Efficient distributed object framework for data warehousing

Noha Adly, Yousry Taha and Arsany S. Sawiros

Computer Science & Automatic Control Dept., Alexandria University, Alexandria, Egypt

This paper introduces a data-warehousing framework that is designed in the context of
distributed objects; thus it has the benefits of scalability, interoperability, and support for
heterogeneous environments. The proposed framework adopts an efficient incremental
lightweight view maintenance technique that is motivated by the fact that different views in a
Data Warehouse (DW) can have different freshness requirements. This fact can be used to
enhance the view maintenance performance in huge DWs by installing the source updates
only when the freshness constraints are violated and only for the DW views that have the
violated constraints. The proposed view maintenance strategy guarantees strong consistency
for each view and doesn’t require the DW sources to be quiescent in order to complete the
view maintenance.
LIS Bane Ul jes aiialy ged 13gd5 Ao gall CULSN ol panae Y1 138 UL Siled sie Jaalt jl) aaly Siad) 134
Alaidl s il jobany il (g day)l e 5 al caile) Al SULSH G @ LS Jaall & ggan s gL
ol BN daal) a5s 45kl sda Lo sl Euaadl ke 3eUS @il g AaS) 5 Aagn 4dyyh 0 g jed) Yl
elal Cppmnand Lgaladi) S A0all 038 . LAY ¢ ja (e BT Dlaa Jajyyd L 555 a8 bl £ 3 siual Dbl el 32
055 L—atic il bl jolias (e Wbl &3 A @Ol S @lldy il cled gl b Al St Al
S S Jall ae Guaatl) Sag) oy 5 o3a Ll A el 3200 Jah CasS il g Alasd) da gyl Wiy Ly e s
Lda) Jy—a gl QT Yy B o g3 sl (e e 5 IS (50l Quiladll Aa 50 (panial daa g saall il A6y 5k el oY)
yaal flee W) dal e Sl jilias LG () S

Keywords: Data warehousing, View maintenance, Freshness constraints, Distributed objects,
View directed acyclic graph

1. Introduction translates the query to the source query lan-
guage to extract the information and send it

Data Warehousing (DW) is used for back to the integrator after, probably, per-

reducing the load of on-line transactional
systems by extracting and storing the data
needed for analytical purposes [1] such as On-
Line Analytical Processing (OLAP) and Data
Mining (DM) which have become essential for
Decision Support Systems (DSS).

As suggested in [2], The general architec-
ture of a Data Warehouse Management Sys-
tem DWMS consists of several components,
which are distributed among several sites. The
central site hosts the DW as well as the com-
ponent responsible for data integration called
the DW Integrator. At the source sites, there
are two main components, a source monitor to
detect and report all source updates and a
wrapper that is in contact with the DW Int -
grator via a communication network; the task
of the wrapper is to provide a query interface
to the integrator. The integrator sends queries
to the data source and the associated wrapper

Alexandria Engineering Journal Vol. 40 (2001), No. 6, 845-852
© Faculty of Engineering Alexandria University, Egypt.

forming some transformations on the data.

The basic task, for which the different
components cooperate, is to maintain the
views of the DW to reflect the updates that
take place in the sources.

The View Maintenance problem has
several dimensions and alternatives that have
been investigated in literature such as [3].
Several decisions have to be taken to specify a
view maintenance strategy. Among those °
decisions, the one we call the maintenance
perspective: the maintenance can be done
from two different points of view. (i) The point-
of-view of every source update; this is the
traditional perspective. In this approach, an
arriving source update is processed once by
installing it in all the relevant DW views. We
call this: per-update maintenance. (ii) The
point-of-view of every DW view. This is the
approach used in our framework. In this

845

N. Adly et al. / Efficient distributed object framework

approach, every DW view is refreshed by
picking and installing the relevant updates
from the updates buffer; so, a single update
can be installed in some views and left in the
update buffer for later installation in other
views. When an update U will be installed in a
view V? depends on the freshness constraints
defined on V. We call this approach per-view
maintenance. This constraint-based deferred
maintenance saves a large maintenance
overhead while in the same time obeys the
freshness requirements of users.

Defining different freshness constraints for
different views realizes the concept of
unequally ‘important’ views suggested in [4].

In addition to the major problems of view

-maintenance, data warehousing have several
other problems such as monitoring legacy
systems, data transformation and integration
and the huge amounts of data stored. This
paper considers only the architecture and the
view maintenance. The other topics are deeply
discussed in other papers and the approaches
are applicable to our framework.

The DWMS architecture proposed in this
paper is based on distributed objects such as
the CORBA standard [5,6]. The employment of
distributed object technology with the
proposed architecture offers several benefits
[7,8] such as:

1- Plug-and-Play modularity: Modules or
objects can be easily replaced or inserted
without the need for any modifications in the
system.

2- Scalability: The system can scale gracefully
by distributing the maintenance work among
more objects and more machines.

3- Heterogeneous sources: The DW sources
can have heterogeneous platforms. Wrapper
objects of different sources will have the same
interface and different implementations
according to the sources.

4- Comumunication heterogeneity: the comm-
unication heterogeneity is solved by the
location and protocol- transparency provided
by the Object Request Broker ORB as a client
can request and get a service from an object
without knowing the object’s location or
communication protocol.

5- Interoperability: the different system com-
ponents can easily inter-operate to perform
the required tasks.

The rest of this paper is organized as
follows: section 2 describes the data
warehouse model. Section 3 describes the
architecture objects and modules and the
interaction among them. Section 4 describes
the view maintenance technique. Section 5
concludes the paper and suggests some
future work.

2. The data warehouse model

The DW is composed of a set of
materialized views. The views are relations in
a relational database. Each view is defined in
terms of driver objects; the latter could be
source relations as well as other data
warehouse views. For each DW view, let V=
<D, F> be the view's descriptor where:

D: Dependency predicate, describes the
relationship between the DW view and its
drivers. This is the definition of the view in
terms of data sources or other views.

F. Freshness predicate, describes the
freshness constraints imposed on the DW view
to fulfil the DW user’s requirements.

The dependencies among the different
objects, including both source relations and
DW views, can be modelled by a View directed
Acyclic Graph (VDAG). The VDAG can be
composed of one or more separable
components. A VDAG represents the
information sources and DW views as its
nodes and their dependencies as its arcs.
Source relations appear in a VDAG as leaves.
All the internal nodes in a VDAG are DW
materialized views. We refer to all the
descendants of a view V as the drivers of V.
Let N be the set of all nodes in the VDAG and
let E be the set of all edges.

As mentioned above, A DW view can have
freshness constraints defined by the user.
Hence, the view can be in a state that is not |
up-to-date, yet it is accepted by the user; we
call this the tolerated state [9]. According to
that model, A DW view V can be in one of
three states:

1. Fresh: The data in the view reflects precisely
the data in the source databases; hence it’s up
to date.

2. Tolerated: The data in the view isn’t up to
date but the tolerance is accepted by the
users.

846 Alexandria Engineering Journal. Vol. 40, No. 6, November 2001

N. Adly et al. / Efficient distributed object framework

3. Stale: The data in the view must be
refreshed to reflect the new data in the source
databases.

After the initial loading, the view is in the
fresh state. If D is violated due to source
updates but F is not violated, then the view
moves into the tolerated state. If both D and F
are violated then the view moves into the stale
state. When refreshment occurs according to
D, the view moves back into the fresh state.

Sometimes, we have to refresh a view while
it's still in the tolerated state i.e. before it
moves to the stale state. The reason for that
premature refreshment is clarified by the
following scenario: let {VI, V2 < N and
(V12V2)e E (i.e. V1, V2 are two views in the
DW and VI depends on V2). If V1 is found in
the stale state then it must be refreshed. To
refresh it, V2 must also be refreshed even if it
is in the tolerated state.

Restoring the view from the stale state to
the tolerated state is not considered, because
the overhead needed for that restoration is
almost equal to the overhead needed to restore
the view to the fresh state. Hence, whenever a
restoration occurs the view is updated
according to the most recent source state i.e.
the view moves to the fresh state. Fig. 1 shows
the state transition diagram of a DW view

The freshness constraints defined on a DW
view V can be classified into three main
classes:

1. Time constraints: Consider the maximum
allowed time period between successive
refreshments to V. Or the maximum allowed
time period between a refresh of V and an
uninstalled update in the drivers of V.

2. Version constraints: Consider the maximum
allowed number of uninstalled updates
received from the drivers of V.

3. Value constraints: Consider some stored or
calculated value from the sources or the DW.

Obviously, it is assumed that checking the
state of a view is cheaper (in terms of time,
space, communication, processing, etc)than
restoring the view to the fresh state.

The following facts are assumed in the
model: any source site can contain any
number of source relations. The
communication network is not assumed to be
FIFO. Transactions working on relations on
the same source database are allowed while

global transactions, those covering several
source databases, are not.

Tolerated

/(efresh

<

Violate F

Violate D

Refresh

Violate D, F

Fig. 1. State transition diagram.

3. The DWMS objects and modules

This section describes the proposed DWMS
architecture where the different tasks are
distributed among several objects and
modules at several sites.

Fig. 2 shows the objects and the modules
and the interaction among them. Each object
has an interface that is a set of public
services. This interface is used by the other
objects to request the services that the object
is responsible for. This object interaction gives
the architecture flexibility and ease of
maintainability since the implementation of
any object can be changed without affecting
the others as long as the interface is fixed. In
the following, the different objects and
modules will be briefly discussed.

3. 1.Configuration object

This object provides an interface that
enables configuring the DW environment. It
also encapsulates the DW metadata that
describe the whole environment. Configuring
the (DW) environment includes adding,
deleting, and modifying DW views. Modifying a
view can affect the D and/or the F predicates
of it.

The metadata that is encapsulated in the
Configuration Object (CO) includes informa-
tion about the DW schema and source
schemas. The CO has interface to answer any
query about this metadata.

This encapsulation prevides flexibility in
the Metadata-Standard uged. It also simplifies
and unifies the process of querying metadata
by the different objects.

Alexandria Engineering Journal. Vol. 40, No. 6, November 2001 847

N. Adly et al. / Efficient distributed object framework

MIM

A VMO x maintains DW view x lnitialciDFT

Source Query

Source Query

Information
source

Answer of
Source Query

Monitor

Log Updates

L g

>
er

Query Answ

Query about updates

MO x <
r———/ Compensated Answer

Query about updates

—
Query/Answer
about updates

Compensation

Source Wrapper SW

Query about updates

Buffer of Updates

Query Answer

Query Answer

Fig. 2. The architecture objects and modules.

3.2.The main integrator module

This is the main module of the DW
integrator. Periodically, the Main Integrator
Module (MIM) initiates a view maintenance
transaction [4] during which all the VDAG is
traversed. When a view V is visited during this
traversal, the view’s freshness predicate Fis
checked. If the constraints are violated then a
refreshment procedure of the view is issued to
restore the view to the fresh state by applying
the rules defined in the dependency predicate
D of the view.

The VDAG nodes are visited in Depth First
Traversal DFT to ensure that all the children
of a node are visited before the node itself is
visited.-~ This--is needed because checking
and/or refreshing.a view V will make use of (1)
The states” of the children of V and (2)
Updates, if any, that have taken place in those
children. Hence, those states and updates
must be determined before checking and/or
refreshing V i.e. children of V must be visited
before Vis visited.

The MIM initiates the VDAG traversal at

the root node(s) of a VDAG. If a VDAG has
more than one root then the traversal
initiation can be done asynchronously at the
different roots i.e. after initiating the traversal
at a root, the MIM doesn’t have to wait for the
DFT return before initiating it at another root:
This will produce parallelism in the view
maintenance processing of the VDAG and
hence the maintenance time is reduced. We
note that if two traversal paths intersect at a
node (as a result of the parallelism) then one
of them must stall waiting the DFT return of
the other or it can go in another valid path
according to the DFT rules.

3.3. View maintenance objects

Every view in the VDAG has an associated
object in the distributed object model. This
object, called a View Maintenance Object
(VMO) is responsible for storing information
about the view; this information includes both
the D and F predicates. The VMO is also
responsible for checking the state of its view
and refreshing it i.e. for maintaining the view,

848 Alexandria Engineering Journal. Vol. 40, No. 6, November 2001

N. Adly et al. / Efficient distributed object framework

hence the name ‘View Maintenance Object’. All
the VMOs are organized in a VDAG as every
VMO stores a list of its children. The DFT
initiated by the MIM actually traverses the
VMOs; the traversal is initiated by the MIM
and then recursively completed by the VMOs
themselves. Note that the time period between
successive DFT maintenance transactions
should be guaranteed to be greater than the
needed maintenance time of the whole DW.

The interface of a VMO consists of three
services: VISIT: To initiate the DFT at the
VMO. CHECK_STATE: To check the state of
the view. REFRESH: to restore the view to the
fresh state.

Both CHECK_STATE and REFRESH can do
three types of queries (see fig. 2): (1) Query
About Updates: Request the needed
information about updates from the Update
Manager UM object. (2) Source Query: They
also can query the source relations via the
source wrappers. (3) DW queries: Issued
against the DW views. '

For source queries, a compensation
strategy is needed to overcome the problem of
concurrent updates; this is described in
section 4. When a VMO is visited, during the
DFT, the view’s state is checked using
CHECK_STATE and if the state is stale the
view is refreshed by REFRESH. If REFRESH of
some VMO X detects that any VMO Y that is a
child of X is tolerated or stale then it calls
REFRESH of Y. This is necessary because
refreshing a view implies refreshing all its
descendants.

We note that the implementation of VISIT
is the same for all VMOs while the other two
SERVICES are implemented differently for the
different VMOs. It is possible to automate the
generation of the implementation part of these
two services from a high-level declarative
specification of D and F given by the DW
administrator to the CO for every DW view.

3.4. Monitors

The main task of a monitor is to keep an
eye on the updates in a source or a data
warehouse view and record these updates in a
log object LO. The updates may be ADD or
DELETE. We assume that a MODIFY is logged
as a DELETE followed by an ADD. With each

detected update, the monitor logs a time-
stamp, update occurrence time, and the
source or view at which the update has
occurred. This information is used by the view
maintenance strategy as will be described
later.

The need for source monitors is obvious.
The task of the DW monitors is to detect and
log the view updates that occur during the
view maintenance operation. These updates
are needed by the VMOs of other views to
propagate the updates according to the inter-
view dependencies.

The source monitors may be simple if the
sources are able to report any updates in
them or they can be complex if the sources are
legacy sources. On the other hand, the DW
monitors will use the capabilities of the DBMS
on which the DW is built.

3.5. Log objects

A Leg Objects (LO) is responsible for: (1)
Storing the updates reported by monitors. (2)
Answering any query about these updates.
VMOs query LOs indirectly via the update
manager UM as will be described. For
example, a query about updates can be a
Get_Updates query:

SELECT count of updates

WHERE source=“a specified source® AND
timestamp BETWEEN “a specified range” *
Another query can be:

SELECT all updates

WHERE source=“a specified source” AND
timestamp BETWEEN “a specified range”

When a LO processes a VMO query like
the latter one, it returns the updates that
satisfy the specified criteria and deletes the
returned updates from its log.

A Source LO stores the updates reported
by the source monitor. The DW LO stores the
updates reported by the DW monitors.

3.6. Update manager

When a VMO needs any information about
updates, it queries the Update Manager (UM)
which, in turn, queries the DW LO or the
appropriate source LO via the source wrapper.

Alexandria Engineering Journal. Vol. 40, No. 6, November 2001 849

N. Adly et al. / Efficient distributed object framework

When the UM gets the query answer, it
returns the answer to the requester VMO.

If the query answer is a set of updates
then the LO will delete the returned updates
from its log and the requester VMO will receive
the updates from the UM and process the
updates by, appropriately, installing them in
its view. We note that there may be other
VMOs that will need the same updates to
maintain their views. Those other VMOs will
request the updates later. The time difference
between requests of the same updates can be
due to the different positions of requester
VMOs in the VDAG (the DFT dictates that
lower level VMOs will request before the higher
level ones). The time difference can also be
due to difference in the F predicates of the
different VMOs; two VMOs sharing a common
driver may need to install updates received
from that driver at different times according to
their F predicates.

The above scenario clarifies the need for
an update manager that buffers the received
updates and keeps track of what VMOs has
taken what updates in order to correctly
answer any query about updates from VMOs.
A correct query answer is the answer that
includes an update if and only if the update:
(1) Hasn’t been delivered to the requesting
VMO in a previous query. AND (2) Satisfies the
query criteria. When the UM detects that a
certain buffered update has already been
delivered to all VMOs that need it, the UM
deletes the update from the update buffer.

How can the UM know what VMOs will
request what updates? And how can it keep
track of what VMOs has already taken what
updates? This can be accomplished by
keeping a bitmap field with every update. The
bitmap has a bit for every VMO. When an
update U is received from a LO, it’s buffered
and its bitmap is initialized by (1’s) in every bit
that corresponds to a VMO that has the
source of U as one of its children in the VDAG.
When U is delivered to some VMO, the
corresponding bit in the bitmap of U is reset to
(0). When the bitmap is all zero, U is deleted
from the update buffer.

3.7. Source wrappers

The main task of a Source Wrapper (SW) is

to translate source queries issued by VMOs
against the source relations to a query
language that the source can ‘understand’
The translated query is then processed by the
source and the result is returned to the SW.
This result is then compensated by a
compensation module, can be integrated with
SW, in order to remove the component of the
result that is due to concurrent updates (this
will be discussed in section 4). Some
transformations may be applied to the
compensated result. The compensated result
is then returned to the requester VMO. The
SW can do another task; it can serve asa
middleware between the UM and the source
LO; this enables accomplishing some
transformations in answers of queries about
source updates.

3.8. DW wrapper

The task of this module is to shield the
other modules of the system from particulars
of the DBMS of the DW [8]. Hence, different
DBMSs can be used without affecting the
other modules; the implementation of the DW
wrapper would differ while its interface is
fixed.

4. View maintenance

The view maintenance is initiated
periodically by the MIM. VMOs request
updates from the UM which, in turn, request
them from the appropriate LOs. The VMOs use
the received updates to incrementally
maintain the views. Self-maintainability is not
assumed i.e. the received updates may be
insufficient for VMOs to maintain the views.
VMOs may need to further query sources in
order to complete the view maintenance. The
answer of these source queries may contain
components that are due to updates that
haven’t been sent to the DW yet; this
introduces the problem of concurrent updates
[1]. The problem is overcome by using a
remote (at source sites) compensation
operation that removes the effect of
concurrent updates from the query answers.

The compensation module recognizes the
concurrent updates in the source LO from
their associated time-stamps. An update is

850 Alexandria Engineering Journal. Vol. 40, No. 6, November 2001

N. Adly et al. / Efficient distributed object framework

considered concurrent if its time-stamp
exceeds the time at which the DFT of view
maintenance was Iinitiated. This time value is
passed from the MIM to VMOs on initiating
the DFT and it’s propagated down the VDAG
and included with every source query or query
about updates issued by any VMO. Hence, no
answer of a source query or a query about
updates will contain the effect of any update
that occurred after the DFT begins. Since the
answer of any query about updates will not
include updates that occurred after DFT
initiation, these updates will not be removed
from source LOs after answering any
Get_Updates query (see subsection 3.5). This
will enable the compensation module to
remove the effect of these updates from the
answers of source queries. To do that, the
compensation module queries the source LO
about those updates having timestamps
exceeding the DFT initiation time; the source
LO answers this query, obviously, without
removing the returned updates as they must
be included in answers to VMOs’ queries
about updates in prospective maintenance
transactions.

This algorithm simulates the following:
once the DFT starts, a snapshot of all the
sources is taken and VMOs will ‘see’ only this
snapshot excluding any updates that take
place after this snapshot. During the DFT
maintenance transaction, updates can take
place without interrupting the maintenance
operation at all (since updates are requested
by VMOs rather than sent by sources); this
relaxes the need of quiescence in sources for
the completion of the view maintenance.

Note that the time of DFT start can be
broadcast to all source wrappers rather than
being included with each query. But, this
would require the assumption that the
communication network delivers messages
from a certain source to a certain destination
in a FIFO manner (the time value must be
guaranteed to -reach.every source before the
first query tc that source reaches the source).
By including the DFT start time value in every
query, the FIFO assumption is relaxed since
no other part of the algorithm requires it.

According to our per-view maintenance,
the installation of updates in a view may be
deferred even if the updates are received from

the sources. As described above, this is
controlled by the F predicate of the view. This
controlled batching of updates can enhance the
maintenance performance. Since updates may
be batched, the algorithm does not provide
complete consistency; but strong consistency
is guaranteed for each view, individually, since
the successive states of any view correspond
to successive states of sources and in the
same order. Note that this view maintenance
scheme allows two views to reflect source
states at two different points of time and
guarantee s strong consistency for each view
individually but not for all views together. This
is illustrated in the following scenario: An
update Ul is installed in view VI and not
installed in view V2; then a new later update
U2 arrives and it is also installed in V1 but not
in V2. After that, Ul is installed in V2; hence
this later installation of Ul took place after the
installation of U2 in V1 although Ul took place
before U2; this violates the condition of global
strong consistency but keeps individual strong
consistency for each view.

5. Conclusions and future work

This paper has proposed an efficient data
warehousing framework. The framework
specifies a distributed object architecture for
the data warehousing system as well as an
incremental periodical view maintenance
strategy that guarantees strong consistericy
for each view and doesn’t require the sources
to be quiescent in order to complete the
maintenance transaction. The efficiency in our
framework is achieved by deferring the
expensive view maintenance of some views
whenever this deferring doesn’t violate some
freshness constraints defined by the DW users
for every DW view individually.

A prototype that realizes some of the ideas
proposed in this paper has been implemented
using OOP [10]. It’s intended to extend that
prototype by moving it into a CORBA
environment and implementing the proposed
view maintenance algorithm (the prototype
has assumed self maintainability) and
measuring the performance of maintaining the
DW.

It was shown that the UM keeps track of
what updates has been processed by what

Alexandria Engineering Journal. Vol. 40, No. 6, November 2001 851

N. Adly et al. / Efficient distributed object framework

VMOs. This information can be wused to
recover the system from crashes during view
maintenance; the topic of recoverability needs
more attention especially when we study the
effect of possible network failures on the view
maintenance strategy.

Also, the topic of distributing VMOs on
mobile machines is under consideration.

References

[1] D. Agrawal, A. El Abbadi, K. Singh and T.
Yurek. “Efficient View Maintenance at
Data Warehouses”, SIGMOD (1997).

[2] J. Widom. “Research Problems in Data
Warehousing”, CIKM (1995).

[3] A. Gupta and S. Mumick. “Maintenance of
Materialized views Problems, Techniques
and Applications”. IEEE Data Engineering
Bulletin (1995).

[4] A. Labrinidis and N. Roussopoulos.
“Reduction of materialized view staleness
using online updates”. TR3878, DCS,
University. of Maryland at College Park,
Feb. 1998. [5] Object Management Group,
“The Common Object Request Broker:
Architecture and Specifications”, OMG
Document Number 91.12.1, December
(1991).

[6] A. Dogac, C. Dengi and M. T. Oszu.
“Distributed Object Computing Platforms”,

Communications of the ACM, Vol. 41 (9),
(1998).

[7] E. Kilic, G. Ozhan, C. Dengi, N. Kesim, P.
Koksal and A. Dogac, “Experiences in
Using CORBA for Multidatabase
Implementation”, in Proceedings of the 6t
International Conference in database and
Expert Systems Applications, London,
September (1995).

[8) J. L. Wiener, H. Gupta, W. J. Labio, Y.
Zhuge, H. Garcia-Molina and J. Widom. "A
System Prototype for Warehouse View
Maintenance." In Proceedings of the ACM
Workshop on Materialized Views:
Techniques and Applications, Montreal,
Canada, June 7 (1996).

[9] Y. Taha, A. Helal and K. Ahmed. "A
Stochastic Consistency Model for Data
Warehousing”, In Proceedings of the AIS,
Indianapolis, USA (1997).

[10] A. Sawiros, H. Khalil, H. Diaa El-deen, M.
Alsebaeyie, R. Saleh and Y. Bassily. “A
prototype for a Data Warehouse
Management System”, B.Sc. graduation
project, Department of Computer Science

and . Automatic Control, Faculty of
Engineering, Alexandria University, July
(2000).

Received July 30, 2001
Accepted October 30, 2001

852 Alexandria Engineering Journal. Vol. 40, No. 6, November 2001

