1. Introduction

On the interaction of a rigid / flexible manipulator
with a compliant surface
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Constrained maneuver of a two link hybrid manipulator with one flexible link is
considered in this study. The second flexible link is in contact with a compliant surface.
The surface can move freely parallel to itself by changing the hinged point along the X-
axis and can also rotdte about the pivot. The effect of the force exerted at the end effector
of the flexible arm and on the required hub torque is investigated for different values of
the inclination angle and the position of the compliant surface. The mathematical model
of for the hybrid robot arm is obtained by the extended Hamilton’s principle. The
required hub torque for the constrained maneuvers are obtained through the solution of
the inverse dynamics problem without ignoring the nonlinear terms of the equations of
motion. The contact force and the required hub torque to move the end effector through
a prescribed trajectory are calculated for many cases to better select the optimum
performance parameters.
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Analytical solution

Raibert and Craig [1]

applied hybrid

A robot is considered to be in constrained
motion when its end effector contacts and /
or interacts with the environment as the robot
arm moves. The control objectives, in this
case, are trajectory tracking and force

regulation. Typical examples of such
constrained robots include grinding, cutting,
drilling, inserting, fastening, contour

following, etc. So, it is important to
investigate how the inclination angle of the
compliant surface can affect the force exerted
at the end effector and the required joints
torque for different tasks.

Force/motion control of constrained robot
was first addressed by assuming exact
knowledge of the robot dynamic model.
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position/force control for rigid manipulator.
In 1985, Maples [2] investigated the problem
of contact force control at one end of a very
flexible arm by controlling the torque at the
other end. Tilley and Cannon [3] discovered
that a great improvement could be obtained
in the behavior of a one-degree of freedom
wrist using a fast micromanipulator at the
end of a very flexible robot. Tilley et al. [4]
continued their work towards two degree- of-
freedom wrist. It was expected to have better
performance although it was not experimen-
tally proved.

More recently, the research is extended to
force / motion control of constrained robots
with parameter uncertainties. Chiou and
Shahinpoor [5] studied the stability of
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constrained flexible manipulators. Su et al.
[6] proposed a control algorithm for
constrained motion of a two link hybrid robot
using feedforward and feedback torque and
simulation results were also presented.
Spong [7] and Jankowsky and ElMaraghy [8]
studied force control of flexible joint
manipulators. However, the performance of
the force controlled flexible manipulators is
limited since the response of the tip of the
flexible manipulators is generally slow, and
simultaneous position force control at the tip
is difficult. While, Yao et al. [9] addressed the
motion and force tracking control of robot
manipulator in contact with a compliant
surface with unknown stiffness. In 1998, Yao
and Tomizuka [10] continued their work by
considering the high peérformance robust
motion and force tracking control of a two link
rigid robot in contact with a compliant
surface. Yoshikawa et al. [11] proposed hybrid
positicn/force control algorithm of combined
flexible-macro/rigid-micro manipulator sys-
tem. The macro part is controlled to
compensate for the position and force errors
due to elasticity in the macro part. Ata [12]
addressed the problem of constrained
maneuvers of a hybrid manipulator with
variable tip mass in contact with a fixed
vertical constraint [t was discovered that
while the influence of the variation of tip
mass appears only at high accelerations, the
contact force has a great effect on the
requirc:! torque for both links.

In practice, parameters of the system
such as gravitational load'and the stiffness of
the contact surface vary from task to another.
So, itis the object of this study to investigate
the effect of the inclination angle of the
contact surface and its position on the force
exerted between the end effector and the
compliant surface and on the required hub
torque through the solution of the inverse
dynamics problem. Simulation is carried out
for different values of inclination angles and
the compliant surface positions along the X-
axis to define the range for optimum
performance in the open loop case.

2. Problem formulation

Consider a two-link hybrid robot as shown
in fig. 1. The robot consists ofa rigid link
attached to a rigid hub while the second link
is assumed to be flexible. The mass densities
of the rigid and flexible links are p;and p
respectively. At the distal end thereisatip
mass (M), including the wrist and the object
mass, with moment of inertia (Iy) about its
own axis of rotation. The end effectorisin
contact with an inclined compliant surface. [t
is assumed that the compliant surface
intersects the X-axis at three arbitrary
positions respectively (Rx). In addition to, the
compliant surface can also rotate about the
hinged point (point of intersection with the X-
axis) for four different angles («).

The flexible link is modeled using Euler-
Bernoulli’s beam theory where shear
deformation and rotary inertia can bhe
neglected. The Virtual Link Coordinate
System is applied and the angle 6,(/)is
considered as the angle between the virtual
link and the horizontal. Because of the
selection of the rigid body coordinates, the
end point position of the beam can bhe
expressed by the rigid body mode variable
alone. This simple representation of the end
point position enables the simple derivation
of the inverse dynamics equation.

Applying the Virtual Link Coordinate
System, The Lagrangian of the system can be
divided into rigid and flexible parts as follow
[13]:

L=Lr+Lf’ (1]

in whichZ, is the Lagrangian due to the rigid
motion, L is due to the flexibility effect and
i ris the Lagrangian density and can be given

L, = [Lidx- (2
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For the hybrid manipulator system with tip
mass under consideration these terms take
the form [for more details, see [13] and [21],

L, =0.5(,, +1,,)8,> - m,X,gsin6,, (3-a)
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Fig. 1. Two links Hybrid manipulator

Lar = 0.5mp¢1%8;% +0.5(Ipp +11,5)6,°
+m5,€1X26,6, cos(8, —61)‘
—m,X7gsin By —mygé; sin Oy, (3-b)

Wzéz2 +W2 4 2xWb,

+2£10;[W cos(8, —0;) - W8, sin(8, — )

Ef = 05p2

2
__[&*w
—()DEI[?J - p2gW cos6. (3-¢)
Where:
L = [pix’dx, (4-a)
0
L5}
I = Ipexzdx 2 (4-D)
0
&
mX, = .[pzxdx- (4-¢)
(6]
Io1, Int,Ib2
and In2 are the beam and hub

Inertia’s of the first and second
Link, respectively.
Mip is the a tip mass including the

wrist and the object mass,
Ip is the moment of inertia of the tip
mass about its own axis of rotation
In our case, then, the Lagrangian of the
system will be:

L =Llril"LQr +LMlpr+Lf‘ (5)

The equations of motion in Lagrangian form
can be written in the form [13]:

oL, d oL, 9 L,

e e S (7)

L)+
oW dt oW  ox

Subject to the boundary conditions

{W(,t)}=0, (8-a)

(W(e,,t)}=0, (8-b)

oL(0) _ 1,,=0> (8-¢)
aw' »

51‘#2) s 0 (8-d)

Where

7,, &7,3; are the flexible hub torques

at the proximal and distal ends of
the flexible arm.
Q is the generalized torque.

Upon substituting from egs. (2-5) into egs.
(6-8) and after some algebraic manipulation,
one can get the equations of motion and the
corresponding boundary conditions as:

TLionn®) +mpl %26, cos(8, —6)) —H,2 sin
(82 —6P]+ (myX) + mat) —Mypty)gcos)

14 o :
¢ pz[w = WBZZ]COS(ez —Bl)dx

+4) " C
0 -[W0, +2WB0]sin(0, - 0))

+ MtpeleZ[GZ cos(0y —0))
— 0,7 sin(8, -67)] - Q =0, (9)
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Lio1262 +m,€,X, [0 cos(, —6;)
~6,%sin(0; — 6))] + (m,X; + Myy€5)gcos;
N elhpz([wzé2 +2WW6, +xW]
ot £1W[012 cos(8, —0;) - 6; sin(8, —0;)
- gW sin 82)dx + My £,¢,[0; cos(6; - 6;)

6% sin(8; 6]~ Q2 =0, (10)

Wézz = W ——.\’éz —gcCos 92 —31[61 COS(Gz —61)

P2 ., i
+0,° sin(6, —6;)
4

—Elg——\?:o. (11)
ox

Where;

I =Im+lm+ltp+M(pf{2 :

totl

- 2
Itol: =5 II)2 + Ih'z i i Itp + Mtpe‘z ’

Q=1 -K[¢sin06) +£,5sin0,]
+Fy[€)cos0) + £5cos6,),and  (12)

Q, =1, -F,[¢{,sin6,] + F [£,cos6,]. (13)

In order to obtain an accurate model with
a small number of modes, it is advised to
consider more accurate boundary conditions
due to the absence of a rigid hub at the distal
end and the existence of the tip mass with
inertia instead. So, the boundary conditions
will take into considerations these changes
[14,15].

{W(O,t)}=0, (14-a)
Wwie,,nj=0, (14-b)
_uZs 0)-1,=0, (14-¢)

)

(

2
B1 )= (=B (14-d
Where:
B is the eigenvalue and ¢(x)is the
corresponding mode shape and will be
given in details in the next section.

3. Inverse dynamics procedure

By inverse dynamics we mean that we
want to know the joints torque to move the
end effector of the flexible link through a
prescribed trajectory. The inverse dynamics is
so complex to make a straightforward
application of the computed torque method or
feedback linearization impossible. Instead,
some approximate schemes are proposed for
open and closed loop control [16]. In our case,
solving eqgs. (9-11) for the joints torque
subject to the boundary conditions(14-a-14-d)
to obtain the flexible hub torque is avery
difficult task if it is not impossible. Thisis
simply because one has to calculate the
elastic deflection of the arm to obtain the
flexible hub torque. Unfortunately the
required hub torque for the flexible linkis
also included in the boundary condition (14-
c¢). An alternative approach to the
computation of the link deformation is to use
approximations for the flexible torque as
suggested by Asada [16]. One can assume the
second arm is rigid, substituting the joint
angle, obtaining the hub torque for the
virtually rigid arm. The resultant torque can
be used as an approximate for the flexible
arm model. The final step is to substitute into
eq. (10) to obtain the desired flexible hub
torque. To simplify the manipulation of the
solution, consider the substitution:

Y(x,t) = W(x,t) + x0(t) - (15

Which represents the total deflection of
the flexible arm. By substituting equation (15)
into egs. (9,10,12, 14), one can solve for the
total deflection instead of the flexible
deflection (for more details see [17]). The
differential equation is then transformed toa
non-homogeneous differential equation with
homogeneous boundary conditions. App.ing
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the assumed mode method [18],Y (X, ) can be
given in the form:

Y,(,1) = 30, (xIC, (0 + A, (x)0,(0) + P,
_ (16)
Where;
f D il
¢n(x) = pW_:SIn(BX/L)’ Bn b | nTC/L,
2% igh
A, (x)=(2x- T +L—3)/L,
and
LX 3¢ b.4
B (X)=[-— 4+ 5= S
()= + -2

Where A (X)and B, (X)are functions of the
state variable x alone that render the non-
homogeneous boundary conditions into
homogeneous boundary conditions. ¢ _(x) is
the mode shape and C (t) is the time
dependent boundary function.

Neglecting the first nonlinear term of eq.
(11), since its effect is obvious only at very
high speeds, The last two nonlinear terms
inside the parentheses can be regarded as
distributed excitation force with unit density
[18]. This effect can be compensated in the
time function as: '

t
Cn(l)=—l—_“Nn (t)sin ogq(t-1)
(OF] 0

EXP[-Coq(t-1)jr, (17)

where:
£y

Nn(t)=an(t)—€lj(pn(x)[élcos(ez -8))
0
+6,2 sin(6, —6;))dx

Nn](l} = —[G m"(x)flzez(t) + G“i (X)ezé2(t)]

T (t To(t
[ i 09 2()+Hni Iiz(l)]'

in which;

Go = [ o)A, ()

Gm—"-(b ( )a (A (x))dx
Hnj = Ipﬂbn(Xan(X)dX’

Hn,-jcb( x) 2 ax

In order to simulate the constrained
motion, two different profiles of the joint angle
are considered here. These profiles have
common initial and final values. These
trajectories represent a generic “ pick- and -
place” maneuver, whereby the manipulator
starts from rest, accelerates gradually and
then decelerates to stop. On the contrast they
have different increasing rate and different
acceleration profiles. These two trajectories
are plotted in fig. 1 and the expressions for
these profiles can be given as:

0, = 0.16(PI * t — sin(PI * t)), (18)
=3t ol 19
6, =3 - 2() (19)

On the other hand, the contact force
exerted by the robotic arm can be modeled by
spring [1, 6]. If the horizontal position of the
contact surface can be given in terms of the
inclination angle « and the vertical
displacement y in the form:

x=R, +y/tana,
in which

y=4¢,sinb, +£,sin0,.
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Fig. 2. Joints trajectories.

The contact force, including the inertia
force due to tip mass, will he [5]

F =K,[x-£,cos0, -¢,cos80,]+F,.., (20)
where
FXincr ZI‘dlplzlsin 61.6.1 + € 5 cos 61612
+é25inzéz+ézcos 61622],
Y iner =M[p[f|COs e1.6.1 _f]Sin elélz
+ £ 4 cos 252—Z2si11 6,922].
Where Rx is the position of the constraint

surface and Ks is the spring stiffness which
equals 1000 N/m. The selected system

considered here is similar to that in [19]
where the parameters of the system are:

£, =£, =0.65 -
Py =P, =0.3248Kg /m,
El =1.831 N-m2

The hub inertia is assumed to be 10 times
the beam inertia for both links [17, 20]. By
substituting from eqgs. (15-20) into egs. (9,

10) one can get the contact force and both
rigid and flexible hub torques. In order to
better select the optimum performance
parameters of the constrained system,
simulation is carried out for three cases
employing the intersection points (Rx =1.3,
1.4, and 1.5 m) as a parameter. This can be
done for four common rotating angles of the
compliant surface (@ =90,100,110 and 120
degrees) in each case. The results

are illustrated in figs. 3, 4 and S.

4. Discussion and conclusions

Enabling the compliant surface to rotate
about the hinged point and to change the
intersection point along the X-axis have a
considerable effect on both the contact force
and the seeking hub torques. This effect can
be easily observed from figs. (3,4 and 5) for all
the three cases.
1.In the first case, (R<=1.3), Increasing the

inclination angle « causes the end

effector to lose contact with the compliant
surface and returns to contact again
within the time interval except for a =120.

2. for R«=1.4 m, the initial distance results in
an initial contact force between the end
effector and the compliant surface. The
contact force and both joints torque
decrease as a increases. There is no worry
about separation for the first three values
of a since it occurs only at =120 fora
small period before it is disappear at the
end of the time interval.

3. For the third case, where Rx=1.5 m no
separation occurs at any value of ¢.0On
the other hand, the initial values of both
hub torque may excite the unmodeled
dynamics of the system. Also, as
a increases some fluctuations in the
contact force and both hub torque exist.
This can be clearly observed for a =110
and 120.

4. For all the three cases above, the contact
force and both hub torque reduce
considerably as the angle of inclination
increases.
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Fig. 3. Contact force and joints torque.
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