Docks and breakwaters with minimum environmental impact for

small boat harbors and marinas
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This paper introduces a simplified analytical method to study the effect of a pontoon type
dock. The method predicts the forces experienced by the waves, and the flow field in the
leeward of the dock. The dimensions of the structure could be resized to minimize the
environmental impact resulting from the existence of the dock, such as formation of
salients and tombolos, while keeping the breakwater functional criteria. The model
eliminates the use of the variational principle and is based on mass and energy flux.
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1. Introduction

It is necessary to have calm water along
recreation beaches and small boat marinas.
Usually, this 1is achieved by building
breakwaters. To minimize the environmental
impact, floating breakwaters proved to be an
ideal solution for moderate wave conditions.
Mei and Black [1] used the varitional principle
to solve the problem of fixed surface or
submerged obstacle, Black et al [2] used the
same approach to solve the same problem for
a movable obstacle. In this work we introduce
a simplified analytical approach to solve the
problem of a fixed body piercing the water
surface but not extending to the sea floor. The
theory compares well with the previous works
and has the advantage that it can be used
manually, without the need to any advanced
programming.

Consider a pontoon with infinite length,
draft d, bridth 2B, water depth h and gap G
beneath the pontoon, fig. 1. Also, consider a
Cartesian coordinate system with the origin at
the intersection of the still water level and the
pontoon vertical axis of symmetry. The
horizontal axis x is directed to right and the
vertical axis y points upward and the
horizontal axis 'z runs along the axis of the
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pontoon. The pontoon is subjected to
harmonic incident wave propagating from left
to right.
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Fig. 1. The definition sketch of the pontoon and wave
decomposition.

It is a natural procedure to decompose the
incident wave into two waves, symmetric and
asymmetric waves. One propagating from left
to right and the other propagating from right
to left. Each one consists of two waves. The
wave propagating to the right consists of two
waves in phase, while the one propagating to
the left consists of two waves in anti phase,
fig. 1. This technique is used widely in the
electromagnetic theory of wave guide, [1].

2. Mathematical formulation

The usual assumptions of irrotational flow
and incompressible and inviscid fluid are
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employed. If the flow is assumed to be
periodical, then the potential is to be given by,

eq. (1)

Vx =-2ik.foly) s exp (ik, (x+B))
exp (-iot) i

where i=(-1)9%5 , and Re means the real
part

The potential ¢(x,y) may be decomposed
into two parts. A potential due to symmetric
flow gsand a potential due to asymmetric
flow @a, [1]

0=0g+0, © (2

Each of the potentials ¢; , @sconsists of
two components, symmetric and asymmetric
potentials

¢, =it o 3)
¢s=¢ss + ¢SA’

where,
¢ is the potential of the incident wave
@s is the potential of the scattered (diffracted)
wave
For the cases of the symmetric and the
asymmetric waves we have @ia = @sa =0 and @is
= @ss = O, respectively. Since, actually there is
no waves propagating from right, then the two
hypothetical waves propagating from right
must cancel one another. This requires that
they must have the same amplitude.-Based on
this, the heights of the two waves propagating
from left are equal one half the height, H;, of
the original incident wave that is, eq. (4)

Hig = Hjs = 0.5H;, (4)

where, Hi, His, and Hia are the heights of the
total incident, the symmetric and the

. . k4
asymmetric wave components, respectively. It

should be clear that the reflection coefficient
Rs, of the symmetric wave, equals unity. This
stems from considering the symmetric wave
propagating to the left as a result of the
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reflection of the symmetric wave propagating
to the right.

The reflection coefficient of the asymmetric
wave Ra needs more elaborated treatment. The
flow domain is divided into three sub domains,
I, II and III, Fig. 1. The continuity equation,
together with the sea bed boundary conditions
are to be satisfied in the three sub domains.

2 2
¢ o
V2¢= 0 2+ a,2=0: (5)
0Xx QY
o
=2-0 aty=-h 6
Y (6)
The linearized kinematic free surface
boundary conditions, eqn., (7), should be

satisfied at regions I and III

2

=%—¢ at y=0 |y|>B.

Q|

-

)

The components of the fluid particle
velocity normal to the surface of the pontoon
should be equal to that of the pontoon, that is.

aq:i ECDS ;
an | omn (8)
Where

n is a unit vector normal to the surface of
the pontoon and directed outward

g% is the fluid velocity normal to the surface

In region II the boundary condition given
by eq. (6) must be satisfied at y = -d, for the
fixed body, that is,

Ll i =
ay-0 at y=-d. 9)

To satisfy the continuity equation in
addition to the different boundary conditions
imposed in regions I, II and IIlI, different
mathematical expressio?s for the potential in
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regions I, II, and III are introduced. In region I
the potential @i, , is given by ,

b0 91,0 *?1A,0
= 5(y) Sool €xp (ik(x+B)) + R exp (ik(x+B))]

[+ o]
+ Xf(y) Sq i exp (kj(x+B)) +
i=1
f5(y) Aoo [ exp (ik(x+B)) + R exp (-ik(x+B))]

0
+ Zfi(y)Ao’iexp(ki(x+B) X S -B,
i=1]
(10)
with
cosh{k%(y+h)]\/§ ) (11)
f,(0)= s
h+gsinhz(k‘,h)
o2
()= cos ki (y + h)]v2 (12)

[h _gsin?(kj h) ]0'5
2

L (0}

The functions fi (y), i =0,1,2, are orthogonal in
the interval (-h, 0), that is [3],

0
i) £ dy =855
-h

where 6 is Kronecker delta function (&;=1 i
=j,8;=01?})

This will be important in finding the
coefficients of eq. (10). Eq. (10) satisfies the
continuity equation and the boundary
conditions given by eq. (6). Eq. (7) is satisfied
by considering the dispersion relation (13) and
eq. (14) [3]

2
k, tanh (ko h) = @g— - (13)
2

k; tan (k;h) = -% , (14)

where k; is the positive real root of eq. (14).

The first term in both ¢is,0 and ¢ia,0 eq. (10),
corresponds to the incident wave, while the
second term corresponds to the reflected
wave. The terms under the summation sign,
the third term, give the evanescent modes,
which decay rapidly with x. As was stated
before, the potential is decomposed into the
sum of symmetric and asymmetric potentials
around the vertical axis passing through the
center of the pontoon. Based on this, the
potential in region Il is given by

O %Y=y (=X Y) = hyp (=%:¥) - (18)

Since all the equations used in the
analysis are linear, then one can solve the
equations separately for the symmetric and
the asymmetric cases, and then summing up
those separate solutions

The potential in region II, the gap beneath
the pontoon is given by,

i o =iis,o T diiao
inx sin(y+h)+

@
=Ugs.ot 2 Ags,i cosh— co
i=1 G G

= . imx in(y+h
+Uga.0o X+ X Aga,i sinh— cos—(—y——)-.
) G G
(16)

Eq. (16) satisfies the continuity eq. (5) and

the seabed boundary condition eq. (6). Since,
there is no mass flux.

-d :
Icosﬂ)éilﬁdy=0 ’ (17)
-h

and the energy flux of the evanescent modes

ot o
-h i=l _p
where
i h jm(y+h)
Isinm(y+ ) cosdTIM 40 o, (19)
G G
-h
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Using egs. (17) and (19), one can conclude
that there is neither mass flux nor energy flux
along the boundary between regions I and II,
then the eignfunction expansion terms in eq.
(16) may be neglected, and eq. (16) reduces to,

¢ii,o=¢iis,o+¢im,o = Ugs,o TUga,0 X- (20)

IMaking use of eq. (4), it may be concluded
that the potential of both the symmetric and
the asymmetric components of the incident
waves are equal to one half of the potential of
the incident wave. This requires that Ag = Seo
in eq. (10).

Equating the velocity at the boundary
between regions I and II, we get

ob1,0 Ob11,0

at x=-B . (21)
ox ox

Using eqgs. (10) and (20) multiplying by f; (y)
and integrating along the interval (-h,0),
noting that the functions fi(y); i=0,1,2,... are
orthogonal , this yields,

R_=1, 22
5 (22)
iU I
R, =1+ _~GAete , (23)
kO SO o
So,i =0 i=12,.., (24)
I Uga,o .
Aoi=—q—— i=12., (25)
where
-d
L= [ydy . (26)
-h

To find Seo and Ag we take into account
eq. (4), and the surface elevation n given by

?—? aty=0. (27)

gQf—

N5

If Am is the amplitude of the incident wave,
then using egs. (4), (10) and (27), one gets,
using the linear wave theory

05Am=_L%t$=i“’f(°)Soo _ imf(O)Aoo'
g g 2
or
iAnpg
=A =—.—m.
S0 7 Aes B0} (28)

The reflection coefficient, Ry for the fixed
pontoon, is given by

Rp =05 Rs +Ry). (29)

Since the incident wave is decomposed
into two waves of equal amplitude, each one
equals one half of the incident wave, then

Rf Aj =Rg (0.5A; )+Ra(0.5A;) 80
=0.5(RS +RA)Ai (30)
This leads directly to eq. (29). The
transmission coefficient is given by,

Tf =0.5(RS—RA). (31)

Tr is the reflection coefficient of the two
waves propagating from right. They are treated
exactly as before. The minus sign appears
because there is a phase difference, n,
between the two waves.

To find Uga, o, it could be noted that the
velocity under the pontoon within region II, is
constant, eq. (20). So one can apply Newton
second law, by equating mass times
acceleration to the difference of the forces
applied at the two ends of region II,

Poy, ¢
2BGp ——— = |P(-B,y) - P(B, !
e { (-B.y) -PB,y)dy. (32)

Noting that, the pressure P is given by

od .
P=-p3T=1wp¢, (33)
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and ,the acceleration is given by

3oy 4
% = _i U 34
axat 10 GA,O’ ( )
and
0
P-B,y)=-p g’;u
(35)
-iop [ fo(y) (Moo +AcoRa )+ Y fi(¥) Ao,i |,
i=1
8 uio
P-By)=~-P —pp— =

-i0p [ fo(y) (Aqg +AcoRa )+ D £i(y) A, |

i=1

Substituting from eqs. (23), (25), (26), (35) and
(36) to eq. (32) yields,

2 Ag, lo
UGA,0 =~ ue . (37)
GB+il [ + D17 /K

i=1

To find Ugs,e , the total pressure has been
equated on both sides of the vertical line
separating regions I and II along the gap. This
leads to,

UGs,o = 2S00 10 /G : (38)
Using (22), (23), (28),(29) and (37), yields,
12
Ry i —e , (39)
koBG +il3 +ko Y. I? /ki
i=1

and
3
I
Ty = o . (40)
KoBG +i 13 +ko D I /ki

i=l

2.1. The Exciting forces and moments

The forces and moments on the body due
to the fluid pressure acting on the submerged
part of the body consist of two parts. The first
part is due to the hydrostatic pressure and is
a function of the instantaneous position of the
body. The second is due to the hydrodynamic
pressure, which is given by

Fi=p [(5tn; as=-iop [ (¢ njds)a;j=1,2,3- (41)

Where;

j =1,2,3 represent the vertical force,
horizontal force and the moment ,
respectively

S is the wetted area of the dock.

To find the moment, horizontal force and
vertical force experienced by the fixed pontoon
due to the incident and diffracted waves (the
exiting potential), one has to integrate the
pressure, given by eq. (33), along the wetted
surface of the pontoon. For the horizontal
force, F2 only the flow in regions 1 and III,
must be considered. To obtain the moment,
F3, the flow in regions I, II and III must be
considered. While for the vertical force, F,
only, the flow in region II must be considered.
Using egs. (23), (25), (32) and (36) we get.

Fy= | ?P(—B.y) - PB,y) dy |

-d‘
= 2iu)p|'i° A, (1+Ra)+2ii Ao,i] exp(-iot),
i=1
(42-a)
or _
R = 4iopAgo [ 1o - Tr (I, "ikaZi‘ i/ k)]
i=l
exp(—iot)
(42-b)
and
Ago(1+RA) (@1, +1g)+
E=2ia| = Ll exp(-iot)
4 +ZA0,5 @l +li)+’;‘ UGA,083
i=l
(43-a)
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or

B =4iopA,, [io +T¢ (io —ilLoo {gi, I /k,‘ + B3/3} )]

expHint).
(43-b)
The term containing B3, is the result of
the pressure under the pontoon, region II.
The vertical force under the pontoon is
given by,

B
Fp =iop jUGsdx = 2i0pBUgg, exp(-int),

-B

(44)
where;
0

ii= [yfixdy, and (45)
-d
0

L= ffimay. (46)
-d

2.2. Environmental impact

Any man-made structure is supposed to
change the natural equilibrium of the beach.
This may results in accretion or erosion. One
of the major factors that controls the sediment
transport, which causes accretion and
erosion, is the horizontal velocity of the water
particles near the bottom. The less the
deviation between the horizontal velocity
before and after the construction of any
coastal structure, the less is the changes in
the beach profile. The potential before the
construction of the dock is given by twice the
potential due to the symmetric, potential of
the incident wave.

¢] =2 fO (y) SOO exp @ ko(x+B)) ' (47)

The velocity Vxin the horizontal direction
is given by,

Vi =2k o) s exp (i, (x+8))
exp (-iot)

(48)

The horizontal velocity under the dock
Viock,, is given by differentiating eq. (20)

Vdock = UGA,o exp(-iot). (49)

The closer the ratio Vaock / Vi to unity, the
lesser is the environmental impact resulting
from the dock

3. Results and discussion

Fig. 2 shows the Transmission coefficient
as calculated using numerical methods versus
the present suggested approach. From this
figure, one may conclude that there is a good
agreement between the two methods for large
values of d/h and small gap. However there is
some deviation for the case with smaller d/h.
This shows that the present approach can be
used for small gap in shallow water. This is

the dominant condition for docks and
breakwaters
A series of design curves can be

introduced for different depths and different
values of B/h and B/d. For'each depth the set
contains, the transmission coefficient, relative
velocity, horizontal force, vertical force and
moment. The forces are normalized with.
respect to p g h Ap, , while the moment is
normalized with respect to p g h2 A, Based on
the local wave height and the required wave
height in the leeward of the dock, the suitable
transmission coefficient is selected. Using the
grain size, we select the accepted change in
the water particle velocity near the bottom.
With this in hand the dimension of the dock
(or breakwater) and the water depth to locate
the breakwater in, are selected. The charts for
the forces and moment are used to design the
supporting system. Figs. 3 through 7, show
the design curves for water depth 4.0 m, for
the cases B/h = 1.0 and 2.0, respectively.

It should be noted that the vertical force is
insensitive to the variation in the ratio B/d, so
a single curve is sufficient to represent the
different values of B/d. Also, the vertical force
shown is due to the dynamic pressure only. To
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find the total vertical force, the effect of the
hydrostatic water pressure must be added.

0.7

Present Theory

o
o

Numerical Result g
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Fig. 3. Transmission coefficient, water depth = 4.0 meter.

As an example to see how to use the
charts, assume that the incident wave period
and height are 6 seconds and 1.5 meter,
respectively. The deep-water wave length L, is
found to be 56.2 meter. For water depth 4.0
meter, the wave length is 34.75 meter and L/h
= 8.687. From fig. 3, one finds that the
transmission coefficients are 0.12, 0.22 and
0.32, for d/h = 0.9, 0.8 and 0.7, respectively,
for the case with B/h = 1. For the case with
B/h = 2.0, the transmission coefficients are
0.06, 0.12 and 0.17, for the cases with B/d =
0.9, 0.8 and 0.7 respectively. If the accepted
height of the waves in the leeward of the
structure for example is 0.35 meter, then one
has to select a transmission coefficient of

0.22. This corresponds to d/h = 0.8 and B/h =
2.0.

The next step is to check the relative
velocity from fig. 4. In this case one finds a
value of 0.7. Depending on the size of the sand
particles, it could be decided either to accept
this value or not. If both the wave height in
the leeward and the relative velocity are
accepted, then figs. 5, 6 and 7 are used to
determine the forces and moment needed to
design the supporting system. However, if
either of them is rejected, then the structure
should be moved to water with different depth
using the appropriate charts. An alternative
approach is to use the charts for the same
depth with different values of B/h and B/d.

4. Conclusions

A simple analytical method is introduced
to select the optimum dimensions of a
breakwater or a dock for marinas. The
dimensions are selected such that the wave
beight in the leeward of the structure is within
the accepted range and at the same time no
accretion or erosion problems will occur. The
proposed approach compared well with the
more sophisticated ones. A series of design
charts for different water depths, draft/water
depth and width/draft may be introduced to
eliminate the need of using any software. The
proposed method handles the cases of fixed
structure in a monochromatic sea. It can be
extended to cover the cases of random sea and
floating objects.
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Fig. 4. Relative velocity, water depth = 4.0 meter.
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Fig. 5. Horizontal force, water de,th = 4.0 meter.
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Fig. 6. Vertical force, water depth = 4.0 meter.
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Fig. 7. Moment, water depth = 4.0 meter.
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