Relative precision criteria in geodetic control networks
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In design of engineering control networks, the positional precision of one point relative to
another adjacent network point is important than its positional precision with respect to an
arbitrary zero-variance reference base. Consequently the common local and global measures
of the precision are not usually of prime importance. The main objective of this paper is to
study the relative precision between the neighboring points within the control network. Two
important relevant criteria were found to describe the relative precision. A schematic local
goedetic network has been used as an example via using different variables in adjustment
approaches in order to ascertain the study importance.
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1. Introduction

Geodetic control networks are widely used
for many purposes in civil engineering, such
as for setting out an engineering structures,
controlling the breakthrough of tunneling, the
monitoring of structural deformations, and
providing photogrammetric control. In most of
these applications, the relative precision
between the neighboring points is more
important than absolute precision of each
point in the network. For example, the
accurate position of the object point relative to
the reference points is more important than its
accurate position relative to the origin of the
coordinate system. Relative precision criteria
have been derived from the covariance matrix
of the coordinates differences, which is the
appropriate submatrix of the variance-
covariance matrix of the estimated
coordinates. The most important measures of
the relative precision should satisfy the
following conditions [1,5]:
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Invariance with respect to the choice of zero
- variance reference base.
b- Invariance with respect

transformation.
c- Independent of the choice of least squares
adjustment techniques.

V]
|

to the datum

d- Characterize the relative precision between
the neighboring points in the network.
e- Applicable to primary as well as secondary

geodetic networks.

The main objective of this paper is to
investigate and analyze the relative precision
between the netpoints in order to find the
most suitable criteria that describe the relative
precision between two or three neighboring
points within the network.

In this study, the adjustment for the geodetic
network is performed by using least squares
principle in three approaches:

I- Minimal constrained adjustment approach

(holding three coordinates unchanged).

II- Inner constrained adjustment approach

(free from any outer constraints).
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III-Over  constrained adjustment approach
(holding more than three coordinates
unchanged).

2. Mathematical model of geodetic networks

In the classical Gauss-Markov model, the
unknown parameters x of a linearized least
squares model for a parametric adjustment
are determined based on the following
functional and stochastic models,

v=Ax-1
} ) (1)

- > I
P-Q,'-0; ¢

Where; v is the n by 1 vector of residuals, A is the
n by u configuration matrix, P is the n by n weight
matrix of observations, Q; is the cofactor matrix

of observations, 0‘(2, is the a priori variance factor,
and Cj is the covariance matrix of observations.
The covariance matrix of the estimated

parameters (coordinates) can be estimated using
the relation,

C;=62q; =62 arpa), 2)

where 6'(2, is the a posteriori variance factor
and Qi is the u by u cofactor matrix or the

weight coefficient matrix of the estimated
coordinates X |[2]. In the design phase, the
variance-covariance matrix of the estimated
coordinates can be expressed as

C;= 62 (ATPA), 3)

with (AT P A), representing the reflexive

generalized inverse of a matrix. Assume the
network is complete, 1.e., without
configuration defects, then the number of rank
defects of A is equal to the number of datum
defects d of the network. After a definition of
the datum of the network has been given by,

GTx =0, (4)

with the rank of matrix G being equal to the
number of rank defects of A , then the

variance-covariance matrix of the estimated
coordinates is given by [9],

Cy =62 (ATP A+G GT ) 1-H (HT GGTH)"! 1T, (5)

where the matrix H spans the null space of
matrix A, satisfying the relation

AH=0, (6)

and for a two dimensional trilateration
network with m geodetic points matrix
H is expressed as ,

1 () e 1 0
HT=] 0 | 0 T (7)
0
=X )4 “Xm y?“
with (x{ , y{) (i =1, ..., m) being the
approximate coordinates of netpoints. If

matrices G and H are equal then the so-called
inner constraints are used in the adjustment
procedure.

The variance - covariance matrix C;
contains all required information to compute
the variance of any quantity that can be
calculated from the estimated parameters X.
The straightforward relationship for any
derived quantity is given by,

oZ=fTCyf. (8)

=N

Where f represents the vector of linearization
coefficients relating the estimated parameters

to the quantity required, F, and Cj% isthe
appropriate submatrix of Cg [7].

3. Relative precision criteria between two
netpoints

3.1.The positional error between two netpoints

In horizontal geodetic network, the vector
of coordinate differences for a pair of

estimated netpoints Pi(X;,¥;) and F; (X;.¥))

can be written as follows:
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(Ax)ij =%, — %p, 9)

By applying the law of variance-covariance
propagation [2], the weight coefficient matrix

Q i Of the coordinate differences vector Ax

can be derived as follows:

Qyix Ui
(QAX) AxA AxAy . (10)
QA)Ax QAyAy ij

Where,

(Qaxick; = Quisi * Qjg; -2 Qg

(Q/Sy[&y)ij = Qyisi + Qy5;72 Q590
Qaxdy | = Qs + Qa9+ Quy - Qe[ (1)
lQAyAx) o l AxAy)U

The covariance matrix of the estimated
coordinates differences can be computed using
the following equation:

(Cfsx)ij: 5; - (QAX)ij (12)

The above equation gives all necessary
data required for the calculating the positional
error between any two netpoints. Also, it gives
us the standard errors of both the estimated
distance and the estimated direction for any
two netpoints as well as the relative error
ellipse between two netpoints.

The positional error between two new
netpoints can be computed as follows:

opjj= ‘/trace ) ij =0, ‘/(QAXAX ) (QAyAy )

opjj =6°.\/(Q PP )gﬁ(Q PP )jj—z(Q

=20 ;x; +Oyy;) (13)

XiXj +QY.'Y,' )

2 2
i= |07 +o
Pij \/ Pi  Pj

3.2. The standard distance error and the
standard direction error

In horizontal geodetic network, the
estimated distance and the estimated direction

between two new netpoints P; (X;,¥;)and P,
(% i y j) can be calculated using the following

equations:

Si= J ) 1178 7) S

i 9_9
t;,;=arctan .J Al o
e xj—xi

By applying the law of variance-
covariance propagation [2], the standard error
of the estimated distance (standard distance
error) and the standard error of the estimated
direction (standard direction error) can be
computed using the following equations:

. =G,

ii
2“_,(2) 20D ( )
\/cos tjj O3, A tsin tu(céy )ij +sin 2! Oix ayh

]
(14)

.2*..(2) bl o i ( )
‘/sm tij O’A | +cos tu(oAY)ij +sm2t,J GAxAy i

I

(15)

From the standard error of the estimated

direction o} , the standard cross error can be
1

calculated as follows:
— (16)

Based on the Egs. (14) and (16), the following
equation can be obtained:

2 7 2 2
os +05 =+ (o. )+O’- = O,. . 17
Si G Ax/ij ( Ay)ij Pij (17)

H
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From Eq. (17), it can be concluded that the
positional error between any new two
netpoints is identical with the square root of
summation of the variances of the coordinate
differences between those netpoints.
Furthermore, the positional error between any
new two netpoints is identical with the
geometric addition for the standard error of
the estimated distance and the standard cross
error. obviously the standard cross error can
be computed from the standard error of the
estimated direction between these new two
netpoints.

3.3. The relative error ellipse between two
netpoints

The relative positional precision between any
pair of points within the network can be
graphically represented by the relative error
ellipse [1,6,7]. Fig 1 illustrates the relative error
ellipse for the pair of points P; and P;, whose
coordinates are Pi(X;,¥;) and P,-()?j,f' j) This
ellipse is conventionally drawn on the mid-
point of the line joining the two points P; and
Py

The three parameters of the relative error
ellipse can be derived from the variance-
covariance matrix of the coordinate differences

C ;. as follows [1]:

Ax
[(Q,sxax)iﬁ(Qay,sy)ﬁ*“K] 3
A= O, -

in direction 6;

B: = G,.

[(QAxAx )ij +(Q&y3y )ij_K] > (18)
2
in direction 6; + 100 gon

2(Q,sx§y)i_ i

(Q&xix )ij _(Q;Syziy )|

2 6; = arctan

in which,

K= ‘[[(Qisx[sx )ij 7 (Qéyly )ij]z +4(QAX3y)iZ- :

Where Ar and B are the semi-major and semi -
minor axis of the relative error ellipse and 0, is
the angle between the semi - major axis of the
relative error ellipse and the x-axis.

Also in Fig. 1 the tangents to the relative
ellipse, which are parallel and perpendicular
to the line P; - P; , have been drawn.

From the relative error ellipse, the
standard error of the estimated distance

between the netpoints (og ) as well as the
L]

standard error of the estimated direction
between them, (o} ) can also be obtained as
ij

follows:

o= — i (19)

The relation between the semi-major and
semi-minor axis of the relative error ellipse
and the positional error between two netpoints
can be derived as follows:

op=VA7 +B? (20)

Eq. (20) can be used as a check in the
computation process [3].

4. Relative precision criterion between
three netpoints

In addition to the description of the
relative precision of any two adjacent points in
geodetic control network, it is also of great
importance to describe the relative precision
between three neighboring points in the
network. This precision criterion should be
derived from the geometrical relationship
between these netpoints. The standard error of
the estimated angle can be considered asa
reasonable and rational measure for
description of the relative precision between
any three neighboring points in geodetic
control network [5].

4.1. The standard angle error

In horizontal geodetic network, the

estimated angle @ can be computed from the
difference between the estimated directions
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Pi(x}.%])

A A
x Pl(x‘!Y')

y

Fig. 1. The relative error ellipse.

Y -

ty and t;; as given in the following equation:
ik ij

a=arctan —):k;?" —arctan M .
Xk —Xj i

By applying the law of variance-covariance
propagation [2], the standard error of the
estimated angle (standard angle error) can be
calculated as follows:

6q=0,yQa4 - (21)
Where,

Qaa={Qi ) +(Qit); -2, - (22)
in which,

e

2 -~
cos” tj .(Q Ayly )ik

(23)
. 24 1ot
+sin t"k'(QAxAx )ﬂ( —sin 2tj .(Q;msy )ik
2
pﬂ
i), =| &
tt /g5 [SU]
cos? t;; (Q‘ A )
Y \XAyAy ij
"y in 2 . 1T
+sin tij‘(QAx[sx )lJ - sin Ztij'(QAxAy )ij (24)

2.,
Qtikeij =1S_;—k§i}(00$ik.cosu .QAyikAyij
+siniik.sinfij'(Z’Axikz‘sxij

_cosfik.sitﬁij-QAyikAyi. (25)
—sinfik-wseij 'QAxikAxij ),

and

Q&Yik gxij - Q9i§i i Qik*] _.Qg'ﬂ.(l, _Qikii ’ (26)
Qr A =Qx5; Q%9 ~ Q%5 — Wy,
Axik AYij i i i¥j ; |

5. Numerical example

The schematic two-dimensional geodetic
network is used to demonstrate the above
derived results. This local network is
composed of eight new points P,, P,,... Pg with
unknown coordinates. The netpoints Py, P2, P
and Pg are connected to eight fixed points A,
B, C, D, F, G and H as shown in Fig. 2. The
approximate coordinates of the new netpoints
are listed in Table 1. with respect to the
selected local horizontal coordinate system.
The network was adjusted by the least squares
method using the parametric technique. Three
approaches of adjustment have been applied
as follows:

I- Over constrained adjustment approach
(more than three fixed coordinates).

II- Minimal constrained adjustments appro-
ach (only three fixed coordinates).

III- Inner constrained adjustment approach
(free network adjustment).

For the clarity of this study, the local geodetic
network illustrated in Figure (2) should be
adjusted in six variants. In the first and
second variants, the network was
adjusted as a fixed trilateration network
using the over constrained adjustment
approach with eight and four fixed points.
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Table 1
The approximate coordinates of the net points
Points X (m) y (m)

P 800.000 400.000
P2 400.000 400.000
P3 400.000 800.000
Pa 800.000 800.000
Ps 400.000 1200.000
Pe 800.000 1200.000
P7 400.000 1600.000
Pg 800.000 1600.000

To study the change effect of the zero-
variance reference base and the datum
transformation on the above mentioned
relative precision criteria, the trilateration
network should be adjusted in the third and
fourth variants using the minimal constrained
approach. In the third variant, the coordinates
of P, and the direction from P; to P; being
fixed, while in the fourth variant we keep the
coordinates of P3 and the direction from Pj to
P¢ unchanged. ,

By deleting all the fixed points, the
network became free from any fixed points and
it can be adjusted as a free network using the
inner constrained approach. In the fifth
variant, the network was adjusted as a free
trilateration network. In addition, the network
was adjusted as a free combined network in
the sixth variant.

All the computations were performed using
PC  computer. The computer program
developed by the author was used to adjust
the geodetic network wusing the above
mentioned approaches and to estimate the
relative precision criteria.

Fig. 2. A schematic geodetic network.

6. Results and discussion

I- Table 2 contains the parameters of the
relative error ellipse (Ar & B;), while table 3
contains the common relative precision

criteria between two netpoints (()'qij &GPU)

for the six variants of the network. From the

obtained results, it was found that:

1-Numerically comparison of the common
relative precision criteria in the variants
(1,2,3,4 and 5) show that they are different
from each other. This illustrates that the
covariance matrix of the coordinates

differences C Ax and the common relative

precision criteria (A, Br, Og. &o
i

pij)
depend upon the choice of the zero -
variance reference base and the choice of
the least squares adjustment approaches.
Consequently, they are not invariant with
respect to datum transformation.

2- The common relative precision criteria (A,

B:, 0qjj & opjj) gave the highest

numerical values of the farthest member
from fixed network points (see variants
1,2,3, & 4).

3- In free geodetic networks, relative precision
criteria increase as we move towards
external boundaries of the network, while
they are minimum around the network
centroid (see variants 5 & 6).

II- Table 4. shows the standard errors of

the estimated distances (og )while table
ij

(5) shows the standard errors of the
estimated angles (0 ) for the six network

variants. Comparison of the numerical
values for both relative precision criteria
showed that:

1- As the number of fixed points for geodetic
networks decreases, the numerical values

of both (og ) and (0g) increase (sec
ij

variants 1,2,3 and 4).

2- Free geodetic network adjustment using the
inner constrained approach (variant 5)
gave the same numerical values of the

standard distances errors (og ) and the
ij

standard angles errors (Og) as those
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obtained by a minimum constrained
approach (variants 3 & 4). This means
that, they are independent of the choice of
the least squares adjustment approaches
and the choice of the zero-variance
reference base. Consequently, they are
invariant with respect to datum
transformation.

In free geodetic networks, the standard

distances errors (0g ) and the standard
ij

angles errors (Og) increase as we move

towards external boundaries of the network,
while they are minimum around the network
centroid (see variants 5 & 6).

Combined geodetic network (variant 6) gave
the smallest numerical values of the
common relative precision criteria (A;, B,
Sq; & opijj) as well as the standard errors

of both the estimated distances (og ) and
i

the estimated angles (o4 ).

7. Conclusions and recommendations

The main conclusions deduced from the

analysis and discussion of this study can be
summarized as follows:

1-

distances and
independent of the choice of the least
squares adjustment approaches and of the
choice of the zero - variance reference base.
Consequently,
respect to datum transformation.

constraints
criteria represented by the standard errors
of both the estimated distances and the

The standard errors of both the estimated
the estimated angles are

they are invariant with

Therefore, the standard errors of both the

estimated distances and the estimated

angles
relative internal precision of the geodetic
control networks.

give better description for the

As the number of fixed netpoints or outer
increases the relative precision

Alexandria Engineering Journal, Vol. 40, No. 3, May 2000

estimated angles of the geodetic network
decrease.

4- In fixed geodetic networks, the netpoints

farthest away from the fixed points will
obviously have the largest relative error
ellipse and the highest values of both the
positional error between two adjacent
netpoints and the standard cross error.

5- In free geodetic networks, all relative precision

criteria increase as we move towards external
boundaries of the network, while they are
minimum around the network centroid.

6- The positional error between two netpoints

and the standard cross errors, which can
be obtained from the standard errors of
the estimated directions between two
neighboring netpoints, are dependent
upon the choice of the least squares
adjustment approaches and the choice of
the 2zero - variance reference base.
Consequently, they are not invariant with
respect to datum transformation.

7- Relative error ellipses are dependent upon

8-

the choice of the zero-variance reference
base and the choice of the least squares
adjustment approaches. Consequently ,
they are not invariant with respect to the
datum transformation.

The rate of improvement of the overall
precision of the network can be monitored
through the rate of improvement of the
standard distance error and the standard
angle error. Therefore, the standard
distance error and the standard angle
error can be used as a base index for
assessing the user’s accuracy
requirements.

9- Finally, more consideration is now given to

the standard distance error and the
standard angle error which are considered
as the function measures of precision
used for optimization of network design.
Therefore, they are usually necessary as a
component of an objective function.
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Table 2
The parameters of the relative error ellipse
Sides Variant (1) Variant (2) Variant (3) Variant (4) Variant (5) Variant (6)
8- Fixed 4-Fixed X2,y2,Yy1 X3,Y¥3,Y6 Free Free
points points
AB,C,.D,E ABC&D are fixed Are fixed Trilateration = Combined
F,G & H network network
n 24 20 16 16 16 40
u 16 16 13 13 16 16
d s - . 0 3 3
r 8 4 3 3 3 27
1,2 1.03 1.52 0.93 1.69 1.48 0.79
Ar 1,3 1.32 1.63 1.47 1.99 1.60 0.81
[cm] 1,4 1.23 1.44 1.47 1.69 1.44 0.72
2,3 1.23 1.54 1.47 1.75 1.44 0.72
2,4 1.32 1.80 1.47 1.92 1.60 0.81
3,4 0.96 1.09 1.41 0.97 0.92 0.57
3,5 1.15 121 2.00 1.39 1.06 0.66
3,6 17 1.30 2.45 1.22 1.03 0.64
4,5 117 1.31 2.45 1.64 1.03 0.64
4,6 1.18 1.22 2.00 1.39 1.06 0.66
5,6 0.96 1.09 2.00 0.97 0.92 0I57
5,7 1.23 1.44 2.45 1.69 1.44 0.72
5,8 1.32 1.80 3.16 1.92 1.60 0.81
6,7 1.32 1.63 3.16 1.99 1.60 0.81
6,8 1.23 1.54 2.45 1.75 1.44 0.72
7,8 1.03 1.52 2.45 1.69 1.48 0.79
1,2 0.78 0.93 0.00 0.93 0.93 0.69
Br 1,3 0.80 0.83 0.76 0.81 0.85 0.61
[em] 1,4 0.79 0.83 0.83 0.86 0.88 0.61
2,3 0.79 0.86 0.83 0.87 0.88 0.61
2,4 0.80 0.85 0.76 0.82 0.85 0.61
3,4 0.87 0.87 0.88 0.84 0.88 0.50
3,5 0.83 0.91 0.89 0.86 0.93 0.47
3,6 0.81 0.85 0.84 0.00 0.82 0151
4,5 0.81 0.81 0.84 0.85 0.82 051
4,6 0.83 091 0.89 0.86 0.93 0.47
5,6 0.87 0.87 0.88 0.84 0.88 0.50
5,7 0.79 0.83 0.91 0.86 0.88 0.61
5,8 0.80 0.85 0.85 0.82 0.85 0.61
6,7 0.80 0.82 0.85 0.81 0.85 0.61
6,8 0.79 0.89 0.91 0.87 0.88 0.61
7,8 0.78 0.93 0.93 0.93 0.93 0.69
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Table 3
The common relative precision criteria between two netpoints

Sides Variant (1) Variant (2) Variant (3) Variant (4) Variant (5) Variant (6)

8- Fixed 4-Fixed X2, y2 , Y1 X3,y3,Y6 Free Free
points points
AB,C,D.E ABC&D are fixed Are fixed Trilateration = Combined
F,G & H network network
1,2 1.03 1.52 0.00 1.73 1.48 0.79
B 1,3 1.30 1.63 1.41 2.05 1.58 0.80
oqij 1,4 1.23 1.42 1.40 1.64 1.41 0.65
[cm] 2,3 1.28 1.52 1.40 1.79 1.41 0.65
2,4 1.30 1.79 1.41 1.92 1.58 0.80
3,4 0.96 1.09 1.41 0.99 0.92 0.57
3,5 1:18 1.22 1.98 0.96 1.06 0.47
3,6 1.15 1.30 2.44 0.00 1.00 0.56
4,5 1.15 1.29 2.44 1.37 1.00 0.56
4,6 1.15 1.22 1.98 0.96 1.06 0.47
5,6 0.96 1.09 2.00 0.99 0.92 057
5,7 1.23 1.42 2.44 1.64 1.41 0.65
5,8 1.30 1.79 3.16 1.92 1.58 0.80
6,7 1.30 1.63 3.16 2.05 1.58 0.80
6,8 1.23 1.52 2.44 1.79 1.41 0.65
7,8 1.03 1.82 2.45 1.73 1.48 0.79
1,2 1.29 1.78 0.93 1.96 175 1.05
opij 133 1.54 1.83 1.65 205 1.81 1.01
[cm] 1,4 1.47 1.66 1.69 1.89 1.69 0.94
2,3 1.47 1.78 1.69 2.02 1.69 0.94
2,4 1.54 1.99 1.65 2,11 1.81 1.01
3,4 1.29 1.40 1.67 1.33 1.27 0.76
3,5 1.42 1.52 2.19 1.34 1.41 0.82
3,6 1.42 1.56 2.59 0.86 1:32 0.82
4,5 1.42 1.54 2.59 1.62 1532 0.82
4,6 1.42 1.52 2.19 1.34 1.41 0.82
5,6 1.29 1.40 2.19 1.33 1.27 0.76
L 90a 1.47 1.66 2.62 1.89 1.69 0.94
5,8 1.54 1.99 3.28 2.11 1.81 1.01
6,7 1.54 1.83 3.28 2.23 1.81 1.01
6,8 1.47 1.78 2.62 2.02 1.69 0.94
7,8 1.29 1.78 2.62 1.96 175 1.05
Table 4
The standard errors of the estimated distances
Sides Variant (1) Variant (2) Variant (3) Variant (4)  Variant (5) Variant (6)
8- Fixed points 4- Fixed X2, %3, Free Free
AB,C,D,E points y2,y1 ¥3, Y6 trilateration combined
F,G&H ABC&D arefixed are fixed network network
1,2 0.78 0.93 0.93 0.93 0.93 0.69
Oa 1,3 0.83 0.84 0.86 0.86 0.86 0.62
Si 14 0.80 0.87 0.93 0.93 0.93 0.68
[em] 2,3 0.80 0.93 0.93 0.93 0.93 0.68
2,4 0.83 0.86 0.86 0.86 0.86 0.62
3,4 0.87 0.87 0.88 0.88 0.88 0.50
3,5 . 0.83 0.91 0.93 0.93 0.93 0.66
3,6 0.84 0.86 0.86 0.86 0.86 0.59
4,5 0.84 0.84 0.86 0.86 0.86 0.59
4,6 0.83 0.91 0.93 0.93 0.93 0.66
5,6 0.87 0.87 0.88 0.88 0.88 0.50
5,7 0.80 0.87 0.93 0.93 0.93 0.68
5,8 0.83 0.86 0.86 0.86 0.86 0.62
6,7 0.83 0.84 0.86 0.86 0.86 0.62
6,8 0.80 0.93 0.93 0.93 0.93 0.68
7,8 0.78 0.93 0.93 0.93 0.93 0.69
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Table 5
The standard errors of the estimated angles [mgon]
Variant (1) Variant (2) Variant (3) Variant (4) Variant (5) Variant (6)
Angles No.
8-Fixed points  4- Fixed points X2 , X3, Free Free
AB,C,D,E y2,¥1 y3,Y¥6 trilateration = combined
F.G&H ABC&D are fixed  are fixed network network

2= 8=0.93

10=11=14=13 0.93 10=14=0.93 0.96 0.96 0.96 0.53
20=22=0.93

2=7=19=22 0.92 7=11=0.96 0.96 0.96 0.96 0.54
15=19=0.96

9=12=13=16 0.91 12=16=0.96 0.99 0.99 0.99 0.59
5=17=0.98

4=5=17=24 0.91 1= 6=0.99 1.00 1.00 1.00 0.61
9=13=0.99

1=8=20=21 0.84 18=21=0.99 1.00 1.00 1.00 0.64
3=4=1.00

3=6=18=23 0.87 23=24=1.00 1.00 1.00 1.00 0.65
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