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Free lateral vibrations of isotropic and anisotropic trapezoidal plates that have clamped
and simply supported mixed boundary conditions has been investigated by using
Galerkin’s method. The shape function is assumed as a multiplication of two parts: The
first part satisfies the essential boundary conditions associated to the plate edges and the
second one represent the deflection distribution over the plate surface with respect to
that of a certain origin in the plate domain. The convergence of results is ensured by
considering some successive different expansions of the deflection function. To
demonstrate the accuracy of the present solutions, several numerical examples are
analyzed and the results are compared with those available in the literature. A series of
tables and graphs that indicate the variation of the natural frequency coefficients with
both the geometry and the boundary conditions of the plate are presented. The effect of
variation of the composite filament angle on the natural frequency coefficients of clamped
plates is also studied.
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1. Introduction

Plates of trapezoidal crossection are used
as wing and tail panels in modern high-speed
aircraft. The transverse vibration analysis of
such plates has attracted the attention of
many researchers. For isotropic trapezoidal
plates, Chopra and Durvasula [1,2] have
investigated the small free oscillation
characteristics of simply supported,
symmetric and asymmetric plates,
respectively. They have modeled the simply
supported plate as a fully fixed membrane.
Such idealization reduces the differential
equation that governs the motion from a
fourth order to a second order one. The lateral
deflection was expressed in terms of a Fourier
sine series and Galerkin’s method was applied
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to solve the problem. The results were given
for plates of several different dimension ratios.
However, their method was only applicable to
plates of simply supported boundaries. In [3],
the finite element method was used by Orris
and Petyt to study the free vibration of
trapezoidal plates that have simply supported
and fully clamped boundaries. Narita et al. [4]
presented an experimental study of the free
vibration of fully clamped trapezoidal plates.
They have concluded that: As the ratio of the
top to base lengths of the trapezoid increases,
the corresponding natural frequency
decreases.

In [5], Srinivasan and Babu have applied
an integral equation technique to study the
free vibration of cantilevered quadrilateral and
trapezoidal plates they presented the results
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for a wide range of plate geometry variation.
The lateral vibration of a trapezoidal
cantilevered plate of variable thickness was
analyzed by Laura et al. [6]. The deflection
surface was described by characteristic
orthogonal polynomials in two variables and
the Rayleigh-Ritz method was applied. In [7],
the natural frequencies of -cantilevered
trapezoidal plate that has spanwise quadratic
thickness variation were obtained by the first
author. The finite element technique was
used.

Due to the complexity of the differential
equation and the associated boundary
conditions, there is a little amount of
literature that concerns the free vibration
analysis of anisotropic trapezoidal plates.
Narita et al. [8], have investigated the case of
clamped orthotropic trapezoidal plate by
applying the integral equation method. In [9],
the case of laminated quadrilateral plates was
analyzed by Srinivasan and Babu. They have
applied the integral equation technique to
study both the free vibration and the flutter of
fully clamped trapezoidal plates. The Rayleigh-
Ritz method was applied by Liew [10] in the
free vibration analysis of symmetrically
laminated cantilevered trapezoidal plates.

In the present work, the free lateral
vibrations of both isotropic and anisotropic
trapezoidal plates that have some
combinations of clamped and simply
supported boundary conditions has been
investigated. A suitable displacement function
that satisfies the associated kinematics
boundary conditions, for each case of study is
assumed as an approximate solution and the
Galerkin’s method is applied. Before
undergoing a series of computational work,
the convergence of results is ensured.
Comparisons indicate that, the present results
are in good agreement with those given in the
available literature. A series of tabulated
results and graphs for some parametric
studies are presented.

2. Formulation

The considered plate is assumed to have a
symmetric trapezoidal crossection which, for 6
= 0, it becomes a rectangular one and for
certain values of the plate aspect ratio and the

angle 6 , it tends to be an isosceles triangle.
The plate configuration is shown in fig. 1. In
the formulation, the x, y coordinates and all
the deformations of the plate are
nondimensionalized by a characteristic length
(L = 2a), which is the chord of the plate at its
base (X=x/L,Y=y/L and W = w/L).

Fig.1. Geometry of the plate.

The partial differential equation which
governs the free vibration motion of
anisotropic plates after the assumption of
simple harmonic motion is given by

Ci1.Wxxxx + Co.Wxxxy + C3.Wxxyy +Cs.Wxyyy +
Www = k2.W = 0, (1)

where Wxxxx is the fourth order partial
derivative of W with respectto X and C, =
Diin / D22 , C2=4Djy3/ Da2, C3=2(Dj2+2
D33) / D22 , Ca=4 D23 / D2

Di , i, j = 1,2,3 are the elements of the
elasticity matrix as defined in [11] , A is the
nondimensionalized natural frequency
coefficient.

A=oL’(pt/D,,)"?,

where p is the density of the plate material
and t is the plate thickness.

The solution of eqn.1 will be expressed in
the following form:

N N
WX,Y)= D Anga(X,Y) = G(X,Y) D" Anyn(X,Y),
n=I n=I

)
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where G(X,Y) is the part of the deflection
function that satisfies the essential boundary
conditions. The explicit expressions for the
function G(X,Y) is given in Table. 1. The
symbols C and S denote a clamped edge and a
simply supported edge, respectively, yis the
plate aspect ratio (y=h / L), the parameter p
= tan 6 , the multiplied parts of the function
G(X,Y) are the equations of the sides of the
trapezoid and the numbering of the four sides
is shown in fig. 1.

Table 1
The function G(X,Y)

Boundary G(X,Y)

condition

CECe X2 (X-y)2 (Y+pX - 0.5)2 (Y-pX + 0.5)?
SSSS X (X-y) (Y+pX - 0.5) (Y-uX + 0.5)
CSCS X2 (X-y)? (Y+pX - 0.5) (Y-pX + 0.5)
SCSC X (X-y) (Y+pX - 0.5) (Y-pX + 0.5)?

In the case of a clamped edge, the
associated boundary conditions are W = 0 and
Wn =0, where n is the direction normal to the
edge. The function G(X,Y) satisfies both these
two kinematics boundary conditions. For the
simply supported edge, there exists an
essential boundary condition (W=0), while, the
second one is natural (M, = 0, where M, is the
bending moment in the direction normal to
the edge). The function G(X,Y), for the simply
supported edge, is assumed to satisfy only the
essential boundary requirement. It is found
that, generating a function which satisfies
identically such natural boundary condition
will be exceedingly complicated.. Such
assumption, for the simply supported edge,
will slightly reduce the stiffness of the system
and hence, its natural frequencies.

The function wyn(X,Y) represents the
distribution of the deflection W(X,Y) over the
domain of the plate with respect to that of the
point( y/2,0). It is constructed by following
Laura et al. [12] with the modifications
concerning the origin location.

Ya(X,Y)=(X-b)2n-D+Y2(n-1) n=12..N, (3)

where b =1y/2.

After carrying out the multiplication of the
function G(X,Y), it is then expressed in the
following form:

K
G(X,Y) = Z Y a; Xmi yni (4)

i=1

where the aj’s are multiplication of the
parameters p and y, K is the number of terms
(it depends on the type of the boundary
conditions) and the exponents m;and n; are
the powers of X and Y in theith term. For
example, in the CCCC case K=15, m; takes the
values 8,7,6,..., 2 and n; = 0,2,4. The explicit
form of G(X,Y) will be given in the appendix.

The substitution of the solution (2) into eq.
(1) results in the error function which is
known as the generic residual € (X,Y). For
example, for N=3 , it will take the following
form:

e(X,Y)=A,[C:F1+C2G 1+C3H 1+C4P1+Q]+A,[C Fa+
C2G2+C3H2+C4qP2+Q2]+A3[C1F3+CaG3+
C3H3+CaP3+Q3]A2{A1.2G(X,Y)+
A2.G(X,Y)[(X-b)2+Y?2]+A3[(X-b)*+Y4]}, (5)

where Fi, Gi, Hi, Pi, and Qi (i = 1,2,3) are
functions of X,Y. The explicit expressions of
these elements of g(X,Y) for the CCCC case,
for N = 3, as an example, are given in the
appendix.

According to Galerkin’s method, it is
required that the residual €(X, Y) to be
orthogonal to each of the deflection functions
¢n (X,Y) over the domain D of the plate. i.e.

I j e(X,Y) ¢n(X,Y)JdD=0  n=1,2,..,N. (6)
D

Substituting from eqs (2, 5) into eqn. (6), a
number N of characteristic equations is
obtained from which the natural frequency

coefficient A is determined.
The substitution from eqgs (2) and (5) into
Eq. (6) results in integrals of the following

type:

Y (0.5-pX)
I= j j XpYadD= I
D 0 (0.5-uX)

XpYa dXdY . (7)

The evaluation of such integral gives the
following:
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[=0 for q odd number. (8 - a)
And
Y
Y
1= [ (xe/29q+ 1) (1 - 2pX)0dX
0
0 for q even number. (8 - b)

The term (l—2ux)q+I is expressed in its
expanded form and the integrallis given by
the following algorithm:

I=f(wy,p,q) /29(q+l), 9)

where;

flt ;y,p,@ = y®*V/(p+1) - 2p(q+1)yP*2/(p+2) +
(2p)2.(q+1).q.y®*3/21.(p+3) -

- (2p)3(q+1).q.(q-1).yte*4/3L.(p+4) +....

It must be mentioned that the number of the
non-zero terms in the expansion given in
Egsn. (9), that correspond to a certain value q
is (q+2). A computer program is constructed to
determine such integrals and the resulting
characteristic equations are solved to
determine the natural frequency coefficients.

3. Numerical results

To check the convergence of the present
results, the case of clamped isotropic
trapezoidal plate is examined. Table. 2.
indicates the fundamental natural frequency
coefficient for plates that have some different
values of 6 and an aspect ratio of unity. The
results that correspond to three successive
values of N (N = 1,2,3) are presented. As could
be shown, for 8 = 0, which is the case of the
square plate, exact results are obtained for the
three values of N. for 8 # 0, the convergence is
somewhat affected through changing N from 2
to 3. The reason of such fluctuation of results
is that, the number of integrations, from
which the characteristic equations are
obtained, is nearly doubled. Rounding errors
may be the cause of such result. However, the
differences between solutions which are
obtained by these two values of N are very
small and don’t exceed 0.3%. So for all the
following cases of study, results for the two

values of N (N = 2,3) will be obtained and the
smallest are considered.

In table. 3, the fundamental natural
frequency coefficients for clamped and simply
supported isotropic trapezoidal plates are
presented and compared with those available
in the literature. As could be seen, the present
results, for the clamped plate, agree well with
those given in the other sources and the
maximum percentage difference between them
is nearly 1%. For the simply supported plates,
the present solution is expected to be slightly
less than that given in both [1] and [3]. The
reason of such result is that, the function

G(X,)Y) for the simply supported plate is
assumed to satisfy only the essential
boundary condition (w=0). However, the

percentage difference between the present
solution and that given in both [1] and [3] is
nearly about 5%.

For clamped orthotropic trapezoidal plates,
table 4 indicates the comparisons of the
present results with those available in both[8]
and [15]. The fundamental natural frequency
coefficients for four different ratios of the
elastic constants (Dx/H , Dy/H), three different
aspect ratios and three different values of
are presented and compared. From an
engineering point of view, one can concludes
that the present results are in good agreement
with those previously published, since, no
closed form solutions for trapezoidal plates are
available.

Table. 5, indicates the variation of the
fundamental natural frequency coefficients for
isotropic plates with the angle 6 of the
trapezoid. Cases of four different combinations
of boundary conditions and three different
values of aspect ratios are studied. For the
four cases of study, the fundamental natural
frequency coefficient (A;) decreases as the
aspect ratio increases. For the first case of
boundary conditions, which is CCCC, it is
found that, the increase of the plate angle 6
leads to a corresponding increase of A;. The
same conclusion was given by Narita et al.
[4],. The cause of such behavior may be
explained as follows: The increase of 6 tends to
decrease the area of the plate and hence, its
total mass, which is inversely proportional to
the natural frequency o according to the
Rayleigh-quotient. For the fourth case (SSSS),
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it is found that, for each value of the aspect
ratio, A; increases as 0 increases to a certain
value of 6, then A; tends to decrease. Such
behavior may be much more complicated to be
explained because both the mass and the
stiffness are affected by 6 for the simply
supported edge, since only the essential
boundary conditions here are assumed to be
satisfied. For the other two arrangements of
boundary conditions, it is found that, the
variation of A; with 6 for the CSCS case tends
to be similar to that of the CCCC one while,
for that of the SCSC combination, it is similar
to that of the SSSS case.

In table 6, the fundamental natural
frequency coefficient for a wunidirectional,
Graphite/Epoxy, composite trapezoidal plate,
for the two cases of CCCC and CSCS
boundary conditions is given. Plates of three
different aspect ratios and the permissible
ranges of variation of 8 are considered. Nearly,
the same variation of A; with 6 as in the
corresponding cases of isotropic plates is
occurred. The advantage of using such
anisotropic material rather than an isotropic
one is obvious since the values of A; for
certain values of y and 6 are nearly double
those of the corresponding isotropic plates.
The fundamental natural frequency coefficient
for a Kevlar/Epoxy composite plate is given in
table 7. The same behavior of A; with the
variation of 6 like as that of the
Grophite/Epoxy composite plate is occurred .
figs. 2-4 shows the effect of the composite
filament angle a on each of the natural
frequency coefficients of the first three modes
for a clamped plate. Three different aspect
ratios and two values of 6 for each aspect ratio
are considered. It is found that, the natural
frequency coefficients for the trapezoidal plate
(6 =10°) for each of the first three modes
except, for the third mode of the unity aspect
ratio plate in the range of a = 50° - 130°, is
higher than that of the rectangular one. Also,
one can concludes that, for both rectangular
and trapezoidal plates, the natural frequency
coefficients decreases as the composite
filament angle a increases till @ = 90°, which is
a position of symmetry of the curves.
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Fig. 2. Effect of composite filament angle on frequency
coefficients (y = 0.75).
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Table 2

Convergence of results
0 N = N=2 N=3
0° 35.999 35.999 35.999
50 40.414 39.971 10.086
10° 47.699 46.053 46.190
15° 58.266 54911 55.047
20° 71.558 66.864 66.986
250 87.713 82.186 82.372

Table 3
Comparison of results (isotropic plate)
Ref. n
0.1 0.2 0.3
Present (C,y =1)* 40.689 48.086 58.617
[8] 41.09 48.20 58.86
[:131] 40.55 47.571 58.021
[14] --- - 57.68
Present (SS,y =1)" eex 22.438 -
31 23.655 -
[1] 23.641 ---

* C = Clamped plate. ** SS = Simply supported plate.

Table 4
Comparison of results (clamped orthotropic plates)
Y n Ref. (Dx/H , Dy/H)*
(0.5, 0.5) (0.5, 2) (2990:5) (281 2)
Present 40.442 27.745 55.308 33.484
1 0 [8] 40.121 28.001 56.003 34.189
[ 15] 39.697 27.782 55.564 33.913
1 0.1 Present 45.591 32.648 59.642 37.918
[8] 45.326 33.185 60.115 38.728
2 0.1 Present 37.307 33.897 38.973 34.550
[8) 37.349 32.025 39.909 34.005
2/3 0.15 Present 73.061 43.308 1157123 62.236
[8] 71.276 43.289 113.264 61.851

Dx=Dn,Dy=D2 and H = D1 va1 + 2 Dk where Dk = Gh3/12

Table 5
Effect of boundary conditions on the frequency coefficient for isotropic plates
Boundary Y 0
condition 5 10 15 20 25 30
CcccC 0.75 53.819 58.563 66.101 77.131 92.138 111.81
1.0 39.971 46.053 54911 66.864 82.186 -
1.5 33.708 42.877 48.099 = = =
CSCS 0.75 47.115 50.060 54.864 61.565 70.149 80.839
1.0 29.401 32.826 38.203 45.091 53.225 -
1.5 15.587 19.356 24.389 = - -
SCSC 0.75 33.476 35.503 37.091 36.591 32.907 18.817
1.0 32.293 34.827 37.374 40.739 40.229 -
1.5 31.564 24613 21.214 - - -
SSSS 0.75 22.234 23.891 24318 21007 17.808 12:325
1.0 18.683 19.153 16.213 14.532 8.346 -
1.5 12.833 10.670 6.688 - - -
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Table 6
Results for Graphite/Epoxy Composite plates (E11/E22 = 17.573 , Gi2/E22 = 0.696 , vi2 = 0.28)
Boundary Y 0°
condition 0 5 10 15 20 25 30
ccce 1 98.987 105.210 120.793 143.802 170.383 218.304
CSCs 96.232 98.554 105.583 118.295 137.983 166.888
CCcCC 0.75 169.193 171.249 178.587 198.791 236.015 292.28 364.53
CSCS 167.142 169.781 177.462 188.689 206.079 231.786 277.62
ccce 1.5 47.922 52.383 66.318 94,101 === --= ---
CSCS 44.064 46.842 55.046 69.350 = === =---
Table 7
Results for Kevlar/Epoxy composite plates (E11/E22 = 13.818 , Gi12/E22 = 0.418 , vi2 = 0.34 )
Boundary Y 0°
condition 0 5 10 15 20 25 30
CCCC 1 85.386 87.829 95.915 116.593 141.978 202.059 ----
CSCS 85.211 87.278 93.589 104.979 122.541 148.238 i
CCEe 0.75 149.908 151.734 158.560 176.586 209.652 259.542 327.86
CSCS 148.238 150.645 157.289 167.318 182.821 205.683 238.424
CCcce 1.5 43.417 48.006 60.897 85.629 - -—- ---
CSCS 38.954 41.443 48.867 61.705 === = ===
4. Conclusions increases, while, for the other two cases of
SCSC and SSSS, different behavior of A,
The free lateral vibration of occurs.
isotropic/anisotropic, rectangular/trapezoidal 3. The effect of variation of the composite
plates that have some combinations of filament angle on the frequency
clamped and simply supported boundary coefficients of the clamped plates has been
conditions are analyzed by using Galerkin’s investigated. The results indicate that the
method. It is possible from the preceding frequency coefficients are monotonically
analysis to draw the following conclusions: decreasing with the increase of the
1. The convergence and the accuracy of the composite fiber angle o till a = 90° and a
solutions have been demonstrated by symmetric behavior of A about the value
comparisons between the present results of a = 90° is happened.
and most of those available in the 4. For the slmply supported edge’ the

literature.

2. For both the CCCC and CSCS plates, the
fundamental natural frequency coefficient
A1 increases as the angle of the trapezoid 6

Appendix

ignoring of the natural boundary condition
tends to decrease the stiffness of the
system and hence its natural frequencies.

The explicit forms of the elements of the residual function g(X,Y) which is given in eqn. (5), for

N=3 and for the CCCC case, are given by:

G(X)Y) = aiX® + a;X7+ a3X0Y? + aq X® + asX5Y? + agX5 + a7X* Y4 + agX4Y? +agX* + ajo X3Y* +a1:X3 Y?

+a12X3 +a13X2Y* + a14X?Y? +a,5X?

where

a; = pt a; = -2pu3 - 2ypt a3 =-2pu2 az=1.5p2
as=2n +4yp2. a6 =-0.5 p-3yp2-2y2 pd. az =1

ag = -0.5 p-4yn-2y2p2. ag=(1/16) +yn + 1.5y2 p2.
an =y + 2y2 aj2 =-1/8y - 0.5y2 p.
ais = (1/16) )'2 5

456

a;3=y2.

+ 4y + 2

o« =it
ajg = -0.5 Yz .
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F; =3360a;X* +1680a2X3 +720 a3X2Y2 +720 a4 X2 +240 asXY?2 +240 as X+48 a7 Y?* +48a8 Y2 + 48 ag.
G = 480a3X3Y + 240as5X?Y + 192a7XY3 + 96 agXY + 48a,0Y3 +24a,,Y.

H; = 120 a3z X* + 80asX3 + 288a7X2Y2 + 48agX? + 144a;0 XY2 + 24a;; X + 48a;5Y2 +8a;4

P, = 192a7X3Y + 144 a;0X?%Y + 96a,3 XY.

Q) = 48a7X* + 48a,0X3 + 48a,3 X2

Fy = ;X6 +er5 +e3X4Y2 + e4 X4Y2 + e5 X3Y?2 +e6X3 +e7X2Y4 +63X2Y+69X2+610XY4+611XY2+612X
+e13 YO +e14Y? te1sY? tege. : :

Where, ¥

=50404a; , ex=3024 (az - 2a, b) , e3=1680 (al + as ) €4 = 1680 (a4 - 2a2b + a1b2)

es = 840 (a2 +.as— 2as3b)., es = 840 (ag — 2a4b + azb?) , ez = 360 (a3 giag)eh TEL

eg = 360 (ag + a4 — 2asb + asb?).eqg =360 (as — 2aecb + asb?).. e = 120 (a0 + as — 2a7b)

e = 120(&11 + ag — 2agb + asbz). e;2=120 (au - 2agb + a5b2) €13 = 24 az.

€14 = 24(a13 + ag- 2a10b + a7b2) €15 = 24(a14 +ag — 2a;1b + ag b2) €16 = 24(a15 - 2a12b +a9b2)

Gz = £ 1 X5Y +.£,X8Y + £ 3X3Y3 + £ 4X3Y + £ §X2Y3 + £ 6X2Y +Z7XY5 + Esxva + €9XY

+010Y5 + € Y3 + 0 15Y.
where;
€y = 672 (a1 + a3),f2 = 420 (a2 + as— 2a3b), £ 3 = 480 (a3 + az), £ 4 = 240 (as + 8 - 2a5b + azb?).
{5 =240 (as + a0 — 2arb), £ 6 = 120 (a1 +.a6 — 2agb + asb?), £ 7 = 144 az..
{ 3 = 96(ag + aj3— 2ajob + a7b?), £ ¢ = 48(ag + a4 - 2a;; b+ agh?), £ 1o = 36 ar.
14 11 = 24(ay; 2a13b + a;ob2) /¢ 12 = 12(as - 2a14b + aj b2?). “

Hz = g1X6 + goX5 + g3X4Y2 + gaX* + gsX3Y2 + geX3 + g7 X2Y4 + gsX?Y? +gg)(2 +gonY4
+g11XY2+g 12X+ g13Y4 + giay? + gis.
Where, ; ;
=112(a; +az g2 = 84 (a2 +as — 2azb). g3 = 360 (a3 + a7),g4 = 60(as + ag — 2asb + azb?).
g5 240(as + a10 — 2a7b),g6 = 40(as + a11 — 2agb + asb?) ,g7 = 360 a;.
= 144(as + a3 — 2a10b + arb?),go = 24(ag + a14 — 2a11b + asbzl,gm = 180 aio.
gu = 72(an - 2a13b + @1b?).g12 = 12(a12 - 2a14b + anh?),g13 = 50 aja.
gia = 24(a11 + a13b?),gi5 = 4(ais + a14b?). ;O

P2 = riX5Y + rpX4Y + r3X3Y3 + raX3Y +ysX?Y3 + reX?Y + r7XY3 + rsXY
Where,

=144(a3 + a7),r2 = 12Q(as + aip - 2asb),r3 = 480 az,r4 = 96(ag + a13 - 2a10b + a7b2)
rs = 360 aio,rs = 72(a11 — 2a13b + ajeb?),r7 = 240 a3,rs = 48(ai4 + a13b?).

Q2 = h) X6 + hyX5 + h3X4Y2 + haX?% + hsX3Y2 + heX3 + }‘17)(2Y2 + hsxé
Where

= 24(a3 + a7),hz = 24(as + aio — 2a7b),hz = 360 az,hs = 24(88 + an - 2a10b+ a7b?).
hs = 360 aio,he = 24(a11 — 2a13b + a1ob?),h7.= 360 a;3,hg = 24(a14 + a13b?).

Fi3 = ;X8 + X7 + 3X6Y2 + f4X6 + f5X5Y2 + feX5 + fx4Y* +f3X4Y2 + foX4 + f10X3Y4 +qu3Y2 + f12X3 +
f13X2Y6 + f14x2Y* + f15X2Y2 + f15X2 +f17XYS6 + f]aXY4 + ﬁg XY2 + fzox a7 f21Y8 + f22Y6 + f3Y4
+f24Y2 + fo5. als s : i g

* Where; ' il ’ :

fi = 11880a,f; = 7920(82 - 4a,b).f3 = 5040a3,f4 = 5040(as - 4a2b + 6a1b2) fs = 3024(a5 4a3b),

fo = 3024(as — 4asb + basb? — 4a,b3).f; = 1680(a; + az).,fs = 1680(aa 4a5b + 633b2) 4

fo = 1680(a9 —4a6b + 6a4b2 — 4a,b2 + a1b4) fio = 840(a10 +.a2 = 4a7b)

fi1 = 840(a11 — 4agb + 6asb? — 4a3b3),f;; = 840(a12 — 4asb + 6asb? - 4a4b3 i azb“)

fi3 = 360 as,fis = 3'60(a13 —4aypb. + 6a7b? + ay),fis = 360(ais — 4anb + 6agb? - 4a5b3 -+ a3b4)

fis = 360(a15 — 4a12b + 6a9b? — 4acb? + asb?),f17 = 120as,f18 = 120(as — 4a,3b + 6a;0b? — 4a7b3).
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fio = 120(-4a14b + 6a11b? — 4agb3 + asb*),f2o = 120(-44a;s5b + 6a,2b2 — 4agb? + agb?).
f21 = 24a7,f22 = 24ag,f23 = 24(ag +6a,3b2 - 4a,0b3 + asb?),f24 = 24(6a14b2 — 4a,,b3 + agb?).
fas = 24(6a;5b2 — 4a)2b3 + agb?).

G3 = p1X7Y + paX6Y + paX5Y3 + paX5Y+ PsX4Y3 + peX4Y + prX3Y5 +pgX3Y3 +poX3Y + p1oX2Y5+p) 1 X2Y3 +
P12X2Y + p13XY7 + p1aXYS + p1sXY3 + p16XY * P17Y7 + p1gYS + p1o¥3 + paoY.

where;

p1 = 1440 a3,p2 = 1008(as — 4a3b),ps = 1344(a; + a7),ps = 672(ag — 4asb + 6a3b?).

ps = 840(32 + a0 — 4a7b), Ps = 420(&11 — 4agb + 6asb? - 4a3b3),p7 =720 as,

ps = 480(as + a13 — 4a10b + 6a7b?),pg = 240(a14 — 4a11b + 6agb? - 4asb3 + aszb?).

pio = 360 as,p11 = 240 (as — 4a13b + 6a10b? — 4a7b3),p12 = 120(-4a14b + 6a11b? — 4agb3 +asb?).

p13 = 192 az,p14 = 144 ag,pi1s = 96(ag + 6a13b2 — 4a,0b3 + a7b?),pis = 48(6a14b?2 — 4a,,b3 + agb?)

p17 = 48 ai0,p18 = 36 a11,p19 = 24(a12 - 4a13b® + arb?),p20 = 12(-4a14b® + anbd).

Hy = uiX® + X7 + QsXOY2 + qaX6 + qsXSY2 + q6X5 + qrX*Y* + qaX4¥2 + qoX* + quoX3Y4 + quX5Y? +
q2X3 + qu3X?Y6 +q1aX?Y* + qisX?Y2 + qie X2 + qi7XY0 + q16X2 + q1sXY? + q1oXY2 + qoX + q2:Y6 +
q22Y4 + q23Y2 + qaa.

where;

qi = 180 a3 ,q2 = 144(as — 4a3b),q3 = 672(a1 + a7),qs = 112(ag — 4asb + 6azb?).

gs = 504(az + aio — 4azb),qs = 84(a;; — 4asb + 6asb? — 4a3b3),q7 = 900 a;.

qs = 360(as + ai3 — 4aiob + 6a7b?),qo = 60(ai14 — 4a11b + 6agb? — 4asb3 + azb?),qi0 = 600 as.

q11 = 240(as — 4a13b + 6a10b? - 4a7b3),q12 = 40(-4a,4b + 6a;,b? — 4agb3 + asb?),qi3 = 672 a;.

qua = 360 ag,q15 = 144(ag + 6a13b2 - 4a,0b3 - a7b?),qi16 = 24(6a14 ba~42;,b3 +asb?),q17 = 336 ajo.

qis = 180 a11,q19 = 72(al2.6a13p3 + a10b?),q20 = 12(-4a;4b3 + a11b%),q21 = 112 a,3.

Q22 = 60 ai14,q23 = 24(ais + a13b?) ,q24 = aj4 b,

P3 = s1X7Y + 82X0Y + s3X5Y3 + 84X5Y + s5X4Y3 + SeX4Y + s7X3y5 + s3X3Y3 + 5oX3Y + 510X2YS +
811X2Y3 + 52X2%Y + s13Xy5 + 814XY3 + s;5XY.
where;
81=192(a; +a7),s2 = 168(az + ajo — 4asb),s3 = 720 a3,sq4 = 144(aqs + a13 —4aob + azb?),ss = 600 as.
s6=120(as — 4a13b + 6a10b? - 4a7b3),s7 = 1344 az,ss = 480 ag,s0 = 96(as + 6a,;3b2 — 4a;0b3 + a;b?).
810=1008 a0,811=360a,1,812=72(a12— 4a13b3 + aj;ob?),s13 = 672 a13,814 = 240 a,4, s15 = 48(ais + aizb?).

Q3 = t)X8 + t2X7 + t3X6Y2 + t4X6 + tsX5Y2 + t6 X5 + t7X9Y4 + tgX4Y2 + toX4 + t10X3Y4 + £, X3Y2 +t,5X3 +
t13X2Y4 + t14X2Y2 + t;5X2,

where,

t1 = 24(a; + az,tz = 24(az2 + a0 - 4a7b ),ta = 360 a3 ,t4 = 24(a4 + a13 — 4a10b + 6a7b?).

ts = 360 as,ts = 24(as — 4a13b + 6a,90b? — 4a7b3),t; = 1680 az,ts = 360 ag.

to = 24(ao + 6a13b2 - 4a9b3 + a7b4), tio = 1680 ajp,t11 = 360 a,;.

ti2 = 24(a;2 — 4a13b3 + a0b?),t13 = 1680 a,3,t14 = 360 a4 ,t15 = 24(a1s + a13b?).
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