circumferential strain by
substituting eq. (9) into eq. (18) as follows:

oA _m 2 ?‘ﬂﬁf&]_
o 2 ot ot

And from eq. (13), one gets:

By assuming that (1+¢€)=1 and dividing by
the cross-sectional area (A), one gets:

L 2[ 2 Q#ae—'?). (19)

2¢E, ot ot

As stated by Watters [1], the restraint type
would not affect the end result for the
continuity equation. Wylie and Streeter (2]
stated that the type of restraint is taken into
account only through the factor (A) in the wave
speed formula.

Hence, when evaluating the term

ds dt

case of (deong = 0), where (ewng) is the
longitudinal strain could be applied,

(Lg—(ds)) in eq. (16), the simple restraint

d(dS) = delong dS = 0,

1 d
2o g @s)=0. (20)

Now, by substituting egs. (17), (19), and (20)
into eq. (16), the following equation. is
obtained:

AL Sl BB
Kdt eE, ot ot A 0s

Neglecting the spatial derivative for the
pressure with respect to the temporal
derivative, the equation becomes:

_1_+ Dk gl?.+2%.+la_Q_=o_
K eE, /ot ot A 0Os

Taking into consideration the equation for the
wave speed given by Watters [1], in the form:

- i R , the continuity equation is
K eE, pa?

reduced to the following form:

so2%R 1 g 21)
pa2 ot ot A Os

By replacing the pressure term (P) with the
piezometric head (H) and utilizing eq. (9), eq.
(21) becomes:

oH
-+

2 2 n 5.
3__52+2a_z._1=o_
ot  gA s

g &

An equivalent form could be reached
following the above procedure if the velocity (V)
is considered to be the dependent variable
instead of the flow rate (Q),
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For simplicity, a Kelvin-Voigt model with
only one element will be assumed and the
continuity equation will take the following
form:

g 2
dH a® oV ,a"dg . (22)
dt g Os g dt

From eq. (14) and by substituting a value of
j=1 for the Kelvin-Voigt element, the equation
takes the following form:

de; _ 1 ( PDA Y (23)
dt T 2€E1

By substituting from eq. (23) into eq. (22), one
gets:

2 2
dH a”ov ,a” 1| PDA -g1|=0, (24)
dt g Os g 71\ 2eE;
Hence, an additional term appeared in the

continuity equation to account for the
viscoelastic behavior of the pipe walls as given
in eq. (24).

4.3. The modified MOC model

When eq. (24) is solved with the
momentum equation by the method of
characteristics, following the same procedure
in section (3), the following characteristic
equations are obtained in which the dominant
effect of this viscoelastic nature is clearly
recognized.

Bty 82 0 Al
a ds

. (—-———PgHLD" 3 alLt'At] s 0. (25)
1] 2eE,

C:Vp-Vy +§(Hp ~H)-

At dz
C: Vp = VR —--E-(Hp -—HR)+§£—VR =

oL 2aAt ((pgHRDA
26E1

elR“A‘J =0. (26)
1

The values of the retarded strain €, ' and

€z could be computed at each time step from
the following equations, obtained from eq. (23):

et -t A 1 [ pgH DA t-At
e e e e e € o (27)
dt T\ 2eE;

and

- _1 [ngRDK _ elRt-At] . (28)

dt 1 2eE;

It was shown by Warda et Al. [7] that the
unsteady friction terms (hg and hg) are
accurately modeled by Vardy et al.’s friction
model. Vardy et al.’s model is suitable for
turbulent flows, while an adjustment was
introduced for laminar flows. The equations
for Vardy et al.’s friction model are given by:

Vi (i, KAt‘VL (i, KAtﬂ

hy (KAt) =

4gR
o
gR?
K
D VLG K - I+ 1)At) - VL ((, K - J)At)]
J=1
W[(J = —1—)At], (29)
2
_ VR, KAt VR (i, KAt 4v
hir(KAt) = o + 2
K
D [VR(l, K - J + 1)a) - VR (i, K - J)At)]
J=1
WHJ = %)At], and (30)
— 1 e *
W(t)=W(r) = | —— 7%/ € . 31
(t)=W(x) ( 5 JE} (31)
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Where,
v - . .
T= Ft = dimensionless time and

7.41

C' is the shear decay coefficient = — (32)
RN
The exponent, b is given by:
14.3
N

For laminar flow, the value of the shear
decay coefficient takes a constant value,
irrespective of Reynolds Number, Warda et al
[7] developed a suitable value as:

C' = 0.0215. (34)

By solving the set of equations, from (25)
to (34), the MOC model can deal with
unsteady friction and the viscoelastic behavior
of the pipe walls in transient problems.

Next, the numerical model will be verified
against laminar and turbulent flow
experimental data to examine its efficiency
and accuracy in simulating the pressure
transients in viscoelastic pipes.

4.4. Evaluation of the constants for the
viscoelastic model

Due to the scarcity of data concerning the
viscoelastic behavior of PVC pipes, the data
reported by Guney [15] for low-density
polyethylene is used as a starting point in the
analysis and is afterwards fine tuned to be
adjusted for PVC material. The creep
compliance curve for low-density polyethylene
(LDPE) at 25°C, reported by Guney [15], is
shown in fig. 5.

To apply a Kelvin-Voigt Model, the creep
compliance curve must be fitted to eq. (28)
given by Guney [15] in the form:

J(t)=J0+zn:Jj(1-e"“i). (35)
j=1

Where: JO:EL’ and Jj:Ei'
o J

For a one-element Kelvin-Voigt Model, eq..
(35) could be simplified to:

Ity=1J,+3,[1-¢"). (36)
SE-9
"
/F’——,
4E-9 // A

“

3E-9 /

l

J(t) (1/Pascal)

— P S - Qe

2E-9

0 1 2 3 4 5
Time (seconds)

Fig. 5. Creep compliance curve for LDPE at 25°C.

Therefore, by fitting the creep compliance
curve using eq. (36), the constants for the
viscoelastic model (E;=1/J,, 11) are evaluated.
The curve fitting procedure was carried out
using a nonlinear correction model. The
following results were obtained: E;=689 MPa,
and 11= 0.74 seconds.

These preliminary values are used to
simulate a laminar flow case (Rny = 1575). A
comparison between the experimental data for
this case and the results of the simulation is
shown in fig. 6.

From fig. 6, it is noted that, there is no
phase shift between the experimental and
numerical results, therefore no adjustment is
needed for the value of 1,. Fine tuning is
needed for the value of E; to adjust the values
of the pressure peaks. A value of E,=1350 MPa
provided the best simulation and this is shown
in fig. 7.

Therefore, the viscoelastic parameters for
the PVC material of the pipe used in the
measurements were estimated to be: E;=1350
MPa, and 1= 0.74 seconds.
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5. Verification of the viscoelastic model
5.1. Verification of the model for laminar flow

From fig. 7, the viscoelastic model is
shown to be capable of accurately modeling
transient laminar pipe flow.

5.2. Verification of the model for turbulent flow

The model is further verified against
turbulent flow cases. A turbulent flow case of
(Ry = 5918) is simulated using the model and
the results of the simulation are shown in fig.
8.

Hence, from figs. 7 and 8, it is concluded
that a one-element Kelvin-Voigt linear
viscoelastic model is capable of predicting the
viscoelastic behavior of the pipe walls. Also,
when the MOC model is modified by
implementing both the viscoelastic model and
the unsteady friction model, the pressure
transient is effectively simulated for both
laminar and turbulent flows.

5.3. Verification at a point along the pipe other
than at the valve

In this section, the model is used to
simulate the pressure transient at a point 15.3
m upstream of the solenoid valve. This
simulation demonstrates the capability of the
model in predicting the pressure transient at
other points along the pipe. A laminar flow
case of (Ry = 597) is considered in this
simulation. Results of the simulation are
shown in fig. 9.

Fig 9 shows that the model is also capable
of accurately simulating the pressure
transient at other points along the pipe other
than the point directly upstream of the valve.

5.4. Comparison between the effects of the pipe
viscoelasticity and the unsteady friction on the
damping of pressure oscillations

Fig. 10 shows the results of the simulation
of the laminar flow case (Ry = 1575). The
simulation was performed once with the
standard MOC model, then with the unsteady
friction model only, then with the unsteady

friction model accompanied by the viscoelastic
model. From fig. 10, it is shown that the
damping in a pipe exhibiting a viscoelastic
behavior is mainly due to the viscoelasticity of
the pipe while unsteady friction has a minor
effect on the overall damping of the pressure
transient.

The previous simulation is repeated for a
turbulent flow case (Ry=5918). Results of the
simulation are shown in fig. 11. Fig 11 shows
that, also for turbulent flows, the damping in
a pipe exhibiting a viscoelastic behavior is
mainly due to the viscoelasticity of the pipe.

18 T T T Y Y T T T
Experimental
L = = = Viscoelastic model + dy friction model
e
E 1 1
o -
o
P A A
= -— A S r~1—
£ [VAVAYAVAVAVAY,
[~ Vi V[V
8 —
— ,T, -
6 v
0 500 1000 1500 2000 2500

Time (milli-second)

Fig. 6. Viscoelastic model using preliminary values from
LDPE, Rn = 1575.
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Fig. 7. Viscoelastic model using adjusted values for PVC.
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Fig. 8. Verification of the viscoelastic model for turbulent
flows.

13.0 - Y . T T - =

Experimental

= = = Viscoelastic model + unsteady friction model

Pressure Head (m)

0 200 400 600 800
Time (milli-second)

Fig. 9. Verification of the viscoelastic model at a point
15.3m upstream of the solenoid valve, Ry = 597.
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Fig.10. Comparison between the pipe viscoelasticity
damping effect and the unsteady friction damping effect.
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Fig. 11. Comparison hetween the pipe viscoelasticity
damping effect and the unsteady friction damping effect

_for a turbulent flow case, Ry = 5918.

6. Conclusions

A modified numerical model based on the
MOC was developed for modeling pressure
transients in a viscoelastic pipeline. The model
is capable of dealing with unsteady friction
and the viscoelastic behavior of the pipe walls.
1) A one-element Kelvin-Voigt linear
viscoelastic model is proved to be capable of
accurately predicting the viscoelastic behavior
of PVC (plastic) pipes.

2) The results show that the pipe

viscoelasticity of viscoelastic pipes is the main
cause for the damping of the pressure
transient, while unsteady friction has a minor
effect on the damping of the pressure
transient. This result was obtained for both
laminar and turbulent flows.

3) The numerical model is proved to be

capable of simulating the pressure transients
at points along the pipe other than the point
directly upstream of the valve. _

4) An efficient method was developed to

estimate values for the viscoelastic parameters
of PVC, therefore enabling a simple and direct
application of the viscoelastic model for any
case involving PVC pipes.

Nomenclature
A is the cross-sectional area of the flow,
m2,

is the wave speed in a fluid in an
elastic conduit, m/s,

Alexandria Engineering Journal. Vol. 40, No. 6, November 2001 807



H.A. Warda et al. / Modeling pressure transients

D is the pipe internal diameter, m,

E is the young's Modulus of Elasticity for
the pipe material, N/m?, '

E; is the modulus of Elasticity of the ph
Kelvin-Voigt element, N/m?2,

E is the pipe wall thickness, m,

f is the darcy-Weisbach friction factor,

g is the Gravitational acceleration, m/s?,

H is the local pressure head, m,

Hy, is the barometric pressure head, m,

Ho is the head of the upstream reservoir,
m,

hit) is the riction head loss per unit length
. at time (t), m,

N is the number of pipe segments,

P is the pressure, N/m?2,

Q is the volume flow rate, m3/s,

R is the pipe radius, m,

RN is the reynolds number, VD/v,

t is the time, s,

\% is the Mean velocity of the flow, m/s,

Vo is the Steady state mean velocity of the
flow, m/s,

s is the Distance along the pipe, m,

z is the node elevation from a reference
level, m,

At is the Time step size used in the MOC
solution,

A is the Constraint coefficient in the

wave speed formula and also used as
the multiplier in the Solution by the

MOC,

n, is the viscosity of the generic Kelvin-
Voigt element, Ns/m?2,

v is the kinematic viscosity of the fluid,
m?/s,

P is the Fluid density, kg/m3 ,

T is the Dimensionless time in the

\%
unsteady friction models, (T = Ft it

and
_ 1, is the retardation time of the jth

4

J

Kelvin-Voigt element, s ,
Subscripts

L is the Downstream conditions at time (t-At)
used in the C- characteristic equation,

P is the Node to be considered at time (t),
and

R is the Upstream conditions at time (t-At)
used in the C* characteristic equation.
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