A new approach for enumerating minimal cut-sets in a network

Ahmed R. Abdelaziz
Electrical Eng. Dep., Faculty of Eng., Alexandria University, Alexandria, Egypt

This paper deals with the enumeration of all minimal cut sets separating an undirected
graph into two sub-graphs. The algorithm does not enumerate trees or spanning trees as a
first step. This approach has yielded an algorithm, which generates minimal cut sets at O
(“n(n-1)), where n is the number of vertices in the graph, computational effort per cut set.
Formal proofs of the algorithm and its complexity are presented. Results of some
computational experience show that, a) this algorithm is appreciably faster than previous
algorithms, and b) can handle much larger graphs due to less memory requirements.
o= a3 Y Akl 03 LS gpbaiie (e () AS) Juail 1y adall) e gane uadl iy pla o Ciadl 12a i
Bdise an S On(n-1)) oe il G sl B 5 b s by 2SN 5 s G iy ud
e 30l W lSSy iy pul 40kl o3a O il i 3 s (A Lyl apdany ol L) palias Ciadl 136y 2S00
Omdd TEY1 e aganll sl Gandaly g el gl Lgigad 6l Gl 3815 (g aplind Lo Q) @lldy ppall 308 SISAN J gk
R TRVAIIRT K

Keywords: Minimal cut set, Undirected graph, Enumeration, Algorithm, Cut sets-based

Proble

1. Introduction

This paper considers the problem of
enumerating all the minimal cut sets
separating a graph into two sub-graphs: this
problem is one of the most fundamental
problems in graph theory as well as being a
basic step in evaluating the reliability of

networks encountered in computer,
communication, electrical-power systems...
etc.

Several algorithms have been developed for
directed and undirected graphs [1-8]. The
approaches in these papers are based on the
use of two broad categories of methods:

1- Gaussian elimination and Boolean algebra.
2- Implicit or explicit enumeration scheme.

Enumeration appears to be the most
computationally efficient. Nevertheless, the
enumeration approach of all minimal cut sets
still appears as a fundamental step in many
algorithms for evaluating the reliability of
networks. However, the enumeration of
minimal cut sets in general graphs is known
to be an NP-hard problem [1-8].

The most widely cited reliability problems
are:

i, Terminal-pair reliability: is a commonly

Alexandria Engineering Journal, Vol. 40(2001), No. 5, 717-723
© Faculty of Engineering, Alexandria University, Egypt.

used measure of connectivity. It is the
probability of obtaining service between a pair
of operative centers, called source and sink, in
terms of reliability for each communication
link/node in the network [9].
ii. K-Terminal reliability: is the probability
that all nodes in some specified set K of target
nodes are joined by paths of non-failed edges
[10].
iii. All-Terminal reliability (Global reliability):
is the probability of existence of a minimal set
of up-state edges such that all the nodes of
the network are joined by paths of non-failed
edges [11]. Such a minimal set of edgesis
known as spanning tree of the network [12].
Several algorithms exist for finding the
minimal cut sets of a network. Some of these
conventional methods [6-8], the minimal cut
sets were deduced by first finding all paths
and then evaluating the combinations of
failure that break these minimal paths. Some
of published papers [1-8], did not consider
multi-sources/multi-sinks, which is the case
of large power systems. A vertex cut sets
enumeration was presented in [3], this is not
valid for power systems due to vertices in such
systems are more reliable than edges. In [5],
the difficulty of enumerating the minimal cut

7117

A. R. Abdelaziz / Enumerating minimal Cut-sets in a network

sets was overcoming via the most probable cut
sets to occur was considered only. However,
this is introducing another problem, which is
how to rank the partitions of a large/ complex
network.

The objective of this paper is to construct a
polynomial-time algorithm for the
enumeration of all minimal cut sets. Section 2
defines necessary terms commonly used in
graph theory. Section 3 describes a
polynomial-time cut set enumeration
algorithm, which is followed by an illustrative
example and the computational experiences
are presented in section 4.

2. Preliminaries
2.1. Definitions

This section defines some technical terms
used in graph theory. The terms are mainly
concerned with undirected graph [12].

A gruph. A graph G = (V, E) consists of a set of
objects V = ({vi, wy,...} called vertices and
another set E = {e], e, ...} whose elements are
called edges. In case of electrical power
network graph the buses are represented by
vertices, while generators, transmission lines,
transformers or lumped loads are represented
by edges.

Sub-graph. A graph g is said to be a sub-
graph of a graph G if all the vertices and the
edges of g are in G and each edge of g has the
same end vertices in g as in G. The symbol
from set theory, gc G, is used in stating gis a
sub-graph of G.

Vertex-disjoint sub-graph. Two (or more) sub
graphs g1 and g2 of a graph G are said to be
vertex disjoint if g1 and g if they don’t have
any vertices in common.

A path. A path is defined as a finite alternating
sequence of vertices and edges beginning and
ending with vertices. Such that each edge is
incident with the vertices preceding and
following it. Neither edges nor vertex appears
more than once. '

Connected graph. A graph G has said to be
connected if there is at least one path between
every pair of vertices in G.

Tree. A Tree is a connected graph without any
closed loops.

Minimal cut-set (MCS). In a connected graph

G, a cut set is a set of edges whose removal
from G leaves G disconnected, provided
removal of no proper subset of these edges
disconnect G. A cut-set always cuts a graph
into two subgraphs. So, another way of
looking at a. cut-set is this: if we partition all
the vertices of a connected graph into two
vertex-disjoint sub-graphs (Note that one or
both of these two sub-graphs may consist of
just one vertex).
Vertex cut set. A cut set involving vertices only.
Edge cut set. A cut set involving edges only.
g1, g2. 81 and g2 are vertex disjoint sub-graphs
of G, where g,=(Vi, E)), and g2=(V2, E2), where
Vi,V2 ¢V, and E,, E2 cE, and also VUV, =V,
and E,UE, =E. 3
Cut-sets are of great importance in
studying properties of communication, power
and transportation networks. in these fields of
study, our concern is to look at all cut-sets of
the graph, and the one with the smallest
number of edges is the most vulnerable.

2. 2. Data representation

Data structure is an important aspect of
designing efficient algorithms. Some of the
data structures are described as follows.

2.2.1. Bit representation

Soh [13] has discussed the advantages
and disadvantages of one kind of data
representation, namely bit vector
representation In Soh’s work, path in a graph
with e edges is presented by an identifier
having e bits. An up edge of the graph is
denoted by a binary 1. A binary O sums for a
“do not care” state. The logic of the suggested
representation is as follows:
Vertex identifier. In a vertex identifier, an
incident edge to that vertex is denoted by a
binary 1 and a binary O otherwise.
Cut set identifier. In a cut set identifier a
binary 1 represents a removed edge and a -
binary O represents a do not care edge. The
ability of bit representation to handle set
theoretic operations like union, intersection,
subset... etc are shown in the following
definitions:
Union. If A and B are two bit identifiers, the
union of these sets is A OR B.
Intersection. The intersection of A and Bis A

718 Alexandria Engineering Journal, Vol. 40, No. 5, September 2001

A. R. Abdelaziz / Enumerating minimal Cut-sets in a network

AND B.

Subset. If A AND B= B, then set B is a subset
of A.

2.2.2. Code representation

In modern software, all the previous
relations can be implemented on a TURBO
PASCAL V-6.0, by using an integer variable
and not an identifier representation. So, a
form of the data representation, namely code
representation was suggested by Abdelaziz
(14].

A path/node/cut identifier in a graph with
e edges is represented by an integer code (long
integer declaration for large graphs). The
integer code representa.ion is a decimal form
of the bit vector representation.

Example:

Consider the cut 1, 4,6, 7 in figs 1, and
vertex 2, which is the connection of edges 1, 2,
and 6. The cut is stored in the memory as
identifier {1001011} or as code (105). The
vertex is also stored as {1100010} or as code
(35).

2.2.3. Set operator

Sets are intended to bridge the gap
between the theoretic, artificial world of the
computer program and the hard, cold,
concrete world of everyday existence. Because
sets define collections of objects that represent
the real world, it seems only fitting that the
common logic of everyday life can be applied
to their manipulation.

A set is a finite collection of elements that
share the same previously defined type, called
the base type. A set variable is declared as in
fig 2.

The maximum number of elements in a set
is 256. Further, the upper and lower bounds
of the base type must have ordinal values that
are themselves within the range O through
255.

The relational set operators test either for
equality or inclusion. The only consideration is
the presence or absence of elements; neither
the ordering of elements in a set operand nor
the relative magnitude of individual elements
has any bearing on the result of the test. Table
| summarizes these operators.

Just as it does with arithmetic relation

operators, the NOT operator negates (reverses)
the state of a Boolean value. Therefore, if Set 1
= Set 2 is True, NOT (Set 1 = Set 2) is False.

For example, consider the sub-graph g;
and g2 in fig. 1 Viis stored in the memory as
set [2,3,4], E: as [1,2,3,4,6,7], while V2 is
stored in the memory as set[1,5] and Ezas
[1,4,5,6,7]. As a good notice, the MCS [1,4,6,7]
is the intersection of E;, and E,.

Fig.1. A 5-vertices /7 edges graph.

TYPE

Set 1 =set of 1. .e;
Set 2 =setof 1. .n;
VAR

Cut set : Set 1;
Vertex i Set2:

Fig. 2. Implementation of set operator.

3. Algorithm

Our algorithm (ARAZ) is an enumeration
scheme derived from the basic approach of
Jensen & Bellmore (JB) [1]. This idea was later
extended to (YTL) [4] to improve the
computational efficiency and space
requirements of the algorithm.

«JB proved that, in a 2-terminal graph, the
removal of the edges of a minimal cut set
partitions the graph into two vertex-disjoint
sub-graphs such that:

*the source terminal belongs to one sub-
graph and the sink terminal belongs to the
other,

s each sub-graph should be a connected sub-
graph,

seach edge of a minimal cut has one
terminal in one set and the other terminal in
the other set.

Alexandria Engineering Journal, Vol. 40, No. 5, September 2001 719

A. R. Abdelaziz / Enumerating minimal Cut-sets in a network

Table 1
Set operators
Function Syntax Returns with
: £ True if Set 1 and Set 2 are identical. Every element in Set 1 is contained in Set2, and every
Equaiity Setl » Se2 element in Set2 is contained in Setl.
Not equal Set1<>Set2 True if one of the sets contains at least one element that is not in the other set.
) - True if every element in Set 1 is also in Set 2. In addition, Set 2 contains at least one other
Aubr-ack Bet.1 su Bete element not found in Setl.
Union Set] + Set2 A set that contains one of every element found in either operand.
Intersection Setl*Set2 A set containing elements common to both set operands.
; A set that contains all elements of the first set that is not found in the second set
- 3 »
Difference Setl-oe 2 sometimes called the complement operator.
IN Elem IN Set 1 The element elem is found in Set 1.
JB used this principle to construct a Step 1: consider n first order sub-graphs, each

systemot.c binary-tree search that generates
all minimal cut sets by sequentially adding
vertices & branches until each path
culminates into a minimal cut set.

YTL [4], shows that the JB partitioning
principle can be implemented without
constructing a binary search-tree. Indeed, YTL
constructs each minimal cut set in 1 step by
adding & removing arcs in a manner that
satisfies the 113 partitioning principle
assuming that the graph satisfies the
triangular property. The minimality procedure
is necessary at the termination of both JB and
YTL techniques to exclude all non-minimal cut

sets, which raises the computational time
exponentially.
Our algorithm (ARAZ) is a further

development to JB [1], but it can be
consider~d as a generalization of a cut set
enumeration techniques because it is useful
for multi-source/multi-sink graphs.

Simple example:

This example demonstrates the general idea
of ARAZ. In fig 1, all vertices {1..5 } are
considered to be either source and/or sink
vertices of the graph. The edges are
represented by undirected edges {1..7}. Let V)
and V; are the two mutually exclusive sets of
vertices defined by the JB principle.

of them contains one vertex of the graph.
Therefore we have n vertices-disjoint sub-
graphs and the minimal cut set associated
with this partitioning listing as follows:

i g1 g2 Cut set
1 {1} - {2,3,4,5} {1,5}

2 {2} {1,3,4,5} {1,2,6}

3 {3} {1,2,4,5} {2,3,7}

4 {4} {19° 3.5} {3,4}

5 {5} {1,2,3,4} {4,5,6,7}

Step 2: Initialize counter ko=0, k=n, and k;=k.
Step 3: for i=ko+1 to k; do the following steps.
Step 4: for j=1 to n; remove one vertex from
set go» and add it to set g, so we will obtain
second order g;, in a manner that does not
violate the following six conditions:

i. The vertex removed from g has an edge to
a vertex in gi.

ii. g1 is not previously studied as a second
order sub-graph, whose were stored in
memory locations [(ki+1). .k].

iii. Sub-graph gi does not contain vertex j.

iv. Only two sub-graphs resulted after

cutting.
v. A resulting cut set does not include any
loops.

vi. Cut set does not contain more than two
arcs.

720 Alexandria Engineering Journal, Vol. 40, No. 5, September 2001

A. R. Abdelaziz / Enumerating minimal Cut-sets in a network

As an illustration, if we remove vertex 2
from the 1st g7, the resulting sub-graph are g;=
{1,2} and g= {3,4,5}, resulting a cut set {2,5,6}
which is acceptable, while if we remove vertex
5 from the 2nd g5, the resulting sub-graphs are
g1={2,5} and go= {1,3,4}, resulting a cut set
{1,2,4,5,7} which does not satisfy conditions
(iii) and (vi).

Step S: let k=k+1, store the kth g.

Step 6: let ko=ki, and ki=k, then go to step 3
to generate the next order of g.

Step 7: repeat steps 3-6, until maximum order
of g1 (=n/2) was reach.

4, Computational experience

At this time, we c¢an summarize the
features of ARAZ as follows:

i. No need to delta/star transformation.

ii. No need to check up the minimality of
produced cut sets.

iii. No need to storage memory.

iv. It can handle multi-source/multi-sink

networks.

In the following table, we show some
results of our algorithm for nine graphs given
in fig. 3.

5. Conclusions

In this paper, the enumeration of all
minimal cut sets separating an undirected
graph into two sub-graphs is introduced. The
algorithm does not enumerate trees or
spanning trees as a first step. This approach
has yielded an algorithm, which generates
minimal cut sets at O('2n(n-1)), where n is the
number of vertices in the graph,
computational effort per cut set. Formal proofs
of the algorithm and its complexity are
presented. Results of some computational
experience show that, a) this algorithm is
appreciably faster than previous algorithms,
and b) can handle much larger graphs due to
less memory requirements.

Table 2
Results for ARAZ algorithm
CPU time (sec)
i i i O|%n(n-1]
- . . st The present algorithm Published algorithm [Yan(n-1}} ~Time o
ep (msec)
ARAZ [2]
1 S 7 10 0.0 0.45 8 0.0
2 12 20 228 0.16 703 66 0.7
3 14 20 111 0.1 666 91 09
4 17 36 405 0.76 1750 88 19
5 20 38 5322 29.93 - 190 5.6
6 24 38 335 0.76 1833 276 23
7 30 41 1677 5.32 - 435 3.2
8 37 44 2156 4.55 - 648 2.1
9 57 80 1 5349 163.56 - 1568 10.6
Alexandria Engineering Journal, Vol. 40, No. 5, September 2001 721

A. R. Abdelaziz / Enumerating minimal Cut-sets in a network

Fig. 3. A nine graph used to test the performance of ARAZ algorithm.

722 Alexandria Engineering Journal, Vol. 40, No. 5, September 2001

A. R. Abdelaziz / Enumerating minimal Cut-sets in a network

References

(1] P. Jensen, and M. Bellmore, “An
algorithm to determine the reliability of a
complex system”, IEEE Transactions on
Reliability, Vol. 18, pp.169-174 (1969).

2] Y. Chen, and M. Yuang. “A cut-based
method for terminal-pair reliability”,
IEEE Transactions on Reliability, Vol.
45, pp. 413-416 (1996).

[3] C. Patvardhan, V. Prasad, and V. Pyara,
“Vertex cut sets of undirected graphs”,
IEEE Transactions on Reliability, Vol.
44, pp. 347-353,1995.

[4] L. Yan, H. Taha, and I. Landers, “A
recursive approzch for enumerating
minimal cut sets in a network”, IEEE
Transactions on Reliability, Vol.43, pp.
383-388(1994).

[5] S. Banerjee, and V. Li, “Order-p: an
algorithm to order network partitioning”,
IEEE Transactions on Reliability, Vol.
43, pp. 310-320 (1994).

6] G. Jasmon, and O. Kai, “A new
technique in minimal path and cut sets
evaluation”, IEEE Transactions on
Reliability, Vol. 34, pp. 136-141(1985).

[7] C. Sung, and B. Yoo, “Simple
enumeration of minimal cut sets
separating 2 vertices in a class of
undirected planar graphs”, IEEE
Transactions on Reliability, Vol. 41, pp.
63-71(1992).

8] G. Jasmon, and K. Foong, “Cut sets

analysis of networks using basic
minimal paths and network
decomposition”, IEEE Transactions on

Reliability, Vol. 36, pp. 539-545(1987).

[9] A. R. Abdelaziz, “ A fuzzy-based power
system reliability”, Electric power
systems reserch, Vol. 50, pp. 1-5 (1999).

[10] R. K. Wood, “Factoring algorithm for
computing K-terminal network
reliability”, IEEE Transactions on
Reliability, Vol. 35, pp. 269-278 (1986).

[11] S. P. Jain, and K. Gopal, “An efficient
algorithm for computing global reliability
of a network”, IEEE Transactions on
Reliability, Vol. 37, pp. 488-492 (1988).

[12] N. Deo, “Graph theory with applications
to engineering and computer science”,
Prentice-Hall, Inc., Chapter 4 (1974).

[13] S. Soh, and S. Rai, “Experimental
results on processing of path/cut terms
in sum of disjoint products technique”,
IEEE Transactions on Reliability, Vol.
42, pp. 24-33 (1993).

[14] A. R. Abdelaziz, “Calculating the
frequency of power system failure
including common-cause failures”,

Electric Machines and power systems

Journal, Vol. 24, pp. 533-540 (1996).
[15] M. Yester, “Using Turbo Pascal. 67, 2

edition, QUE Corporation, p. 87 (1991).

Received September 1, 2000
Accepted August 13, 2001

Alexandria Engineering Journal, Vol. 40, No. 5, September 2001 723

