Numerical modeling of a single span towed marine cable
under periodic excitation
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A developed mathematical model of a single span sagged cable subjected to dynamical
condition, provides a way of determining the location and tension of any material point of
the cable as a function of the time. A code based on finite difference approximation to
the differential equations derived from basic dynamics is implemented. The equations of
motion are developed for a general three - dimensional case of a single span cable,
supported at two different elevations at the end points, with fixed and movable supports.
It is subjected to different types of acting loads. Numerical examples are given and
comparisons are made between numerical and the available experimental results. This
has been done with the aim to demonstrate the validity of the present method. The
influence of various factors, such as excitation amplitude, excitation frequency, initial
tension and Young’s modulus, are also investigated.
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1. Introduction

Cables are commonly used in applications
that require long, flexible and/or lightweight
structural element [1]. Cables are used “for
towing ships as well as berthing and mooring
aids for floating vessels. For such
applications, marine cable becomes under
periodic environmental excitation of taut-slack
conditions. In these applications, the cable’s
inherent flexibility renders it susceptible to
oscillation that may impair its performance.
For instance, cables submerged in cross-flows
may be excited by vortex shedding which can
lead to a resonant response known as
strumming [1]. Strumming may increase cable
drag forces, promote fatigue, amplify cable
acoustic emissions and degrade the
performance of attached instruments (e.g.,
hydrophones) [1].

Prior knowledge of the cable structural
dynamics is required in the analysis of these
complex fluid/cable interactions. A history of
the derivations and solutions of the equations
for static and dynamic response of horizontal
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chord (symmetricall and inclined chord
(asymmetrical) cables 1is given in Cable
Structures [2], Handbook of Coastal and
Ocean Engineering [1, 3].

The non-linear vibrations of marine cables
have been reported by quite a few authors in
the past. Schram and Reyle [4] have employed
the method of characteristics to solve the
governing equations of a towed cables system
using numerical interpolation. Delmer el al. [5]
presented a numerical method for the
dynamic simulation of towed cable. The model
was constructed from a set of generic elements
incorporating cable strands, knots, kinks,
cable ends and winches. Ahmadi [6] derived
an exact mathematical formula for a towed
elastic catenary associated with a uniform
distributed load. Triantafyllou and
Chyrssostomidis [7] developed a procedure for
calculating the response of a towed marine
cable subjected to a harmonic excitation
applied at the up-stream end. The model was
based on the slender body approximation.
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Rajagopal [8] adopted the transfer matrix
method for developing a closed form for a taut
string/mass system. Lin [9], used a hybrid
analytical/numerical solution method to solve
the non-linear response of a suspended cable
supporting an array of discrete masses. Patel
[10] investigated the transient behavior of
towed marine cables in two dimensions as the
first phase towards the objective of developing
a reliable prediction model for the cable
vibration problem. Srivastava [11] suggested
an analytical formula to solve a problem of
towed array system of marine cables. Recently
an analysis of cable dynamics were presented
by Moustafa [12] for predicting the behavior
of a marine cable operating under snap load
due to the heaving or pitching ship motions.

This paper focuses upon a three-
dimensional modeling and a numerical
integration scheme that solves the dynamic
response of such marine cables. The
differential equations of motion were
developed for the general case when the cable
is supported at two different elevations and
subjected to spatial static and dynamic loads
as a result of vessel top end oscillation. The
non-linear strain-displacement relationship
for the cable is used, accounting for the
change in cable tension during motion.

The problem defined above is governed by
three non-linear coupled partial differential
equations. The equations are solved using a
robust and stable finite difference method.
Numerical results are presented and good
agreement is achieved with the available
experimental results that help to demonstrate
the efficiency and the validity of the present
method. The influences of various factors
governing the cable motions are also

examined.
2. Basic equations

Within the framework of the theory of
elasticity, the cable analyzed in this paper falls
under the category of problems that are
geometrically non-linear, but the materials are
linear. It is assumed that the external loads on
the cable result in an axial tension along the
cable and do not produce any shear or flexural
stresses; the material of the cable is assumed

to have homogeneous and isotropic elastic
properties and the material obeys Hooke's law.

Of special interest in this paper is a cable
that hangs initially under its own weight (fig.
1). The initial shape of the cable has the form,

(11,

X
z=acosh(—+a1)+a2, (1)
a

in which a=H/q, where H is the horizontal
component of initial tension, q is the uniform
static load on the cable, (a;) and (az) are the
constants to achieve the initial shape of the
cable.

Fig. 1. Mooring line geometry.

The nonlinear strain-displacement relation
used in the development of the governing
equations of motion, Irvine [2], can be written
as:

u 1 au)2 1(av )
e=1{—+—|—| +=|=—
ox 2\ ox 2\ ox
2
+l(§w_) sech2(§+a1)
2\ ox a

+@§ech2(i+a1)sinh(i+al), (2)
ox a a

in which,

u is the the longitudinal in-plane
displacement component along the x-axis.

w is the vertical in-plane displacement
component along the z-axis.

v is the out-of-plane, or swinging

476 Alexandria Engineering Journal, Vol. 40, No. 4, July 2001



A.A. Moustafa / Modeling of single span marine cable

displacement component along the y-axis.
All the above components are measured from
the static equilibrium configuration repre-
sented by eq. (1).

The stress-strain relation for the cable is
2],

o (s, t) = oo (s) + Ee (s, t). (3)

Where;

¢ is the instantaneous axial stress,

s is s the coordinate along the length of
the cable,

T is the time in seconds,

o, is the axial stress before the
application of the dynamic loads,

E is the cable modulus of elasticity,

The displaced position of the cable oscillating
due to the spatially distributed dynamic load
F(s, t) has the coordinates [1];

X =x+u(s,t), (4-a)
y=y+v(s,t), (4-b)
z=z+w(s,1) (4-c)

During the motion, an initial cable element of
length {ds} changes to {dS} following the
relation [2];

dS = (1 +¢) ds, (5)

and the initial cable tension T(s) is changed to

T, (s, t) according the relationship [2],
T, (s, t)= T(s) + AEg (s, t), (6)
in which A is the effective cross-sectional area

of the cable.
The equations of motion for the displaced

position of the cable are in the form [2];

8%u o(x +u
m——2 =Fx(s,t)%

+%{(T + AEe)gg(x + u)—T%}, (7-a)

8%v . d(x +u)
mﬁ_— y(s,t) s

+Esa—{(T+AEs)%(y +v)-Tg—ys}, (7-b)

P d dz
+£{(T +AEe) (2 + w)—Td—s}, (7-c)

in which Fx(s, t), Fy (s, t), and F; (s, t) are the
X, y and z components of the dynamic load per
unit length of the cable respectively projected
on the x-axis and m is the mass per unit
length of the cable. Using eq. (1) for the initial
shape of the cable and assuming that the
cable lies in the vertical plane under the
application of the static loads, egs. (7) become:

(8-a)
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a%v ou X
m—--= Fy(l + —)sech(— +a1) -
ot2 ox a
o, avffan) L1fau) 1fov) L 1Lfow)
ﬁ{AE_[(_) 2 (2) () Jeeri{zen)
ox ox |\ ox 2\ ox 2 (ox 2\ ox a
+%scch2(§+a,)sinh(§+a,)] xsech(§+al)+l{—gv;}sech(§+al), (8-b)
2
o . Fz(l + Qu—)sec h(i + alJ .
ot2 ox a
[ 2 . 2
s AE sinh(§+a1)+a—w— (2) l(@) +l(ﬂ) +1(@) sech2(£+a )
ox a ox J|\oax) 2lex) 2\lex) 2\ ex ik
+@sech2(i+a])sinh(1+a| xsect\(§+a1)+H2w— sech(§+al) (8-c)
ox a a /] a ox - \a
Egs. (8) constitute a system of coupled partial ov _1 n n
differential equations for the displacement ox_ 2h Vil _vm_l)' (9-¢)
components #, v and w, of a sagged cable 0 '
whose initial form is given by eq. (1). ﬂg l——(vn —ZV& +yh ), (9-d)
axz h2 m+1 =1
3. Method of solution
e equations of motions (8) are solved using L= —(w w ), (9-¢)
the finite difference approach. In discyetizing ox 2 m+l m-1
the equations of motion in any direction,
implicit finite difference expressions are used 62w 1 n n "
for ~ the space derivations for the displacement —= -—Z(Wm +1 2w +w -1 ) ’ (9-1)
in that direction. The space derivatives for the ox h
other two displacements and the time 52u 1 1 1
derivation are discretized by the standard = —(unm+ —ZU}}I +ugl— ) ; (9-g)
finite difference approximation. These ot k2
discretizations are given bellow: _

Where h and k are the grid sizes in the
ou._ I8 { (uml _yntl ) +9 (un il ) distance and time coordinates, respectively,
ox 8h (\ m+l "m-1 m+l "m-1) (9-q) and the difference eqs. (9) refer to the grid

points x=mbh, t=nk, and m and n are integers.

3 [u"_l _yn-1 )} For the equations of motion in the other
m+l “m-1 two directions, the space and time derivatives

are re-placed by the corresponding finite

2u_ 1 n+l _oun#l , yn+l difference approximations, in a similar
; ¥ @{ (um+l i ki um—l) manner. The finite difference replacement of
= - o (9-b) the equations of motion gives a system of non-

+2 (um % e 2um + U 1) linear algebraic equations that can be solved

1 1 1 by the Newton-Raphson method of iteration.

¥ u&;l -2ufh + ug——l )}, At each time step, the tension in the cable is
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determined from eq. (5) using the standard
finite difference relations for the derivatives in
the strain-displacement equation. However,
for m=1 and m=n+1, which correspond to the
ends of the cable, forward and backward finite
differences are used respectively, instead of
the central differences.

The formulation is completed by specifying
a set of boundary and initial conditions.
Different types of boundary conditions may
occur depending upon the types of physical
conditions at the two ends of the cable. For a
sagged cable with one fixed end and the other
subjected to known motion, the boundary
conditions are;

u(0,t) = v(0,t) = w(0,t) =0,
and
u(xs,t)= U(t) ,v(xg,t)=V(t) and w(xg,t)= W(t).

Where X, is the projection of the cable free end
on the x axis: U(t) ,V(t) and W(t) are to
be specified corresponding to the case under
investigation.

4. Numerical example

To demonstrate the capability and
accuracy of the present solution technique,
tests models on a small-sagged marine cable
performed in Ship Research Institute of
Norway [13] are chosen for comparison with
the numerical results. On the other hand, to
investigate the influence of the different
parameters governing such kind of cable
motions a parametric study of each parameter
is cared out. The tests consider a uniform
small-sagged cable suspended at the two ends
on the same level. One end of the horizontally
placed sagged cable is fixed while the other
end is subjected to horizontal excitation given

by,
U(f) = u, sin(w,1).

The principal parameters of the cable and test
are as follow:

Cable diameter (0.01 m)
Cable length (10.9774 m)
Cable span (10.7920 m)
Sag-span ratio (0.0812)
Young’s modulus (10E11 n/sq.m)
Mass distribution (0.61 Kg/m)
Range of amplitude (0.025 -0.1 m)
Range of frequency (0.0 - 1.2 Hz)
@, (0.55 Hz)
Figs. 2-5 show the maximum and

minimum values of tension in the cable under
excitations at different amplitudes for the
range of (0.025 m to 0.1 m) and frequencies
for the range (0.1 Hz to 1.2 Hz). Both for the
numerical results and experimental data given
by Ship Research Institute of Norway [13].
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Fig. 2. Comparison between the numerical and experi-
mental results [excitation amplitude = 0.025 m].
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Fig. 3. Comparison between the numerical and experi-
mental results [excitation amplitude = 0.05 m].
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The quantitative and qualitative agreement
between both results is acceptable. Numerical
results follow the physical expected behavior
of the tension in the cable especially for small
excitation amplitude as well as for small
values of the frequency. It is clear from these
figures that; when the excitation are not
severe, i.e. the excitation frequency is low or
the amplitude is small or both, the maximum
and minimum tensions are symmetrical with a
constant mean value which is equal to the
static tension. When the excitation becomes
severe, however, this symmetry can no longer
hold. As the minimum tension approaches the
zero level, that is the cable starts to operate in
an alternating taut-slack condition, the
maximum tension increases significantly, this
is manifested in figs. 4, S.

The effect of the initial tension on the total
tension is illustrated in fig. 6. It is noted that
as the initial tension increases, the sag
decreases. In this case, it is believed that the
cable dynamics is influenced mainly by the
elastic stiffness, resisting the applied load
through stretching. Fig. 7 shows the effects of
Young’s modulus on the cable dynamics. It
can be concluded that, when the frequency is
low, the force is small and the system employs
mainly the catenary stiffness to resist the
applied excitation. As the excitation frequency
becomes greater, the elastic stiffness becomes
more important.
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Fig. 4. Comparison between the numerical and experi-
mental results [excitation amplitude = 0.075 m)].
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Fig. 5. Comparison between the numerical and experi-
mental results [excitation amplitude = 0.1 m)].
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Fig. 6. Effect of initial tension on both max. and min. tension
in the cable the excitation is fixed at 0.075 m.
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Fig. 7. Effect of Young’s modulus on both max. and min.
tension in the cable the excitation amplitude is fixed at
0.075 m.
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The displacement is characterized by
sharp troughs and flat crests, with flat
troughs and sharp crests for the velocity. The
magnitude of the acceleration becomes much
larger as the transition from the slack to the
taut state involves a sudden change in
velocity. As the excitation further increases,
(amplitude 0.1 m, frequency 1Hz), the
magnitudes of displacement velocity and
acceleration all become much greater, and the
distortion is even more pronounced. For the
velocity, the so-called free-falling phenomenon
appears. As the cable moves upwards,
characterized by the sharp increase in
velocity, then reaches its highest level and
starts to fall downwards, a loss of tension
caused by slack renders its motion controlled
by its own weight in water and the fluid drag
force. Subsequently, the cable becomes taut
again, characterized by the large magnitude of
acceleration. However, this great acceleration
is not sustainable, depicted by the sharp
oscillations at its peaks, possibly due to the
development of elastic waves.

5. Conclusions

A numerical solution of the nonlinear
dynamic response of a single sagged cable
under the action of time-dependent loads is
presented. A code is written to compute the
motion of a towed cable, based on a robust
and stable finite difference approximation to
the differential equations derived form basic
dynamics.

An implicit finite difference technique is
used as the method of solution. The derivation
of the equations of motion of the cable element
using non-linear strain-displacement relation
leads to a formulation that is applicable to
problems of small strains and large
displacements. The equations of motion are
solved to determine the displacements and the
tension in the cable, assuming that Hooke's
law is valid. Applications of the proposed
numerical technique to a single span sagged
cable operating under towing loads is solved
for a cable with fixed ends as well as for the
case where movable ends are used.
Furthermore, kinematics behaviors of the

cable mid-point are investigated in order to
arrive at a qualitative and quantitative
analysis of the dynamic behavior of the cable.
Figs. 8-10 illustrate the vertical
displacements, velocities and accelerations of
the mid-point of the cable under three

different situations. In these figures the
positive  direction corresponds to upward
motion, and negative direction to the

downward. In fig. 8, where the cable is under
small excitation (amplitude 0.05 m and
frequency 0.75 Hz), the responses are almost
sinusoidal with small distortion. In fig. 9, the
cable is under far more severe excitation
(amplitude 0.075 m and frequency 1 Hz ). The
responses become apparently distorted.

Good agreement is noted between the
numerical and some published experimental
results, which demonstrates the accuracy and
the validity of the proposed method. It is
found that, when the cable is under small
excitation, the non-linear effects are not
important. This is not the case when the
excitation is severe, especially when the cable
is operating in an alternating taut-slack
condition.

Analysis of the dynamic behavior of the
cable. Figs. 8-10 illustrate the vertical
displacements, velocities and accelerations of
the mid-point of the cable under three

different situations. In these figures the
positive direction corresponds to upward
motion, and negative direction to the

downward. In fig. 8, where the cable is under
small excitation (amplitude 0.05 m and
frequency 0.75 Hz), the responses are almost
sinusoidal with small distortion. In fig. 9, the
cable is under far more severe excitation
(amplitude 0.075 m and frequency 1 Hz ). The
responses become apparently distorted.

Good agreement is noted between the
numerical and some published experimental
results, which demonstrates the accuracy and
the wvalidity of the proposed method. It is
found that, when the cable is under small
excitation, the nan-linear effects are not
important. This is not the case when the
excitation is severe, especially when the cable
is operating in an alternating taut-slack
conditjon.
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