Freedom in multiple-scale analysis of undamped free
harmonic oscillators with nonlinear perturbations

Salwa M. Elkhoga

Dept. of Eng. Mathematics and Physics, Faculty of Eng., Alexandria University, Alexandria 21544, Egypt

In this work, some choices of the free amplitudes that result in the solution of the
undamped free anharmonic oscillator (Duffing’s equation) obtained by the Method of
Multiple Scales (MMS) are investigated. The equations that represent the solvability
condition of each order of the solution up to third order are derived. From the successive
analysis of the solvability conditions, the free amplitudes of each order are found to have the
same dependence on the time scales as the fundamental one. Also the free amplitudes of
each order of the solution are found to act the same role of the free resonant functions
introduced in each order when the Normal Form Method (NFM) is used. The solutions
resulting from some choices of the free amplitudes and their counterparts when the NFM is
used are presented. Concluding remarks concerning the two methods are given.
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1. Introduction

Nonlinear ordinary differential equations
model many important, interesting and
potentially dangerous phenomena. They are
encountered in almost all areas of quantitative
sciences; like celestial mechanics, sound,
mechanical and electrical vibrations. They also
arose in the study of biological systems, the
analysis of chemical reactions and
meteorology [1-3]. The classical anharmonic
oscillator (Duffing’s equation) is a well-known
nonlinear vibration equation. In [4] modeled a
buckled beam when only one mode of
vibration is considered. It was perturbed in [5]
by a white noise and a method based on an
extension of Wedig’s algorithm was used for
computing its top Lyapunov exponent. Also it
has been used as an excellent laboratory for
the study of the properties of several methods
of solution of nonlinear differential equations.
Within the framework of the NFM, it has been
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used in [6] for the study of the freedom of
choice of the zero-order term in the
perturbative analysis of nonlinear harmonic
oscillators, in [7] for the study of the effect of
damping on some possible choice of the zero-
order solution and in [8] to study the effect of
the order of damping on the zero-order
solution. In [9], the Duffing’s equation was
used as a demonstration to show that the
minimum NFM leads to a reduction of the
secular error in approximations to nonlinearly
perturbed harmonic oscillators.

Another well-known method for solving
physical problems having a small parameter is
the MMS [10-12]. In fact, it is so general that
the well-known perturbations methods such
as WKB theory and boundary layer theory may
be viewed as special cases of the MMS [13].
Within the framework of the MMS, the
Duffing’s equation was used [14] to show how
the MMS prevents the secular terms from
appearing in the pertubative expansion of the
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solution. Also in [14] the ideas of the MMS
were generalized to get the solution of the
anharmonic quantum oscillator (quantum
version of the Duffing’s equation). In [15], the
MMS was used to study combination
resonance’s in the response of the Duffing’s
oscillator to three-frequency excitations.

In this work we try to find how the freedom
of choice of the zero-order solution of the
Duffing’s equation is manifested when the
MMS is used. This problem has been studied
within the framework of the NFM in [6-9]. In
section 2, the use of the MMS for solving the
undapmed Duffing’s equation through second
order is shown. In this section, the solvability
. condition of each order of the solution up to
the third order are analysed. The free
amplitudes of the first and second order are
introduced. It is proved that the variation of
the free amplitudes with the first three time
scales can be considered to be the same as the
variation of the principle amplitude with them.
In section 3, the final results of the solution
are presented. In section 4, the results are
treated in such a way that shows the effects of
the free amplitudes on the solution. The free
coefficients that correspond to some choices
that has been investigated in [6-9] by the NFM
are also presented in the same section.
Concluding remarks concerning the use of the
MMS and the NFM for solving the undamped
Duffing’s equation are given in section 5.

2. The MMS for the duffing’s equation

The well-known Duffing’s equation is given
by

X+x+ex3=0 , ek« (1)
a dot means differention with respect to the
time. The positivity of € ensures that there are
no runaway modes and the exact solution
remains bounded for all t [13]. The initial
conditions are

x(0)=0 (2)

x(0)=x1 ,

The MMS assumes a priori, the exsistence
of many time-scales 1, = e”t, n=0, 1, 2, ...in

the problem, which can be treated as
independent variables. A perturbative solution
of eq. (1) is represented in the form;

X = Xo(%o, T1, T2, +..-. )+exi (1o, 11, T2, ..... )
+ €2x3 (to, T1, T2, -..-. ) + O(e3) (3)

using the chain rule and the identity %—t’l:s“ |

eq. (1) can be converted into a sequence of

partial differential equations for the dependent

variables xo, X, .... i
Through 0(e3), the first four equations are

Dixo+ X =0 (4)
D x: + x1 = - 2 DoDixo - X;. (5)

D} x2+ x2 = - (D} + 2 DoD2) xo - 2 DoD2x1

-3 X(z) X1 (6)
and

D x3+ x3= -(2DoD3 + 2D1D2) o - (2DoD2 + D?)x,

-2DgD2x2- (3X2x2 + 3x%0X2)  (7)
where;

a
Pan dTn

The zero-order solution xo of eq. (4) can be
written in the form;

Xp = %exp (-i70) + c.c, (8)

where the  principle amplitude A is
independent of 1t and depends on all higher
time scales 11, T, ..... and c.c denotes the
complex conjugation of the preceding terms on
the same side of the equation.

The complex notation of xo as given by eq.
(8) yields the results in a more compact form
than the trigonometric notation used in [11-
14).

Substituting from eq. (8) in R.H.S. of eq.
(5) and putting the two secular terms (terms
multiplied by exp (- i 10) and exp ( i 10)) equal to
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zero one gets the O(€) solvability condition and
its complex conjugate given by;

D1A=——z—i(A AJA . )

What remains of eq. (5) is solved to give for x;
the value

B .« AR :
X =Eexp(_lto )+6—4€Xp(—‘31‘l'0 )+C.C ’ ( 10)

where B is independent of 1o and depends on
all higher time scales 7112,713 ...., and it isa
free amplitude because it can be eliminated by
regarding it as included in the zero-order
solution xp given by eq. (8). Its role will be
shown in section 4.

Substituting from egs. (8-10)in R.H.S. of
eq. (6) and putting the two secular terms equal
to zero results in the O(€?) solvability condition
and its complex conjugate given by

DlB+D2A———1(AA)B—1A2 2561(AA)2 (11)

As before,
give for x2

the remaining of eq. (6) is solved to

xp=Cexptitg) - A2 [72(A8r3}exp(—3iro)

S
+
2048

exp(-Sitg )+c.c, (12)

where E is a new free amplitude independent
of 1. The only convenient procedure of
analysis of eq. (11) is to assume that the
variation of B with 1, is the same as that of A,
i.e

DB =—§i(A Al il (13)
From eq. (11), D2A becomes;

DoA=i| o> (AA)Q—%(AE_SH_\B) A, (14)

256

From eqgs. (8-10) and (12-14), the O0(e3)
solvability condition can be obtained from the
R.H.S. of eq. (7) as before,which is

123 . 73 2

D,E+D,B+D3A = 81921(AA) A (AA) B
1(AA)A23 zu\? i(AAJE
_Zi(BB)A—giABQ L (15)

As before, the variation of E and B with 1; and
T2, respectively, are assumed for convenience
to be the same as that of A. i.e

D,E-= —%i(A AE, (16)

and
5 e
D2B 1[256 (AA) (AB+AB) B . (17)

Consequently one gets from eq. (15);

12
8192
15

ST A)(AB+AB)

e A)3+3(A E+AE+BB)

D3A=-i A, (18)

for the variation of A with 13.
3. Results
From egs. (9,14 and 18), through O(e€?) the

variation of the principal amplitude A with the
time scales t1, 12 and 13 can be such that

A#A{exp[—gi(A;;)‘tlﬂ[—z—sg(AA) (AESH_\B)}Q i
223 AAP (AE:+1—\E+BI—3)
| 8192

N t3+0(e?)} (19)
-15 AA)AB+AB)
128
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where |A| is independent of the three time
scales 11, T2, t3from egs. (9,13-14, 16-18) and

the equality AA = lAz,
above bracket multiplied by T;is proved to be
independent of 7, i = 1, 2,3 and hence the
variation of A with the time scalesti,i1=1, 2,
3 as given by eq. (19) satisfies eqs (9 14 and
18).

Proceeding to the higher solvability
conditions of O(e4), O(e9d), ... we can similarly
prove that the variation of the free amplitudes
B and E with the time scales 11, T2, 13 is

expressed as in eq. (19) except that |A] is

each quantity in the

replaced by |B| and IEI , respectively.

Substituting from eq. (19) in eqgs. (8,10-12),
the zero-order solution xo, the first-order
solution x; and the second-order solution x;
become;

X0 = |A| cos wt, ' (20)

3
A
= |B| cos ot +|—3'7cos3mt, (21)

and

3
SCLiEN L -1B
Xo= |E|cosmt |A| [32 | | q
| |5

cos3nt+——cosSwt, (22)
1024

where o is the fundamental frequency given by

co—1+~(AA) {ﬁ(AA)Q 3(AB+AB)J

123 (AA)

(A;:+ AE+BB)
.| 8192

RE e3+0(e*).(23)
_15 (AA)AB+AB)
128

Through O0(e3), from egs. (20-22) the initial
value x satisfies the equation;

3
erH{Mllﬂ]

+e2 [i|A|5 33
256 32

4. Treatment of the results

|Mﬂmﬂﬂ}0&%- (24)

To find out the effects of introducing the
free amplitudes B and E, one has from egs.
(21, 22) to express B and E as;

B=a(AAJA, E=PAA)%A . (25)
where a, P are real constants which stand for
the coefficient of the free functions in the NFM
[6, 9]. For convenience a, B are here assumed
real. They are expected to become of complex
value as in the NFM if damping is considered
(7, 8].

Substituting from eq. (25) in eq. (23), the
frequency o through O(€3) becomes;

1.9 11583 2 2
m_1+8(AA)e{256 i ](AA)

123 3 2 15 § 4
8192+§a & 4a+ ](AA)3€3+(XG) .(26)

Also substituting from eq. (25) in eq. (24) and
inverting the resulting equation, one gets for
|Al;

A= o) )

3 23 o
[Sa +32a B+1024 a ]e xl +0(e ). (27)

Eqgs (20-22, 26,27) form a complete set for
obtaining the solution through 0(e3) of egs (1,
2) in terms of the initial condition x;, the free
coefficients a, § and the small parameter €. In
the following some choices of the values of a
and p are discussed.
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4.1. No free amplitudes
This is the usual choice in which

B=E=0 or a=p=0,. (28)

From egs. (20-22), this choice is clearly the
most obvious and simplest choice. It makes
the first and second order solutions x; and x2
independent of the fundamental frequency o.
It corresponds to the choice called in [6] by
“elimination of components of fundamental
frequency from higher order terms of the
solution” or simply by killing the fundamental
in [9].

4.2. Upgraded value for the fundamental
frequency

From eq. (26), to get an upgraded value for
o that is composed of only one-order
calculation requires that the free coefficients
o, and B take the values;

ot=i and B=——1—}— 3
64 8192

(29)

This choice corresponds to the choice
called “the minimum normal form choice” in
(6, 9l.

4.3. Simplified application of initial conditions

From eq. (27), the implementation of the
initial conditions involves all orders of the
expansion. The most famous method for the
implementation of the initial conditions is to
require that the initial conditions are satisfied
by the zero-order term Xo only [16, 17]. From
eq. (27) this is realized if;

=— S e—— (30)

4.4. Two other choices of the free amplitudes

Kahn and Zarmi [6, 9] investigated two
other choices that are related to the
mathematical aspects of the NFM. The first
one results by requiring that the

transformation involved in the NFM becomes
canonical. This imposed definite values for the
coefficients of the free functions. Using the
MMS, the values of a, § that yields the same
solution are;

3 303
- el © 31
L P=20a8 (31)

The second one is what they called the
usual choice in which no free functions were
assumed in the expansion of normal forms.
The same solution is obtained by the MMS if
the free coefficients o, and B have the values

g R (32)

5. Concluding remarks

The normal form expansion originating
from the work of Poincare’[18] is outlined in
detail in several recent texts[1, 19, 20]. Kahn
and Zarmi [21] claimed that the NFM is
probably the most powerful method for the
analysis of linear systems with small
nonlinear perturbations and that it easily
overcomes difficulties encountered in the
MMS. They extended their work with the NFM
in [6, 9, 21-23]. Mean while Bender and
Bettencourt [14] approved the MMS and
applied its ideas to study the quantum version
of the Duffing’s oscillator as in [23]. From the
work presented here, it has been shown that
all the solutions that correspond to some of
the choices of the coefficients of the free
functions of the NFM discussed in [6-9] can be
readily obtained by the MMS. It can be stated
that although the computational effort of the
two methods is comparatively the same, the
MMS has the advantage of a somewhat
simpler mathematical technique, and the NFM
owns an obvious display of the mathematical
characteristics which facilitates the procedure
of getting the required zero-order solution.
Also the NFM has a greater number of
distinguished options of solutions. !

Alexandria Engineering Journal. Vol. 40, No. 6, November 2001 933



S. M. Elkhoga / Multiple-scale analysis of free harmonie oscillator

References
[1]P.B. Kahn and Y. Zarmi “Nonlinear
Dynamics; Exploration Through Normal

Forms”, Wiley, New York (1998).

[2] P. Blanchard, R. Devaney and G.R. Hall
“Differential Equations,” Brooks Cole
Publishing  Company, Pacific Grove,
California (1998).

[3] A.H. Nayfeh and B. Balachandran “Applied
Nonlinear Dynamics: Analytical,
Computational and Experimental,” Wiley
Series in Nonlinear Sciences, John Wiley &
Sons, New York (1995).

[4] P.J. Holmes “A nonlinear Oscillator with a
Strange Attractor,” Philos. Trans. R. Soc.
London A 292, pp. 419-448 (1972).

[S]J.G. Wei and G. Leng “Lyapunov Exponent
and Chaos of Duffing’s Euation perturbed
by white noise,” Appl. Math. Comp. 88, pp.
77-93 (1997).

[6] P.B. Kahn, D. Murray and Y. Zarmi
“Freedom in Small Parameter Expansion
for Nonlinear Perturbations,” Proc. Roy.
Soc. London A 443, pp. 83-94 (1993).

[7] S. Elkhoga and A.Ata “Effect of Daming on
Some Possible Choices of the Zero-Order
Solution in the Perturbative Analysis of
Nonlinear Harmonic Oscillators,”
Alexandria Engineering Journal Vol. 38 (6),
D123-D129 (1999).

[8] S. Elkhoga “The Methods of Normal Forms
and the Order of Daming of Free Harmonic
Oscillators with Nonlinear Perturbations,”
Alexandria Engineering Journal Vol. 39 (2),
pp. 351-356 (2000).

[9] 9) P.B. Kahn and Y. Zarmi “Reduction of
Secualr Error in Approximations to
Harmonic Oscillator Systems  with
Nonlinear Perturbations,” Physica D. 118,
pPp- 221-249 (1998).

[10] A. M. Nayfeh “Introduction to
Perturbation Techniques,” Wiley and Sons,
New York (1981).

[11] J. Kevorkian and J. D. Cole
“Perturbation Methods in Applied
Mathematics,” Springer-Verlag New York
(1981)

[12] J.A. Murdock “Perturbations Theory
and Methods,” Wiley and Sons, New York
(1991).

[13] C.M. Bender and
“Advanced Mathematical Methods for
Scientists and Engineers,” McGraw-Hill,
New York (1978).

[14] C.M. Bender and L.M. Bettencourt “
Multiple Scale Analysis of Quantum
Systems,” Phys. Rev. D54, (12), pp. 7710-
7726 (1996).

[15] S. Yang, A.M. Nayfeh and D.T. Mook
“Combination Resonances in the Response
of the Duffing’s Oscillator to a Three-
Frequency Excitation,” Acta Mechanica
131, pp. 235-245 (1998).

[16] L. Meirovich “Elemnts of Vibration
Analysis,” McGraw-Hill New York (1986).

[17] (17) R.A. Struble “Nonlinear Differential
Equations,” McGraw-Hill, Book Company,
(1962).

[18] H. Poincare’ “New Methods of Celestial
Mechanics,” (Originally Published as les
Méthodes Nouvelles de la Méchanique
Céleste, Gauthier-Villars, Paris (1892)
American Institute of Physics (1993).

[19] S. Wiggins “Introduction to Applied
Nonlinear Dynamical Systems and Chaos,”
Springer, New York (1990).

[20] A. H. Nayfeh “Methods of Normal
Forms,” Wiley, New York (1993).

[21] P.B. Kahn and Y. Zarmi “Minimal
Normal Forms in Harmonic Oscillator with
Small Nonlinear Perturbations,” Physica D.
54, pp. 65-74 (1991).

[22) P.B. Kahn and Y. Zarmi “Radius
Normalization in Limit Cycles,” Proc. R.
Soc. London A 440, pp. 189-191 (1993).

[23] P.B. Kahn and Y. Zarmi “Time
Dependence of Operators in Anharmonic
Quantum Oscillators: Explicit Perturbative
Analysis,” J. Math. Phys. Vol. 40 (10), pp.
4658 -4663 (1999).

S.A. Orszag

Received February 17,2001
Accepted October 25,2001

934 Alexandria Engineering Journal. Vol. 40, No. 6, November 2001



