Coset enumeration algorithm for symmeterically
presented groups
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The Todd-Coxeter coset enumeration algorithm was perhaps the first non-trivial algorithm
from pure mathematics to be programmed for a digital computer. Recently the author has
developed a double coset enumeration algorithm for symmetrically presented groups. This
paper describes a different algorithm for enumerating the single cosets of a known subgroup
in a group that is generated by symmetric set of involutions.
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1. Introduction

The Todd-Coxeter coset enumeration is
one of the most powerful tools of
computational group theory. It may be viewed
as a means of constructing permutation
representations of finitely presented groups.
An account of the basic technique appears in
[1], and the early history is described in [2]. A
detailed survey and comparison of various
strategies is given in [3], and more recent
work is described in [4].

All the strategies and variants of the
algorithm perform essentially the same
calculation as the original Todd-Coxeter
algorithm, merely choosing different orders in
which to process the available information.
The double coset enumeration algorithm
described in [5], appeared significantly
different, but could still be viewed as another
variant, one which used additional group-
theoretical information to compress the coset
table into a smaller space, and used modified
procedures to manipulate the compressed
table directly.

In [6] Curtis showed that Mathieu group
M4 can be generated by seven involutions
whose set normalizer in M4 is isomorphic to
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the projective special linear group PSL.(7),
which permutes the generators in the natural
way. This construction motivated the search
for what we call symmetric presentations of
groups. Earlier still, work has been done in
this area by Campbell [7] in case the control
group (in our parlance) is cyclic or the whole
symmetric group. Detailed account of
symmetric presentations of groups can be
found in [5].

These lead to an alternative view of the
Todd-Coxeter algorithm itself, as a way of
constructing finitely presented permutation
representations of groups generated by
symmetric sets of involutions.

2. Involutory symmetric generators of a
group

The construction given in this section has
been taken from our recent work, see [7].

Let N be a maximal subgroup of a finite
simple group G. Suppose thatl=te G, 2=
1. Under the subgroup N, 1, the conjugacy
class of tin G, splits into orbits as

t;=310 SJU U :'Sr.
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Without loss of generality, we may assume
that 3, = {t, t,...,t-1} is not a subset of N. It
is clear that

NL‘,(<31>)Z<N, 31>=G,

since N is maximal in G and 3, is not a
subset of N. Therefore,

1#<3,>«@,
and, since G is simple, we have
< S|>=G.

Moreover, if T (S N and
"=t Vief{o1l,.,n-1} then = e Z(G) (the
center of G) and so n = 1, i.e. N permutes the

elements of 3, faithfully (and transitively).
Now, let 2'n» denote a free product of n copies
of the cyclic group C: with involutory
generators to, ti, ..., tp.; and let N = N consist
of all automorphisms of 2'* which permute the
ti as N permutes the t:

n'tn=t" =t_, for e N.

n(1)

Then, clearly G is a homomorphic image of
2':N, a split extension of 2' by the
permutation automorphisms N. In these
circumstances we call N the control subgroup,
T = {to, t1, ..., tn-1} @ symmetric generating set
for G, and 2'":N the progenitor.

Also, to be noted is that, since the Feit-
Thompson theorem [8] implies that all non-
abelian finite simple groups have even orders,
it is quite easy to show that these are images
of progenitors of the form 2*n: N.

Since the progenitor: is a semi-direct
product (of <T> with N), it follows that in any
homomorphic image G, we may use the
equation:

t =T =T,

or in = 7i" as we will more commonly write (see
below), to gather the elements of N over to the
left. Another consequence of this is that a

v
o
=

relation of the form (ntj)" = 1 for some n € N in
a permutation progenitor becomes:

T =ttt

n--l(i)'

Each element of the progenitor can be
represented as nw, where 1 € Nandwisa
word in the symmetric generators. Indeed,
this representation is unique provided w is
simplified so that adjacent symmetric
generators are distinct. Thus any additional
relator by which we must factor the progenitor
to obtain G must have the form

W(to, TiNeey tn-l),

where n € N and wis a word in T.

Notation. In what follows we will let i stand for
the coset Nti, ij for the coset Ntitj and so on.
We will also let i stand for the symmetric
generator ti when there is no danger of
confusion. Thus, we write, for instance,

lj ~ k to mean Ntitj = Ntg.

Writing ij = k would be much the stronger
statement that tit; = tx.

3. Coset enumeration algorithm

When trying to establish the order ofa
finitely presented group it is necessary to
enumerate the cosets of a subgroup of known
order. Naturally, we would like this subgroup
to be the control subgroup N. In this section
we describe how to enumerate the cosets of a
control subgroup N in a group G presented by

2™ N

W, T,W,, .., TW

s S

The input to the algorithm begins with a
set of involutory symmetric generators T. The
next piece is a finite set R of additional
relations (which have the form w = ).

The algorithm proceeds by manipulating a
table for each relator, analogous to the coset

tables used in Todd-Coxeter algorithm. If
LG =T, is arelation in R then its relator

table (which has m+1 columns and infinui ‘ly
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Table 1
The relater table

i1 iz

Wk Wi W kiiiz

U

Wi

many rows) contains a row for each coset Nwy
,see table 1.

In the first row of each relator table we
apply the relation to the coset N (which is
denoted by *) and in the next n rows we apply
the relation to the length one cosets Nt;, i € {0,
1, ..., n-1), and so on. It is convenient to set
up a multiplication table which shows the
effect of each involutory generator on the
cosets when multiplied from the right.

Next, the procedure consists of defining
new cosets by inserting words in the next
available places in the multiplication table. If
w is a representative word of the coset Nw,
reduce w by replacing any subword v by nu, n
= uv'! is in R, and move = to the left of w. To
do this, we observe that Nwr = Nw”* whenever
n € N. In addition, the shme coset will often
have many names and a coincidence
(sometimes called collapse) may occur. Thus,
it is convenient to have some way of recording
in a table when a coset Nw, has been proved
to be the same (in G) as another coset Nwo.
When we have pushed all the relators to the
cosets from the coset multiplication table then
the process should have been finished.

This is in fact much simpler than the
usual method of pushing a relator in coset
enumeration, since we do not need to work
backwards through the relator, or make
deductions to exactly fill gaps. As a result,
many elements are defined and then almost
immediately deleted, so that the algorithm
does not waste both space and time. Also, it is
to be noted that our algorithm is practical in
the sense that it can be programmed readily
on a computer and results can be obtained in
reasonable time. 1

We can say that if N is of finite index,
closure must be reached after finite number of
steps (see the proof given in [8]).

]

4. Two illustrative examples

In this section we give details of how the
algorithm is used to find the cosets in groups
symmetrically presented. Consider the group
G which is presented by

=%
(2’3) = tot Lt ,

which means that the progenitor 2':S,
quotinted out by the relation (2,3) = [tot)]*.

We observe that 01 ~ 10 and that 010 ~ 1.
To see this we utilize our extra relation,
namely, (2,3) = totitot;. Thus N = N(2,3) =
Ntottot;, which we write as * ~ 0101, from
which, by postmultiplying both sides by t,, we
deduce that Ntotto = Nt,, that is 010 ~ 1.
Furthermore, postmultiplying both sides by ty
yields Nt to = Ntot; which is 01 ~ 10 in our
notation.

The enumeration is complete and we have
the relation table 2.

Thus,|G:N| < 14, so |G| <336 = |[PGL,(7)|, and
the (relatively) easy task of finding generators
for the projective linear group PGL:(7)
satisfying the required relations completes the
identification of G with PGL>(7). Also, one can
obtain a natural permutation representation
of PGL5(7) on 14 points.

We close with an example that illustrates
the effectiveness of the technique when
applied to a progenitor that is factored by
more than one additional relation. Consider
the alternating group As which is
symmetrically presented by
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Table 2
Problem relation table
0 1
* 0 01~-10 1 =
0 ¥ 1 10~01 (0}
1 10-01 0 * 1
2 20 201~310 31 3 ‘201~2{2,3 10~310
3 30 301~-210 21 2 301~3(2,3)10~210
10 1 . 0 01-~10
20 2 21 210-301 30 201~2(2,3)10-310
30 3 31 310~201 20 310~3(2,3)01~201
21 210~301 30 3 31
31 310~201 20 2 21
32 320 3201-32 320 3201~23 3201~3(1,3)021--1021
210 21 2 20 201~310 ~10(0 331’ =1312-32
310 31 3 30 301~210 201~3(. ,3)01~310
320 32 321-320 32 321~230 301-3(2,3)10~210
321~320~230
Table 3
Second problem relation table
0 1
* 0 01 010~01 0 *
0 . 1 10 101~10 1
1 10 101~10 1 . 0
2 20 201~02 020~02 021-20 2
01 010~01 0 = 1 10
10 1 * 0 01 010~01
02 020~02 021~20 2 21 210-12
20 2 21 210~12 121-12 120~21
12 120~21 2 20 201~02 020-02
21 210~12 121~12 120~21 2 20
Table 4
Second problem relation table
0 1
% 0 01 012~10 1 .
0 * 1 12 120~21 2
1 10 101~-10 102~01 010~01 0
2 20 201~02 0 * 1
01 010;01 0 02 020~02 021~20
10 1 ¥ 2 2 201~02
02 020~02 021~20 202~20 2 21
20 2 21 212-21 210~12 12112
12 120~21 2 * 0 01
21 210~12 121=12 1 10 101~10
P i systematically to point out that the hand

O,D) = tgtytgot;tg,(0,2,1) =tgtjtatoty

The progenitor here is 2*3:S;, where the S3
acts on 2% in its permutation action on three
points. Following the algorithm described
above, we can obtain all costs of Sz in As. All
the lines in all tables are closed and we have
relation tables 3 and 4.

Note that in the above hand calculation we
have tried to work thrdugh the algorithm

322

calculation and the mechanical calculation
are almost identical. Our next aim is to give
the results of the implementation on a variety
of symmetrically presented groups.
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