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Galerkin's method has been applied to study the free transverse vibration of non-
homogeneous clamped trapezoidal plates. The assumed deflection function is
exactly satisfying the associated boundary conditions. The non-homogenity
considered here is a sort of thickness variation. Three different cases , which are,
the linear, the exponential and the parabolic thickness variations are considered.
The present results for non-homogeneous clamped trapezoidal plates are entirely
new and not available elsewhere. Comparisons can only be made for the special
cases of non-homogeneous rectangular and homogeneous trapezoidal plates. In
these special cases, the results are found to be in good agreement with those
previously published in the available literature. A series of tabulated results , for
each case of thickness variation is then presented.
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1. Introduction

The study of free vibration of non-
homogeneous plates is very important in a
wide variety of applications in engineering
design such as that of space vehicles, modern
missiles aircraft wings, etc. Although a
certain amount of work has been done on free
vibration of non-homogeneous rectangular
plates, the authors have found that , there is
a little amount of work related to the
oscillatory motion of trapezoidal plates that
have variable thickness, in particular, for
those having clamped edges. The free lateral
vibration of rectangular plates that have
linear thickness variation' has been studied
by many researchers. Apple and Byers [1]
determined the fundamental natural
frequency coefficient for simply supported
plates that have linear thickness variation in
the span-wise direction. Ashton [2,3] applied

Alexandria Engineering Journal Vol. 40 (2001), No. 2, 291-301
© Faculty of Engineering Alexandria University, Egypt

the Rayleigh - Ritz method for determining
both the natural frequencies and the natural
modes, respectively, for clamped plates. Soni
and Rao [4] used a spline technique method
of solution. Filipich et al. [5] applied
Galerkin's method for the determination of
the fundamental natural  frequency
coefficients of plates that have some different
arrangements of boundary conditions. Ng and
Araar[6] used Galerkin's method to study the
vibration and buckling of clamped plates.
Sanzi et al. [7] applied four different
mathematical methods to determine the
frequency coefficients of plates that have
some mixed boundary conditions. Kukretti et
al. [8] wused the differential quadrature
method to study the free vibration of plates
that have some different combinations of edge
condition.
For rectangular plates

parabolic thickness variation,

which huave
Olson and
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Hazil[9] applied both  theoretical and
experimental methods to study the free
vibration of clamped plates. In [ 10 ], the finite
element was applied by Mukherjee and
Mukhopandhyay to determine the natural
frequencies of skew and curved plates that
have parabolically varying thickness .They
also presented the results for clamped
rectangular plates.

The problem of rectangular plate that has
exponential thickness  variation  was
considered by Sonzogni et al. [11]. They
applied both the finite element method and
the optimized Kantrovich approach to
determine the natural frequencies for the two
cases of CCCF and CSSF boundary
conditions. In [12], the finite element method
was applied by the first author to determine
the frequency coefficients for five, non-
uniform thickness, regular polygonal plates
that start from the triangular up to the
heptagonal one. Both the linear and the

exponential thickness variations were
considered.
The free vibrations of homogeneous

trapezoidal plates that have different
arrangements of boundary conditions have
been investigated by many researchers [13-
17]. For non-homogeneous trapezoidal plates,
there is a little amount of work. Laura et al.
[18] applied the Rayleigh-Ritz method to
study the oscillatory motion of cantilevered
plates that have linear thickness variation in
the span-wise direction. In [19], the finite
element method was used by the first author
to determine the frequency coefficients for
both rectangular and cantilevered trapezoidal
plates that have quadratic thickness
variations.

In the present study, the problem of free
vibration of non-homogeneous clamped
trapezoidal plates is investigated. Galerkin's
method is applied. Three different cases of
thickness variations, namely, the linear, the
exponential and the parabolic thickness
variations are considered. In each case, the
thickness is taken to be varying along the x-
axis, which is the span-wise direction of the
plate. A detailed discussion on the problem
formulation and the accuracy of results is
presented.

2. Mathematical formulation

The plate middle surface is assumed to
have a symmetric trapezoidal platform which,
for 0 = 0, it becomes a rectangle and for
certain values of the plate aspect ratio and
the trapezoid angle 6, it tends to be an
isosceles triangle. The plate geometry is
shown in Fig. 1. In the following formulation,
the X,y - coordinates and the deformations of
the plate are non-dimensionalized by a
characteristic length ( L = 2a), which is the
chord of the plate at its root (x =0 ).

3

¥

Fig. 1. The geometry of the plate.

The partial differential equation which
governs the free oscillatory motion of isotropic
plates, after the assumption of simple
harmonic motion, is given by:

D[Wxxxx+2Wxxyy+Wyyyy]-(DzL4ph-W =0 9 (1)

where Wuayy = 0'w/0x20y- , w is the frequency
of oscillations , p is the density of the plate
material , h is the plate thickness and D =
Eh3 / 12( 1 - v2) is the bending rigidity with E
is the Young's modulus of elasticity and v is
the Poisson’s ratio.

Three different cases, which are, the
linear, the exponential and the quadratic
thickness variations will be considered. The
thickness of the plate is assumed to vary
along the x-axis (the span-wise direction) as
follows:

h=hof(x) 2)
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where hois the plate thickness at its base( x =
0 ) and f(x) is the function that represents the
thickness variation. The function f(x) will be
taken as follows:

f(x) =1+ ax for linear thickness variation
(3-a)
f(x) = e"x for exponential thickness variation
(3-b)

fx) = 1 + ax + Px2 for quadratic thickness
variation, (3-¢)

where o and B are the parameters which
govern the thickness variation.
The substitution from eq(2) into eq (1) gives

()] Wiooox + 2Wiogy + Wyyyy | - A2w = 0, (4)

where 2 = ol?¥ pho /' D. is the non-
dimensional natural frequency coefficient
with Do = D(ho/h)3 .

The solution of eq (4) will be assumed in
the following form:

N N
W(X>.V) =Z An‘P“(x’Y) i G(X’Y) ZA“W“(X’Y)’

n=1 n=1 (5)
where G(x,y) is the part of the deflection

function that satisfies the essential boundary
conditions. In the case of a clamped edge, the
associated boundary conditions are w = 0 and
ow/on = 0, where n is the direction normal to
the edge. The function G(x,y) satisfies both
these two kinematical boundary conditions.
The explicit expression for this function is
given by: i

Gxy)=x*(x-y)(y+px-05)(y-px +o.5(§),

where p = tan 6 and y is the plate aspect
ratio( y =d/L).

The function wyu(X,y) represents the
distribution of the deflection w(x,y) over the
domain of the plate with respect to that of the
point( y/2,0). It is constructed by following

Laura et al. [20] with the modifications
concerning the origin location.

wn(x,y)=(x-b)2n-li+y2-in = 1,2,...,N, (7)

where b =1y/2.

After carrying out the multiplication of the
function G(x,y), it is then expressed in the
following form:

15
G(x,y) = Z a xm yni, (8)
i=1

where the a’s are constants which depend on
the parameters p and y, mi ,ni are the powers
of x and y, respectively, in the i th term. m;
takes the values 8,7,6, ....... ,2 and ni = 0,2,4.
The explicit form of G(x,y) will be given in the
appendix.

The substitution of the solution (5) into
eq.(4) results in the error function which is
known as the generic residual & (X,y). For
example, for N=3 , it will take the following
form:

e(x,y)= [f(x)]2[A1(F1+2G1+H1) + Ax(F2+ 2G2 +Ho)
+ A3( Fs + 2Gs + Hs )]
-A2{A1.2G(x,y)TA2. G(X,y)[(x-b)2+y=2]+Aa
G(x,y)[(x-b)*+y*1}, (9)

where Fi,Gi,Hi, i=1,2,3, are functions of X,y ,
which are obtained , for N = 3 ,from the
following relations:

3
Wiax = 2 Ai Fi(x,y) (10-a)
i=1
3
Wiy = 2 Ai Gi(%,y) (10-b)
i=1
3
Wyyyy = 2 Ai Hi(x,y) (10-¢)
i=1

The explicit expressions of these elements of
g(x,y) , for N =3, as an example, are given in
the appendix.
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According to Galerkin’s method, it is
required that the residual g(x,y) to be
orthogonal to each of the deflection functions
¢n (x,y) over the area A of the plate. i.e.

Il &(x,y) @n(x,y) dA=0 n = 1,2,..,N. (11)
A

Substituting from Eq (5) arld (9) into Eq (11), a
number N of characteristic equations is
obtained from which the natural frequency
coefficient A is determined.

The substitution from Eq (5) and (9) into
Eq (11) results in integrals of the following

type:

Y  (0.5-px)
I=[xryadA =] [ xpya dxdy. (12)
A 0 —(0.5-px)

The evaluation of such integral gives the
following:

I=0 for odd number, (13 -a)
and \
y
I=][xr/29(q+1)] (1 - 2ux)@*lidx for q even.
0 (13 - b)

The term (’l—Zux)“l is expressed in its
expanded form and the integral I is given by

the following algorithm:

I=/f(wy,pq) / 29(q*1), (14)

Where;
f(w1,p,q) = yP*/(p+l) - 2u(q+1)yer2/(p+2) +
(2p)2.(q+1).q.y*3) /21, (p+3) -

-(21)*(q*1).q.(q-1).yP*4/3!.(p+4)
*,0n

It must be mentioned that the number of
the non-zero terms in the' expansion given in
Eq (14), that correspond to a certain value q is
(q+2). A computer program is constructed to
determine such integrals and the resulting
characteristic equations are solved to
determine the natural frequency coefficients.

3. Numerical examples and discussion

To check the convergence of the solutions,

calculations which correspond to three
successive values of N (N=1,2,3) are
performed. The fundamental  natural

frequency coefficients for tapered clamped
square plates, as a test case, are given in
Table. 1. Five different values of the thickness
variation parameter « are considered. For all
calculations, the Poisson’s ratio is taken to be
0.3. The results are compared with most of
those given in the available literature. Trials
show that good convergence and acceptable
accuracy could be obtained for N=2, since the
maximum percentage difference between the
present results and those obtained by other
different mathematical methods is about 1%.

Tables. 2-4, indicate the variation of the
natural frequency coefficients with both the
angle of the trapezoid 6 and the thickness
variation parameter o, for clamped trapezoidal
plates which have linear thickness variations.
The plate angle 6 varies from 0° ( rectangular
or square plate) to 25° or 15° (according to the
aspect ratio) at an interval of 5°¢. The
parameter o is allowed to vary from 0.5 to -
0.5 ,at a step of 0.1, to study the effect of both
thickness increasing and thickness
reduction, along the span of the plate, on the
frequency coefficients. Three different values
of the aspect ratio y are considered. In Table.
2., where y =1, the values of the fundamental
natural frequency coefficient A, , which
correspond to 6 = O (square plate) are
compared with those given in [12] by using
the finite element method . The results of Ref.
[12] are given between brackets. The
agreement between the two sets of results is
found to be acceptable and the maximum
percentage difference between them is about
3% , which is the solution for a = - 0.5. It is
also found that, for any value of 0, the
fundamental natural frequency A, increases
with the increase of the thickness variation
parameter « and for any value of « in its
range of variation, the value of A, increases
with the increase of 0. Such variation of i,
with both of 6 and o is nearly the saiu« for
each of the three different aspect ratios.
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In' the case of exponential thickness
variation, the function f(x) = e“* which is
given in Eq (3-b) is expressed in a Maclaurin
expansion form and calculations are
performed by considering the first five terms
of the expansion. The results for the
trapezoidal plates that have exponential
thickness variation are given in Tables. 5-7.
In Table. 5, where y =1, the present results for
the square plate (6 = 0) are compared with
those given in [12] by using the finite
element method. A wide range of variation of
the tip to root thickness ratio (hi/ho) is
covered. The thickness variation parameter o
is related to hi/ho , according to Eq(3-b), as
follows: o = (1/y)In(hi/ho). As could be shown,
the results are in good agreement with those
given in [12]. The maximum percentage
difference between these two sets of results is
about 1.8%. For trapezoidal plates (0 # 0),
most of the results presented here are new in
literature and can not be compared as no
other results are available. The fundamental
natural frequency coefficient A; is calculated
for the same range of variation of 6 as in the
case of linear thickness variation. It could be
concluded that, the same behavior of A; with
both o and 6 , for each of the three different
aspect ratios is nearly the same as that of the
linear thickness variation.

The solutions for the case of the quadratic
thickness variation are présented in Table. 8-
10. The values of the parameters o and f,
which govern the i parabolic thickness
variation of the plate can not be arbitrary
chosen. They are related to two other
parameters: the aspect ratio y and the tip to
root thickness ratio h;/ho. According to Eq (2)
and (3-¢):

ax + fx2 = h/ho -1.
If h = hi(where h, is the thickness at the tip of
the plate), then X = x; = y and the relation
between o and 3 will be given by:

ay+ pBy2=hi/ho- 1.

For assumed values of y and hi/ho, the two
parameters o and § will be linearly dependant

-variation,

and then , for any arbitrary value of one of
them, the other can be determined. In table.8,
the results for clamped square plate (y=1
and 6 = 0) are presented and compared with
those given in [12].The agreement between
the two sets of results is acceptable since the
maximum percentage difference between
them is about 3%. As in the two preceding
cases of thickness variation ,for trapezoidal
plates that have quadratic thickness
variation, decreasing the thickness of the
plate along the span results in corrc:ponding
decrease of the natural frequency coefficients.
Also, the effect of variation of the trapezoid
angle 6 on the frequency coefficient is the
same as that of the two preceding cases of
thickness variations.

The effects of the parameters a and f,
which govern the parabolic thickness
on the fundamental natural
frequency coefficient A, could be explained as
follows: The parameter o represents the linear
thickness variation of the plate while the
parameter [ governs its quadratic thickness
variation. For any value of hi/h. <1, andy =
1, the two parameters are dependant
according to the relation:

a+f=hi/ho- 1.

If B = O, the variation of the thickness is
purely linear and the thickness of the plate at
any position X is determined from the relation
h =ho[l-(1-hi/hy)x]. If o = O, the thickness of
the plate alongthe span isgivenby h=
ho[1-(1-h1/ho)x2] . The term 1-hi/h.
represents the reduction of the thickness in
one side of the plate middle surface along the
span. Since the aspect ratio is unity, then the
non-dimensionalized coordinate x is governed
by the inequality x < 1 and hence, x2< x. In
accordane, the reduction of the thickness in
the case of its linear variation is larger than
that corresponding to its pure quadratic
variation. Since the rigidity D of the plate is a
function of its thickness, then the case when
B =0 will result in a value of the rigidity which
is less than that corresponding to « = O.
Therefore, the value of A, for any ratio of
hi/ho < 1 and B = 0, is expected to be less
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than that corresponding to the same value of
hi/h. and « = 0. As an+example, fory = 1,
hi/ho =0.5,8=0,a=-0.5, the value of 1, is
26.94 and for the same values of y and h: /ho ,
buta =0,  =-0.5, the value of A, is 30.16.

S. Conclusions

The free transverse vibration of non-
homogeneous trapezoidal plates has been
analyzed by using Galerkin's method. Three
different cases, which are, the linear, the
exponential and the quadratic thickness
variations are considered. It is possible from
the preceding study to draw the following
conclusions:

1. The suggested deflection function is
exactly satisfying the boundary
conditions which associate the edges of
the models. $

Table. 1

2. The convergence and the accuracy of the
present solutions are demonstrated
through comparisons with most of the
available results which are obtained by
different mathematical methods.

3. The effects of variation of both the
trapezoid angle 6 and the thickness
variation parameters o and f, for plates of
three different aspect ratios, on the
frequency coefficients  have been
investigated. The fundamental natural
frequency coefficient that corresponds to
certain values of the aspect ratio y and the
thickness variation parameters « and f is
found to be monotonically increasing with
the increase of the trapezoid angle 0 . It is
also found that , for certain values of y
and 0 , the increase of the thickness
along the span of the plate leads to a
corresponding increase in the value of A;.

Convergence and comparison of results for tapered square plates

296

Ref. a
0.4 0.2 0.0 - 0.2 -0.4
Present: N=|] 43.52 40.12 35.99 32.71 29.02
N=2 43.25 39.61 35.99 32.42 28.87
N=3 43.29 39.68 35.99 32.48 28.92
2] 42.93 39.52 36.01 - -
[7] 4291 39.51 35.99 = =
18] 42.94 39.55 36.01 - -
[12] 42.91 39.51 36.00 32.30 28.38
Table. 2
Results for trapezoidal plates of linearly varying thickness (y = 1)
o 0
0.0 S 10 15 20 25
0.5 45.07(45.52) 48.81 54.94 64.32 77.17 93.50
0.4 43.25(42.91) 47.03 53.16 62.44 75.12 91.23
0.3 41.43(41.21) 45.26 51.38 60.65 73.05 88.97
0.2 39.61(39.51) 43.49 49.60 58.67 70.99 86.71
0.1 37.80(37.77) 41.73 47.82 56.79 68.93 84.45
0.0 35.99(36.00) 39.97 46.05 54.91 66.86 82.19
-0.1 34.20(34.17) 38.22 44.28 53.03 64.80 79.93
-0.2 32.42(32.30) 36.48 42.52 51.15 62.73 77.67
-0.3 30.64(30.37) 34.74 40.76 49.26 S 60.67 75.41
-0.49 28.87(28.38) 33.02 39.00 47.38 58.61 73.15
- 05 27.11(26.30) 31.30 37.25 45.50 56.55 70.91
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a (%]
0 5 10 15 20 25
0.5 60.72 62.60 66.69 74.03 85.50 101.5
0.4 58.78 60.83 65.06 72.45 83.83 99.61
0.3 56.85 59.07 63.43 70.86 82.17 97.74
0.2 54.92 ¢ 57.32 61.81 69.28 80.49 95.88
0.1 52.99 55.57 60.18 67.69 78.81 94.01
0.0 51.08 53.82 58.56 66.10 77.13 92.14
-0.1 49.17 52.08 56.94 64.51 75.44 90.26
-0.2 47.26 50.34 55.33 62.91 73.75 88.39
-0.3 45.36 48.62 53.71 61.31 72.05 86.50
-0.4 43.48 46.90 52.10 59.71 70.35 84.62
-0.5 41.60 45.18 50.49 58.10 68.64 82.73
Table. 4
Results for trapezoidal plates of linearly varying thickness (y = 1.5)
a 0
0.0 5 10 15
0.5 37.28 45.18 55.58 67.43
0.4 35.23 42.87 53.04 64.81
0.3 33.17 40.57 50.50 62.17
0.2 31.12 38.27 47.96 59.50
0.1 29.08 35.98 45.42 56.81
0.0 27.05 33.71 42.88 54.10
-0.1 25.02 31.44 40.33 51.37
-0.2 v+ 23.01 29.19 37.80 48.62
-0.3 21.02 26.96 35.26 45.86
-04 19.05 24.74 32.74 43.09
- 0.5 17211 22.55 30.23 40.33
Table. 5
Results for trapezoidal plates of exponentially varying thickness (a = 1)
Hi/ho 0
0 5 10 15 20 25
0.5 27.52 29.74 35.45 43.41 54.09 68.05
(27.67)"
0.6 28.03 32.09 37.94 46.15 57.17 71.48
(28.29)
0.7 30.19 34.25 40.20 48.62 59.92 74.54
(30.13)
0.8 32.23 36.27 42.29 50.88 62.42 77.31
(32.18)
0.9 34.16 38.17 44.23 S52.97 64.73 79.84
(34.11)
1.0 35.99 39.97 46.05 54.91 66.86 82.19
(36.00)
12 39.46 43.32 49.41 58.46 1074 86.42
(39.41)"
1.4 42.69 46.42 52.47 61.66 7421 90.19
(42.53)
1.6 45.72 49.31 55.30 64.58 77.36 93.60
(45.39)
1.8 48.59 52.04 57.94 67.28 80.25 96.71
(48.01)
2.0 51.33 54.62 60.43 69.79 82.94 99.59
(50.43)
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Table. 6
Results for trapezoidal plates of exponentially varying thickness (y = 0.75)

H1l/ho 0
0.0 S 10 15 20 25
0.5 36.58 40.27 45.53 52.88 62.90 76.28
0.6 39.81 43.37 48.61 56.08 66.39 80.18
0.7 42.86 46.24 51.40 58.94 69.48 83.62
0.8 45.74 48.92 53.96 61.53 72.26 86.72
0.9 48.47 91.44 56.34 63.90 74.80 89.54
1.0 51.08 53.82 58.56 66.10 77.13 92.14
1.2 55.99 58.27 62.66 70.08 81.32 96.79
1.4 60.52 62.37 66.38 73.63 85.02 100.9
1.6 64.91 66.22 69.81 76.84 88.32 104.6
1.8 69,02 , 69.84 73.01 79.79 91.33 107.9
2.0 72.94 73.28 76.02 82.52 94.08 110.9
Table. 7

Results for trapezoidal plates of exponentially varying thickness (y = 1.5)

H1l/ho 0
0.0 S 10 15
0.5 19.32 24.90 32.76 42.92
0.6 21.05 26.91 35.12 45.59
0.7 22.68 28.77 37.28 48.00
0.8 24.21 30.52 39.27 50.20
0.9 25.66 32.16 41.13 52.22
1.0 27.05 33.71 42.88 54.10
1.2 29.65 36.60 46.10 97.51
1.4 32.06 39.28 49.03 60.56
1.6 34.34 41.79 51.74 63.32
1.8 36.49 44.15 54.26 65.84
2.0 38.54 46.38 56.64 68.17
L]
Table. 8

Results for trapezoidal plates of quadratic thickness variation (y = 1)

hl/ho o B 0

0 S 15 25
1.0 0.0 0.0 35.99(36.00) 39:97; 54.91 82.19
0.0 -0.5 30.16(29.04) 35.87 51.43 78.85
0.5 -0.25 - 0.25 28.19(27.66) 33.59 48.47 74.87
-0.5 0.0 26.94(26.29) 31.30 45.50 70.91
0.0 -0.25 33.10(32.71) 37.90 53.17 80.51
0.75 -0.125 -0.125 32.26(32.03) 36.76 51.69 78.53
- 0.25 0.0 31.42(31.34) 35.61 50.20 76.54
0.0 1.0 45.94 48.61 61.95 88.92
2.0 0.5 0.5 50.01 53.19 67.84 96.85
1.0 0.0 54.23 57.76 73.70 48
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Table 9 .
Results for trapezoidal plates of parabolic thickness variation (y = 0.75)

H1/ho a B 9
0 5 15 25
1.0 0.0 0.0 51.08 53.82 66.10 92.14
0.0 -8/9 44.29 48.41 62.51 88.74
0.5 -1/3 -4/9 41.39 45.38 58.96 84.16
-2/3 0.0 38.50 42.35 55.41 79.58
0.0 16/9 65.41 65.58 73.11 98.64
2.0 2/3 8/9 71.19 71.36 80.15 107.8
4/3 0.0 76.99 77.45 87.17 116.9
Table. 10

Results for trapezoidal plates of parabolic thickness variation (y = 1.5)

H1/ho a B 6
0 S 15
1.0 0.0 0.0 27.04 33.71 54.10
0.0 -2/9 23.50 30.09 50.63
0.5 - 1/6 -1/9 21.93 28.15 47.79
-1/3 0.0 20.36 26.21 44.94
0.0 4/9 34.44 41.31 60.97
2.0 1/3 2/9 37.58 45.18 66.38
2/3 0.0 40.72 49.04 71.72
Appendix

The explicit forms of the elements of the residual function £(x,y) which is given in eqn. (9), for
N=3 , are given by:

G(x,y) = aix® + asxX7+ asx®y? + as X0 + asx%y2 + asx5 + arx* y* + asxty? +aox? + aio x3y* +a1x3 y?
+aex3 + asx?y* + ajax2y? +aisx?

Where:

a = pt az = -2u3 - 2ypt as = -2u2 a4 = 1.5 p2 + 4ypd + 2 pi,

as=2u+4yp2. as =-0.5 p- Bypu2-2y2 pd. az =1

as=-0.5 p-4ypu-2y2 2, a9=(1/16) +yp + 1.5y2 p2. a0 = - 7.

ann=y+2y2p,ai2=-1/8y- 0.5y2 p,aizs =y2 .a14 = -0.592 .,ai15 = (1/16) y= .

Fi; =3360a:1x* +1680a2x3 +720 asx?y? +720 as X2 +240 asxy? +240 a, x+48 a7 y* +48ax y2 + 48 a..
G = 120 azx? + 80asx® + 288arx2y? + 48asx“ + 144a 0 Xy + 24a, X + 48a.sy~ +8a.4.
H, = 48arx* + 48a10x3 + 48a,3 X2

Fa2 = e1x° +eax5 +eax*y? + eq X*y2 + es x3y2 +esx3 +erx2y* +tesx2yteox2+eioXy*+e 1 xy2+ei2x
+ei3 y© +eiqy? +eisy? +eie.

where:

e =5040 a; , ez= 3024 (a2 - 2a1 b) , es=1680 (a1 +as) , es=1680 (as— 2avb + a;b?)
es = 840 (az + as — 2asb)., ec = 840 (as — 2asb + azb?) , ez = 360 (as + a7)

es = 360 (as + as — 2asb + asb?).eq = 360 (as — 2asb + asb?). e = 120 (a0 + as — 2arb).

e = 120(an + a» - 2asb + asb?). eiz = 120 (aiz - 2a9b + asb?). eis = 24 as.

e14 = 24(aus + as- 2aiob + azb?). eis = 24(ai4 +as — 2a11b + as b?),e1o = 24(ais — 2aizb +ash?).

G2 = gix® + gox® + gaxiy? + gax* + gsx3y? + gexd + grx?y* + gaXx?y? +gox* +gioXy*
+g11Xy2+g12X+ giay? + g14y2 + gis.
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Where:

g1 =112(a1 +as go =84 (az +as - 2asb). gz =360 (as + az),g+ = 60(as + as — 2asb + asb?)..
gs = 240(as + aio — 2arb),g6 = 40(as + a1 — 2asb + asb?) ,g7 = 360 az.

gs = 144(as + aiz — 2aiob + arb?),go = 24(as + a4 — 2a11b + asb?),gi0 = 180 aio.

g1 = 72(a11 — 2aisb + aiob?).gi2 = 12(ai2 — 2a14b + a11b?),g13 = 60 ais.

814 = 24(a1s + ai3b?),g1s5 = 4(ais + aisb?).

Hz = hix® + hoxS + hax*y? + hax* + hsx3y? + hex® + h7x?y? + hsx?.

where

h, = 24(as + a7),h2 = 24(as + a0 ~ 2arb),hs = 360 az,hs = 24(as + aiz — 2ai0b + a7n?).
hs = 360 aio,he = 24(ai1 — 2aisb + aiob?),h7 = 360 ais,hs = 24(ai+ + aisb?).

Fa = fix® + fox7 + f3x0y2 + £ax6 + fsx5y2 + fox5 + f7x4y* +hxiy? + fox* + fiox3y* +11x3y? + fiox3 + fiax2y* +
flax2y* + fisx2y? + fiex2 +fi7xy® + fisxy* + fio Xy2 + foox + f21y® + fooy® + foay* +fa4y2 + fos.

where:

fi = 11880a, f> = 7920(az - 4aib),fs = 5040as,fs = 5040(as — 4azb + 6a1b?),fs = 3024(as — 4asb),

fo = 3024(as — 4asb + 6azb? - 4a,bd).fr = 1680(a: + a7).,fs = 1680(as — 4asb + 6asb?).

fo = 1680(as — 4asb + 6asb? - 4azb? + aib?),fio = 840(aio + az — 4arb).

fi1 = 840(ai1 — 4asb + 6asb? - 4azh3),fiz = 840(aiz — 4asb + 6asb? — 4asb® + asb?).

fis = 360 as,fi4 = 360(ai1z — 4aiob + 6arb? + as),fis = 360(ais — 4a11b + 6asb? — 4asb® + aszb?).

fic = 360(ais — 4aizb + 6ash? - 4ach® + asb?),fiz = 120as,fis = 120(as — 4aisb + 6ai0b? — 4a7b?).

fio = 120(-4ai4b + 6a11b? - 4asbh?® + asb?),f20 = 120(-44aisb + 6aizb? — 4ash® + asb?).

f21 = 24az,f22 = 24as,foa = 24(as +6a13b? - 4ai0b3 + azb4),fo4 = 24(6a14b? — 4a11b3® + asb?).

f2s = 24(6a15b? - 4a;2b3 + ash?).

Gs = qux® + X7 + qax°y? + ux® + qsx5y2 + qex5 + qrxiy? + qsxty? + Qox* + quox3y* + quix3y2 +  quux3

+ qu3X2y° +qu4X2y* + qisX2y? + que X2 + Q7Xy° + queX2 + quaXy? + quoXy? + qzoX + q21y° + quuy? +
+ 3y? + qo4.
where:

q: = 180 as ,qz = 144(as - 4asb),qs = 672(a: + a7),qs = 112(as - 4asb + 6asb?).

qs = 504(az + aio —, 4arb),qe = 84(ai11 — 4asb + 6asb? - 4asbs),q7 = 900 as.

qs = 360(a+ + a1z — 4aiob + 6arb?),qo = 60(ais — 4a11b + 6asb? — 4asbs + asb?),qi0 = 600 as.

qi1 = 240(as - 4aisb + 6ai0b? - 4arb3),qi12 = 40(-4a1sb + 6a11b? - 4asb? + asb?),qiz = 672 a7.
qi4 = 360 as,qus = 144(as + 6ai3b? - 4a10bd - arb?),qis = 24(6a14 bz~ 4211b3 +asb?),qi7 = 336 aio.
qis = 180 ai1,qi19 = 72(al2-6a13p® + aiob?),qeo = 12(-4a14b3 + anb?),qz1 = 112 ais.

qzz = 60 ai4,qzs = 24(ais + aisb?) ,qe4 = a4 b,

Ho = X" + X7 + taXOy< + t4X0 + tsXOy< + toX® + tzxty? + taxty? + tox? + tiox3y?* + t11x%y~ +ti2x° +
tiaX2y* + t14X2y2 + t15X2.

where:

t1 = 24(a1 + az,t2 = 24(az + aio — 4arb ),ts = 360 as ,ts = 24(as + ais — 4ai10b + 6arb?).

ts = 360 as,ts = 24(as — 4aisp + 6ai0b? - 4arbd),t7 = 1680 az,ts = 360 as.

to = 24(as + 6a13b2 - 4aiob® + azb?), tio = 1680 aio,t11 = 360 ai.

tiz = 24(ai2 - 4aizb3 + aiob4),ti1a = 1680 ais,ti4 = 360 a4 ,tis = 24(ais + aisb?).
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