The normal-form method for the solution of some nonlinear
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The normal form method NFM i1s used for solving some nonlinear, second order
differential equation that has two kinds of difficulties: the quadrature (unsymmetry) of a
perturbational nonlinearity and a constant. Through second order, the zero-order
solution is found to be independent of the free functions. However, the full approximate
solution is affected by the choice of these functions. For the minimum normal form (MNF)
method when applied to this kind of equation only normal forms of order > 3 can be
reduced by proper choice of the free functions. The comparative merits of four other
different normal form methods are evaluated. The presented procedure is used for solving
some examples of the artificial satellite problem
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1. Introduction

The NFM, originating from the work of
Poincare [1], is outlined in detail in several
recent texts [2-6] The NFM provides
expansions that are uniformly wvalid for long
periods of time. It is probably the most
powerful method for the analysis of linear
systems with small nonlinear perturbation (7).
It is also known for its advantages over other
methods such as the multiple scale method
[7]. Uniqueness of normal forms has been
amply discussed in the literature [3,8,9].
Usually. the normal form is an infinite
(convergent or asymptotic ) series. However, it
has been shown in the context of the method
of averaging that a formal truncation of the
normal form equations beyond first order is
possible by use of the free functions in every
order of the expansion [10]. This leads to
regrouping of terms in the expansion, so that
the normal form has a compact structure that
Kahn and Zarmi [7] called the minimal normal
form (MNF) choice or method. This leads Mane
[11] to extend the MNF method to apply to the
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evaluation of discrete maps of an accelerator
or storage ring. In [12], they applied the NFM
to the unforced undamped Duffing’s equation
through third order. They proved that the
MNF choice lead to the best results The
existence of an analogous, though not
identical algorithm, for the truncation of the
series expansion for the phase appearing in
the normal form analysis of discrete simplistic
maps [13] was used in [14] to present an
equivalent argument for the existence of the
MNF procedure in a wide class of continuous
flow problems. In [15], within the framework of
the NFM, the effect of linear damping on some
possible choices of the zero-order term of the
solution of the unforced Duffing’s equation is
investigated. The results are compared with
those of [12] where the Duffing’s oscillator was
undamped. Then, the effect of the order of
damping on the solution of the same equation
by the NFM is discussed in [16] Kahn [17]
showed that the MNF choice leads to
reduction of secular errors evolving in the
approximations to the solution of harmonic
systems with small nonlinear perturbations.
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In this work [17], the MNF choice previously
developed for systems with one degree of
freedom was extended to higher dimensional
ones by applying it to the phase component of
the normal form equation The Duffing’s
equation whose nonlinearity is cubic
(symmetric), is taken as a demonstration in
many of the forementioned works [7], [11-12],
[15-17]. This is because it is a well known
vibration equation that can describe electrical
circuits as well as mechanical problems [18-
19]. In [20], it modeled a buckled beam and
was used to display a chaotic phenomenon. In
[21], it modeled a beam or plate supporting
three rotating machines simultaneously and

was used to study a nonlinear resonance
phenomenon.

There is much more mathematical
difficulties in treating quadrature

nonlinearities than cubic ones [11]. This is
because the quadrature nonlinearity results in
an inharmonic motion [22-24] and the system
which encounters this nonlinearity is hard in
some part and soft in some other [25]. Also a
constant in a nonlinear differential equation
makes its solution cumbersome (a constant in
a linear differential equation can be eliminated
by a change of the dependent variable).

In section 2, within the framework of the
NFM, the general solution of a simple
harmonic oscillator that has a constant and
perturbed by small quadrature nonlinearity is
presented. In section 3, the solutions that
correspond to some choices of the zero-order
terms are shown. A brief outline of some
satellite equations that have the same form as
the nonlinear equation studied in the present
work is presented in section 4. Application of
the results of sections 2 and 3 for getting the
solution of two of these satellite equations is
shown in section 5 Discussions and
conclusion are presented in the same section.

2. The normal form method

2.1. The normal form expansion

Let us consider a nonlinear perturbed
oscillator of the form:

y+y=A+ey? | (1)
such that

y(to)=Yo , Ylts)=0. (2)

where A is a constant and £ is a small
parameter Putting

x=y-A , (3)

eqgs. (1) and (2) become,

X+ X = g(x + A)2 A (4)
and

Xo=Yo— A , ko=0. (5)
Substituting

zZ=x+ix , =1 , (6)

in eq. (4) , it becomes
é=-iz+%e(z+z*+2A)2, (7)

which is a first order nonlinear differential
equation (an asterisk denotes complex
conjugation ). A near identity transformation
of z is written in the form,

zZ=v+ ZenTn(v,v*), (8)
n21

where the zero-order solution v satisfies the
equation

V= —iv+ Zanvn(v,v') . 9)
n21

Eq. (9) is called the equation of normal
forms. Substituting from egs. (8) and (9) in eq.
(7) and equating coefficients of €" on both
sides of the equation, we get a relation
between T, and V, for all n > 1 given by

Vi =20, Tal+ Va, (10)
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where z, =-iv, V, are known terms
computed from lower order contributions and

the square Lie bracket is given by

T *
[zo,Tn]=-iTn+iv?—“-iv ar,: (11)
ov v
The expansion in eq. (9) becomes in

normal form , if in every order n one chooses
Tn such that V, includes only resonant terms.
Then the near identity transformation (8) is
called a normalizing transformation. The
resonant terms are those that have the same
phase as the linear term v. These are
monomials of the form vk*! v*k and their linear
combinations. By this method each T, may
have an arbitrary contribution of free resonant
terms. This is because the Lie bracket of any
resonant term vanishes. While the resonant
free term in any order n does not affect the
normal form Vj in that order, it will in general
contributes in eq. (10) in all following normal
forms Vi, m > n+l. The MNF choice relies on
letting all Vo, n > 1 vanish by proper choice of
the free functions added to some or all of T,
[7, 11-12, 15-17]. Thus the infinite expansion
in eq. (9) becomes a simple sum ending at
n=1. In [12], they showed that the required
free terms for MNF choice are monomials with
real coefficients. El Khoga and Ata [15] showed
that because of the damping effect, the free
terms are polynomials with complex
coefficients.

In the present work, it is assumed that the
free terms in each T, are polynomials with real
coefficients that have the same form as the
resonant terms in the corresponding V,. No
mathematical troubles are encountered
because of this assumption.

The following are expressions for T, , Vo, n
= 1,2 including the free terms.

12 A
Tl:-—v2+ VvV +—V +———+A2+av, (12)
2 12 2
7A « 1-A +2
P Bl 0 4 — e
2 (12+2)v +6(2+u)v

+ é~(cx +2A)+ —Lv*3
2 24

5 «2 3 SN 3 o
+—vvVv +(=A+alvv ——v +2A° +pviv +yv,
v (2 a) 28 p A4

24
(13)

Vi=iAv, (14)
V2=iiv2v'+ziA2v. (15)
12 2

From eq. (12), it is obvious that the
addition of the free term av to T, has not
affected V3. This is due to the quadrature of
the nonlinearity. The same happens if a
general free resonance term avk*! vk is added
to Ty. Thus from egs. (9), (14) and (15), the
zero-order solution v through O(e?) becomes
unaffected by the free functions However, from
eqs. (8), (12) and (13), the approximate

z+2
2
functions. The independence of the zero-order
solution on the free functions and the
importance of the effect of these functions on
the overall solution have also been noticed
recently in the study of the time dependence
of a quantum system representing an
inharmonic oscillator [26].
The value of V3 is found to be,

) is affected by the free

solution x (

S50 SA. 2+ TiAdy
V3 |(6+3)vv+ > (16)
here again V3 is free from the free functions
Bv2v* and y v assumed in T3 .

So we conclude that because of the
quadrature (unsymmetry) of the nonlinearity,
the normal form V, is not affected by the free
functions assumed in Ty (T of the preceding
order).

In case of cubic nonlinearity, Vo, n > 1 is
found to depend on all free functions assumed
in all Tm , m < n —-1[12], [15-17], T3 is not
calculated for convenience. The addition of the
free function av in T; and pv2v* + y v in T; has
a definite important role as will be seen in
section 3.

2.2.Zero-order solution through O ( £3)

Substituting from eqs. (14-16) in eq. (9)
one gets

V= —-i{l —€A —82(-—5—V v' +—3-A2)
12 2

O
€ [(6a+3A)vv +2A 13v+O(e™). (17)
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Writing v in polar coordinates as,
v=pexp(-i ¢), (18)

and substitute it in eq. (17) , leads to

: : 5 3a?
=0 , ¢=1-eA-e2(-2p?
P o EA —¢ (12p = )
3,0 SA . 2 7.3 4
e [{za+—)p° +=A"]+0(").
l(6 3)p 5 J+O0E")

Hence one have,

p=constant ,

=0, +o(t—t,), (19)

where,
o=¢=1-¢A-e2(p? +§f\3)
12 2
Sa SA 7A3
o [(6 +T) ——1+0(e"), (20)

is the fundamental frequency and ¢, is the
initial phase of the zero-order solution v.

In [2], [12] and [17], p has been proved to
be a constant. In [7] and [15-16] damping was
considered, and p has not been found to be a
constant.

2.3. General solution

Substituting from eq. (18) in eqgs. (12) and
(13) , then from eq. (8), one gets for x through
0O(=?)

2 2
X(f)=PCOS¢+s[p—2—+A2 +p(%+a)cos¢—p—cos 2¢]

5. 21 A

24p +2(1+

2
+52[(3AT'°+ 2A3 +ap2)+p(A2 +
3
sz +y)cosd — pz(% + %—)cosZ(b + 4—800534)] + 0(83).
(21)
t and using

By differentiating eq. (21) w.r.t.

the initial condition )io = 0, one can take for
$o the value of zero and the phase ¢ becomes
equal to

db=0(t-t). (22)

Putting t = t, in egs. (21) and (22) and
inverting the resulting relation between x, and
p, one gets through o(g?)

2

Xol i
=Xq =8t = A? e
o =&a 8[3 +(2+a)x +A%]-¢ [(IM

o3 + (G-Il +
A? Aa
(__

3 +y-a )xo+A (—A+a)]+o(s )

(23)

From eqs. (20), (22) and (23), the solution
x(t) can be calculated from eq. (21) in terms of
Xo , & A (the initial condition, the small
parameter and the constant of the original
nonlinear differential equation respectively)
and the free coefficients o, B and y . By
exploiting the freedom of choice of these fice

coefficients, a variety of solutions can be
obtained. This is shown in the following
section.

3. Some possible solutions

Of the infinitely many possible choices of
the free functions, we discuss a small conumon
set of five choices studied in [2], [7], [12] and
[15-17] for cubic nonlinearity.

u: usual choice ( no free functions)

The coefficients o, f and y are set {o zero in
eqgs. (21) and (23).
c: canonibal transformation

If the near identity normalizing
transformation (8) is canonical, a wealth of
information can be exploited on its properties
[7), [12]. It is especially preferred in
Hamiltonian systems [27], accelerator design
[28] and astronomy [29]. Since the perturbed
oscillator of eq. (1) represents a conservalive
system of one degree of freedom, the simplest
way to ensure that the transformation (8)is
canonical is to require that the followingis
obeyed [12]

oz oz
* 6v >
._—a(z’z*) = * av* =l. (24)
Av,v ) |92 22
G A
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Implying

ar;, ol atp aT T Map (25
Zl ] =0,
o ov

Through O(e?) this requires,

A 1
=i— ’ = —— y
o 5 B

y=0 . (26)
f : killing the fundamental

Elimination of terms of argument ¢ from
the higher order corrections T and T; makes
them orthogonal to the zero-order solution v .
From eq. (21), it can be shown that this
happens when

. ~3A%
4

, (27)

o: zero-zero choice

As is seen from eq. (23), the
implementation of the initial condition x,
involves all the considered orders of the
expansion. A well known way to avoid this is
to require that the initial conditions are
satisfied by the zero order term v only such
that T, vanish initially for all n. From eq. (24),

or egs. (12-13), this yields

2
p=x, , a=-—(20 80 42
X3 2
3A3 A el
B+ 28 yo B aiEx,)
144 243 12

These values of a,B, y depend on the initial
condition x,. This has not happened in the
forementioned three choices u,c and f and
also in any of the choices in [7] , [12], [15-17].

m: minimal normal forms (MNF)

In the case of cubic nonlinearity, the MNF
choice relied by proper choice of the free
functions on letting all V, , n > 1 be zero [2] ,
[7], [12], [17] . By the same way, because of
damping, the MNF choice relied on letting V,, ,
n > 1 be of minimum value [15-16].

From eqgs. (14-16), the MNF choice in this
study through O (g3) relies on choosing

o =-2A% (29)

This reduces Uz to its minimal value. So
because of the quadrature (unsymmetry) of
the nonlinearity, the MNF choice relies on
letting Vi, n > 3 become minimized by proper
choice of the free functions.

Note: The notation u,c,f,0,m for the
choices above has been given by Kahn and
Zarmi [17].

4. The satellite equation
Three kinds of satellite equations of the

same form as eq. (1) are presented
1. Struble [30] showed that the equation

d2u
—2+U_ku (30)
dt

where k is a small positive quantity

appears in the theory of equatorial satellite
orbits of an oblate spheroid (u depicts the
variation from a constant in 1/r, where r is
the distance from the center of the spheroid
to the satellite and t is an angular variable).
2. Ferrandiz [31] showed that the equations
of motion of the satellite expressed in focal
variable (u , 6),u =1/r, are reduced to a
system of four perturbed oscillators and in
the particular case of an equatorial
satellite, three of these oscillators are
trivial to solve and the problem is reduced
to one perturbed oscillator. The equation
of this oscillator with the inclusion of the
perturbation due to earth oblateness
(The zonal harmonic J; = 5x104) is

d?u 1

u - . 12d5 o
de H(l + e)

}ﬂl+e)u ) (31)

with initial conditions

uf) = == 4 0, @2
H(l +e) d9 0=r
where e the eccentricity of the orbit and H
is the perigee distance measured in earth
radii.
3. Also in Marion [25] , it has been shown
that when the modification of the
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gravitational force law required by the
general theory of relatively is considered,
the equation of motion of the satellite
becomes

d?u 1 3GM
+

2
d™ i : 33
a2 T Hive) 2 (33)

where G is the gravitational constant, M
the mass of the earth, and c the velocity of
light. The initial conditions are as in

eq. (32).

5. Applications and discussion

5.1 .Application of the results to
satellite equation

the first

The solution of eq. (30) through O(k?)
using the NFM discussed in this work is
obtained from eqgs. (20-23) after putting A=0,
to =0 , x = u and ¢ = k. This solution is
1

u=u, cos¢+kug(%—§

cos ¢—%cos 2¢)+k2ug(—%+%cos¢ (34)

1 1 3
+§cos 2¢+ECOS 3¢)+ 0(k™),
where,
¢=[1_i-5£k2u(7; +0(k)]t, (35)

and
u@0)=u, , u0)=0,

are the initial conditions.

It is worthwhile to mention that all the five
choices discussed in this work lead to the
same solution (34-35). This solution is
identical with the one obtained by Struble [30]
using a perturbation technique in which the
resonant terms were casted out according to
Lindsted’s procedure. (The same notation of
Struble [30] has been used).

5.2 . Application of the results to the second
satellite equation

The solution of the satellite eq. (31) canbe

obtained from eqgs. (1) and (20-23) after
putting
y=u L=0 to = A= l
i 8 H(l +e)’
1257 -
£ = oot . and y, = g i
H(l + e) H(1 + e)

We discuss the results for two kindsof
satellite examples considered by Lopez etal
[32]. First a geostationary satellite in a
circular equatorial orbit with e=0 and 11-6.6
and second a low-Earth satellite (perigee
distance H = 1.05) in a highly eccentic
equatorial orbit (e = 0.99).

5.2.1. The first example

For this example,
ufn= An SRR . SERE1

H 6.6

From eqgs. (2) and (5), %X, =0 and fromeq.
(23), p= - 2.1 x105-1.8x 108 a. For the
five choices discussed a is < 1 and so from the
last equation, the amplitude p of the zero
order solution v can be considered to have the
constant value - 2.1 x 10-5 for all the choices,
From egs. (20) and (22), the same happens for
the principal argument ¢; it becomes
independent of the free functions and has the
constant value ¢ = 0.999862 (0-n). Frrom eq. (3)
and (21), the solution of eq. (31) is

ym U R
6.6
{1 - c0s[0.999862(0 — )]} + 0(10~8),

Let the difference between u and 1/11 (ihe
reciprocal of the radius of the unperturbed
orbit ) be defined by h. Fig. 1 shows the
variation of the decimal logarithm of h with
the number of revolutions N. The cumulative
effect (increase of h with the increase of N)
[25] is quite clear.
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5.2.2 Second example
For this example,

u (n) = 0.004786 , A = 0.47858, £ = 0.002872.

From egs. (2) and (5), %X, = - 0.473794 and
from eq. (23),

p =-0.4743428 + 0.0013584 o + 8.773 x 107
B+ 3.90804 x 106 y- 3.50804 x 106 o2

This equation shows the effect of the free
coefficients o, B and yon p up to a degree of
accuracy of order 109, From this equation and
eq. (20), the frequency o of any choice can be
determined. Table 1 shows p and o for the five
choices discussed before.

From this table, assuming o = 0.998622
for all the choices is a good assumption.
Assuming the perturbation considered is small
enough to change the angular variable 6 at
which the position of the maximum distance
from the gravitational attraction center
(Earth’s center) occurs, the apogees of the
satellite orbit can be assumed to occur at 6= (
2 N+1) n where N is the number of revolution.
For this high eccentric orbit (e = 0.99), let h
defines the reciprocal of the apogee distance
from the center of attraction, h, the initial

g
H(l +e)

(21) and (3), having o = 0.0998622, the
variation of h with N can be determined.
tables 2 and 3 show the values of h for low
and high values of N respectively . To get a
graphical insight about the results, fig. 2
shows the variation of log |h —h, | with N for
the u (usual perturbation method) and c (
canonical transformation preferred in
hamiltonian system of celestial bodies)
choices. It is difficult to notice the difference
between the two curves. This agree with the
results of Kahn [17] who found that the kind
of the perturbation method does not affect the
overall solution; it only affects the bound error
(constant error in the calculation of the
amplitude p) and or the secular error (error
increasing with time in the calculation of the
frequency o). Since, the frequency o of this
example is not affected by the choice of the
free functions, no comparison between the
secular errors occurring in different choices
can be made. Only the bound error can be
considered. From table 1, the u and o choice
have the lower bound errors because of the
lower value of the amplitude p.

value of h is equal to u(n) = . From eqs.

Table 1
The amplitude p and the frequency o for the five choices
u c F [0) M
p -0.4743428 -0.47466812 -0.47466893 -0.47379556 -0.474732
© 0.99862193 0.99862192 0.99862192 0.99862193 0.99862192
Table 2
Calculation of h at low values of N for the five choices
N 0 1 2 3 5 10
u 0.004786 0.0047831 0.0047837 0.0047832 0.0047862 0.0047912
c 0.004786 0.0047876 0.0047876 0.004788 0.0047894 0.0047974
f 0.004786 0.0047852 0.0047856 0.0047858 0.0047872 0.004793
o 0.004786 0.0047835 0.0047837 0.0047842 0.00478488 0.0047912
m 0.004786 0.0056917 0.0056921 0.0056928 0.0056935 0.0056986
Table 3
Calculation of h after many revolutions for the five choices
N 20 50 100 150 200 300
u 0.0048165 0.0049985 0.0056522  0.006672 0.00828 0.012649
C 0.00482111 0.0050028 0.005658 0.0674936 0.0828275 0.0126529
f 0.004818632 0.00500063 0.00565534 0.00674854 0.0082803 0.01265
o 0.004815 0.00499888 0.0056557 0.00675199 0.0082827 0.0126489
m 0.0057237 0.0059049 0.0065513  0.0076575 0.00918435 0.0135423
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Also, a comparison between figs. 1 and 2
shows that the perturbation term has a much
higher effect on the low-Earth satellite than on
the geostanionary one.

The solution of the satellite eq. (33) by the
NFM is left for future work. This is because in
eq. (33), the perturbation term (second term
on R.H.S.) does not depend on the orbital
characteristics (e, H) as in eq. (31) that means
quite different treatment and results.

ro

t Time or an angular variable

s Expansion term of order n in z

Vn Expansion term of order n in vy

Vi Expansion term of lower order in V,

v Zero-order solution

z Complex dynamical variable such that

z=x+1i x(adot over a variable means
differentiation with respect to the

time, i =v—1)

Nomenclature
€ Small parameter
A Constant term X Dynamical variable such that x =y - A
C Velocity of light Xq Initial value of x (a suffix o means
e Eccentricity of the orbit initial value)
G Gravitational constant y Dynamical variable
H Perigee distance measured in Earth z' Complex conjugate of z
radii ¢ Phase or principal argument of v
k Small parameter. p Amplitude of v
M Mass of the Earth ® Frequency
MNF  Minimum normal form o,B,y Coefficients of free functions
NFM  Normal form method u Variation from a constant in 1/r or 1/r
r Distance from the center of the 0 Focal angle
spheroid to the satellite
3
logh

[

i

2k

T

8

ok

-10 H

11 40

12 L

-13 1 i § WSS 1 | Ep—

0 200 400 800 800 1000 N

Fig. 1. Variation of log h with N for the geostationary satellite (e=0, H = 6.6).
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Fig. 2. Variation of log |h -h, | with N for the low-Earth satellite (€=0.99, , H = 1.05).
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