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Learning algorithms and training approaches tailored for compact multilayer
feedforward neural networks have been presented. In this type of compact
networks, the synapse and neuron building blocks are merged in one unit
performing nonlinear weighting of its input. Standard backpropagation and .
perturbation-based learning algorithms have been modified to use such a type of
compact synapse-neuron units. The actual transfer functions of compact unit
have been obtained from the simulated hardware characteristics of this unit and
then implemented in computer programs based on the modified learming
algorithms to perform pseudo chip-in-loop supervised learning. After training,
the updated weights are downloaded to the network for feedforward operation.
The validity of the modified learning algorithms and training approach has been
verified by designing a complete network and training it to perform a function
approximation task.
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1. Introduction

In Artificial Neural Networks (ANNSs),
standard packpropagation |[l], the most
popular gradient descent learning algorithm,
assumes that the synapses are linear
multipliers and the neurons have sigmoidal
nonlinearities. Although it is possible to
design analog circuits that approximate these
characteristics [2-4], the results is rather large
synapses and neurons and thus, an expensive
solution. A better approach is to use an
algorithm that is more tolerant of analog
nonidealities. For example, if an algorithm
does not assume that the synapse is a linear
multiplier and the neuron has sigmoidal
nonlinearity, much more compact synapse
and neuron units can be used. The optimum
solution is to merge both the synapse and
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neuron in one unit that performs a nonlinear
weighting for its input.

Standard back-propagation  learning

~ algorithm can be modified to take into account

such a type of nonlinear multipliers. This
approach has been applied in the Kakadu
neural network chip [5], which is trained
using chip-in-loop supervised learning. In this
training approach, the chip is used in the
forward pass and a host computer is used in
the feedback pass and makes use of neuron
outputs to compute the local error gradients
and then updates the synaptic weights. The
disadvantage of this approach is the huge
wiring requirements. since all neurons of the
network have to be accessible.
Perturbation-based on-chip gradient
descent learning algorithms are also well
suited to analog VLSI implementations
because they do not make assumptions about
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synapse and neuron circuit characteristics.
The simplest perturbation algorithm is called
Serial Weight Perturbation (SWP) [6], in which
the weights are perturbed in sequence and the
change in the error resulting from the
perturbation is measured. This algorithm is
extremely tolerant of nonideal analog circuits
and thus, extremely compact circuits can be
used. Unfortunately, SWP is very slow
especially in the case of fully connected large
networks. The Chain Rule’ Perturbation
(CHRP) algorithm [7,8] provides the tolerance
of nonidealities of SWP along with a significant
speedup. In this algorithm, the weights are
updated using composite perturbations of
hidden neuron outputs and weights. Although
this method is very time efficient compared to
SWP, it requires extra wiring to perturb all
hidden nodes within the network.

Recently, a pseudo chip-in-loop training
approach based on standard back-propagation
learning algorithm has been proposed [4]. In

this approach, the transfer functions
representing the multiplication process
(synapse function) and the sigmoidal

nonlinearity (neuron function) are obtained
from the simulated hardware versions and
then fitted by mathematical equations and
implemented in a computer program for off-
chip learning. After training, the final weights
are downloaded to the network for feedforward
operation. This approach can be extended to
the case of modified backpropagation and
perturbation learning algorithms, resulting in
a reliable training approach in compact VLSI
neural networks where nonlinear synapses are
in use.

In the present paper, modified
backpropagation and perturbation-based
(called Node Perturbation (NP)) learning
algorithms with nonlinear synapses are
proposed. A complete design aided with SPICE
simulations of compact synapse-neuron unit
is also presented. The validation and
verification @ of the proposed learning
algorithms and training approach have been
carried out through design and simulation of a
compact analog Multi-Layer Feed-Forward
Neural Network (MLFFNN) trained as a
function approximator, using pseudo chip-in-

loop training approach.

2. Modified backpropagation learning
algorithm with nonlinear synapses

In the gradient descent algorithm [9], to
which the standard backpropagation learning
is belonging, a synaptic weight is updated
opposite to the direction of the gradient of the
error signal E in the weight space. The error
signal E(n), at the n'th iteration, is normally
taken as the instantaneous sum of squared
errors overall the output neurons. Thus, E(n)
can be expressed as

s i
E(n)==Y[d;-y;mn)]*, (1)

where y; and d; are the actual and desired
response of the output neuron j, respectively,
and N is the number of neurons in the output
layer. If P denotes the total number of patterns
contained in the training set, the average
squared error E,, is given by

s
Eav(")=FZEp(“)- (2)
p=1

The objective of the learning process is to
adjust the free parameters of the network (i.e,
synaptic weights and thresholds) so as to
minimize E.,., A synaptic weight wj(n),
connecting a neuron i in a given layer to a
neuron j in the next layer, is updated with an
increment Awj,(n), which is given by

cE(n

Aw i (n) = —Tl.—) , (3)
cw ji(n)

where n is a proportionality constant

determining the learning rate. The partial
derivative in the right hand side of Eq. (3) can
in general be expressed as
¢E(n) _ CE(n) (Vj(n)
c'wji(n) ¢y (n) cw ji(n)

(4)

The quantity ¢E(n) /¢y (n) is normally known as
the local error gradient 3j(n) of the neuron j.
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Depending on whether the neuron j is located
in the output layer or in a hidden layer, the
two partial derivatives in the right hand side of
Eq. (4) can be evaluated as follows: Consider
first that the neuron j is an output neuron. In
this case, dj(n) is obtained directly from Eq. (1)
as

c(E
Bj(n) = 7 tay = Tdj -y Ml =-ej(n), ()

where e; is the error .signal. - In the
conventional neuron model used in MLFFNNSs,
the actual neuron response y; is simply
obtained by weighting the input signals
applied to this neuron, summing all weighted
inputs and then activating this sum according
to a certain neuron nonlinearity (e.g. sigmoidal
nonlinearity). This model considers that the
synapse unit is an ideal multiplier and the
nonlinearity is applied at the neuron level. In
the more compact neuron model, in which the
nonlinearity is applied at the synapse level,
nonlinear multipliers can be employed to
model the synapse units, and the function of
the neuron unit is simply to sum the synapse
outputs connected to it. Thus, yjn) can be
expressed as

M
yj(n)= 2 flwji(n).xj(n)]. (6)

1=0

where f is the nonlinear synapse-neuron
transfer function, x; is the i-th input signal
and M is the number of the input signals
connected to the neuron j. Note that for
mathematical convenience, when i=0, the
synaptic weight w,, is associated with a fixed
input X,=-1 and is equal to the threshold (or
bias) of the neuron j. Now, the partial
derivative cyj(n)/cwii(n) in Equation (4) can be
obtained as

Gyj(n)  Cf[w ji(n),x;(n)]

c'wji(n) B

(7)

cw ji(n)

If the transfer function f[wj(n)xi(n)] of the
nonlinear synapse is known, this partial
derivative can be easily evaluated. Making use

of Eq. (4), (5). and (7) in Eq. (3). the increment
Awji(n) can be expressed as

cf[w i;(n),x;(n)]
Awji(n) = nej(n)—————. ()
cwji(n)

and the updated weight wj(n+1) becomes
wji(n+1)= wji(n)+iji(n) » 9)

Consider now that the neuron j is located in a’
hidden layer. In this case, there is no specified
desired response for this neuron and the local

.error gradient would have to be determined

recursively in terms of the local error
gradients of all next layer neurons to which
the hidden neuron is directly connected.
Returning to Eq. (4). we note that the partial
derivative cy;j(n)/cwji(n) is still given by Eq. (7).
but the local error gradient 5i(n) has to be
reevaluated. It can be easily shown that 6)(n) of
a hidden neuron j is expressed as

cf[wyj(n),y;(n)]
yj(n)

Bj(n)z—%‘ﬁk(n) ) (10)

where k denotes the index of neuron in the
next layer fed by the hidden neuron j and
wy(n) is the associated weight. Thus, starting

. from the output layer, evaluating the local

error gradients there (Eq. (5)), and propagating
the errors backward, 3j(n)’s of all hidden layer
neurons can be obtained recursively using Eq.
(10). Finally, the weight increment Awj(n) is
obtained as

cfwji(n),x;(n)]

iji(n)

Awji(n) =-nd;(n) (11)

It is worth noting that the weights are updated
either after every pattern presentation (on-line
learning) or at the end of the epoch after all
pattern presentations (off-line learning) by
accumulating the weight increments. The
learning cycle continues, until the total sum of
squared errors becomes less than a specified
value.
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3. Modified node-perturbation learning
algorithm with nonlinear synapses

In on-chip perturbation-based learning
algorithms, the weight increment Awj(n) is still
given by Eq. (3), but the error gradient
CE(n)/cwji(n) can be evaluated wusing
alternative methods [6,7]. The simplest way is
to perturb serially all the weights throughout
the network using a small perturbation AWpen
and measure the error AE(n) resulting from
each perturbation. Thus Awji(n) can be
approximately expressed as

auBl . (12)

W }.thl

vau(n) =-n

Aw pert

As mentioned previously, the SWP algorithm
has an advantage that it -makes no
assumptions about the synapse and neuron
characteristics and therefore, is extremely
tolerant of nonidealities of analog circuits.
However, the learning process is ver slow
especially in the networks having large
numbers of synapses. To speedup the learning
process, an on-chip CHRP learning algorithm
has been proposed [8].In this algorithm, the
error gradient CE(n)/dw;(n) is given by Eq. (4)
and can be approximated as

CE(n) _ AE(n)| Ayj(n)

- E , 1
cwii(n)  AYpen vj(m) AW pen W)
where Ay,.. and Aw,.: are the perturbations
applied to the neuron output yjn) and the
synaptic weight wj(n), respectively. The
outputs of the neurons in a given layer are
serially perturbed and the corresponding
values of AE(n) are measured. Then all weights
originating from a given neuron i, in the
previous layer, are perturbed in parallel and
the corresponding values of Ayjn) are
measured. The simultaneous perturbations of
a group of weights will result in a significant
speedup of the learning process.

Now. if the transfer functions f(wj; . xi) of
nonlinear synapses are known, the above
CHRP algorithm can be modified and a

pseudo chip-in-loop supervised learning can
be carried out. In fact, the local error gradient
of the output layer neurons, can be obtained
in a similar way as that used in the modified
backpropagation algorithm and the output
layer weights are updated directly with
increments given by Eq. (8). On the other
hand, for a hidden neuron, the quantity
CE(n)/éwji(n) can be approximately expressed
as

CE(n) " AE(n)l
E'wji(n) AypenL..m’
4)

cf[w i (n),x;(n)] »

cw ji(n)

To be specific, the outputs of the neurons in a
given hidden layer are sequentially perturbed
and the corresponding changes in the error
AE(n) are calculated. For each hidden neuron,
the local error gradient AE(n)/Ayp.- is
evaluated and then used in Eq. (14) to obtain
CE(n)/éwii(n) for all synaptic connections
linking this neuron with all neurons in the
previous layer. In this manner, the hidden
neuron outputs have only to be perturbed and
there is no need to perturb the groups of
synaptic weights as in the case of CHRP
algorithm. We call therefore this modified
CHRP version, the modified Node Perturbation
(NP) learning algorithm. Finally, having
determined ¢E(n)/cw,(n). the weight increment
Awj(n) can again be computed using Eq. (3)
and an iterative process (either on-line or off-
line is carried out to obtain the final updated
weights satisfying a specific error criterion.

4. Compact synapse-neuron circuit

Conventional MLFFNNs are composed of
layers of neurons that apply nonlinearity to
the sum of previous layer weighted outputs.
The key elements of hardware implementation
of neural networks are the synapse and
neuron circuits. An analog synapse generally
generates an output current that is
proportional to the product of itsinput and
weight. A neuron converts the sum of the
synapse currents to a voltage and applies
nonlinearity. This will always result in a
synapse-neuron unit of a relatively large size,
since a wide-range multiplier followed by a
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current-to-voltage converter and a sigmoid
generator have to be employed. This topology
is inspired by the biological neuron model as a
crude attempt to model complex biological
neural systems. However, since the important
characteristic of a neuron model is its ability
to perform nonlinear mappings [10], nonlinear
synapses may posses this characteristic. Fig.1
shows a compact synapse-neuron unit
employed in the present work. Instead of
using a wide-range linear multiplier, which is
in general, composed of a Gilbert-multiplier
cell, an attenuator and a level-shifter [4], a
more compact Gilbert-cell can only be used.
An example of a MOS version of such a type of
four-quadrant multipliers is shown in Fig. 1-a.
This cell consists of three source-coupled
pairs, two of which are cross-linked and
composed of the matched transistors M1, M2
and M3, M4, respectively. The third source-
coupled pair is composed of the matched
transistors M5 and M6. M7 is connected as a
constant current sink to provide the required
tail current. The input signals of the cell are
V. and V. and represent the neuron input and
the associated synaptic weight, respectively.
Considering strong inversion operation and
assuming that all transistors operate in
saturation, the differential output current l.q
is given by

=‘/BTVZ}“/1,;-E“:;—‘/15-D“V: : (15)

where B.= po Cox (W/L)., is | tHe
transconductance parameters of transistors
M1-M4 (n, being the channel mobility, C.x
being the gate oxide capacitance per unit area
and (W/L) being the transistor aspect ratio).
The currents Is and Is are the drain currents of
MS and M6, respectively and are related to the
differential voltage V. by

-\ =Py, (16)

E%Lﬁ;i@.——lziz M4 j
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Compact svnapse-neuron unit. (a) Four-quadrant
Gilbert multiplier. (b) NMOS-IVC (two converters
of such a wpe are used). (c) Differential-input
single-output CMOS amplifier stage.

Fig. 1.
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where Bu= b, Cox (W/Lp, is the
transconductance parameter of transistors M5

and M6. Now, if V((J4l5¢ /B, , then I can

be approximated as

BaBb

.

lod = ViV - (17)

It is worth noting that as long as the above
condition validating Eq.(17) is satisfied and
that all transistors remain operating in
saturation, a linear multiplication process is
performed, otherwise a nonlinear behavior
takes place. Fig. 2 illustrates a SPICE
simulation for the Gilbert-cell of Fig. 1-a. The
transistor aspect ratios and the MOSFET
SPICE parameters (2 pm-CMOS technology)
are similar to those used in [4]. For the
simulation purpose, the output nodes are
connected to load resistors R.= 20 KQ and the
differential output voltage V.,q = l.q Ry is
plotted as a function Vy for different values of
Vi in the range between -2V and 2V. Itis
noted that the cell is performing linear
multiplication for differential inputs smaller
than about 0.2V. For larger differential
inputs, the output tends to saturate and the
cell exhibits nonlinearity. In the practical
realization of a complete MLFFNN, the
differential output currents of different
synapse units can be summed by hardwiring
the corresponding output nodes of these
synapses. The current sum is converted to a
voltage using a current-to-voltage converter
(IVC) and then amplified, resulting in the
neuron output voltage V.. An example of
NMOS-IVC is shown in Fig. 1-b [4]. In this
configuration, both M8 and M9 are ON and
operate in saturation provided that 2Vy, <
Viscz £ Vpp; Vi, being the threshold voltage of
the NMOS devices. It can be shown that the
converter output voltage is expressed as

Ly A V662 :

18
B(Veg2 =2VTn) 2 A

Vive =

where 5 = . = [. Since the synapse output
current is in a differential form, two IVCs have
to be used. The term  Vgez/2 in Eq. (18)

-1 i -05 0 05 1
Vx (V)

Fig. 2. SPICE simulation of the Gilbert cell (see text).

presents an offset and can be cancelled out
using a high-gain differential amplifier. The
outputs of the two I[VCs are applied to
differential amplifier inputs and the amplifier
output will be then proportional to the sum of
synapse differential output currents. Fig. 1-c
shows a CMOS differential-input single-ended
output amplifier, employed in the present
work [4]. The amplifier consists of a
differential stage composed of transistors
M12-M16, followed by an output stage (source
follower, M17 and M18). M19 and M20 are
used for bias purpose. A SPICE simulation of
the IVCs and the differential amplifier is
shown in Fig. 3. Good linearity has been
achieved for the specified range of synapse
differential output current. Thus, the overall
nonlinearity desired from the compact
synapse-neuron unit will essentially come
from the synapse cell. A SPICE simulation of
this compact unit is shown in Fig. 4, where
the input V; s aried etween 1V nd V nd
the weight V. is kept constant at fixed values
ranging from -2V and 2V. It is worthwhile
noting that the compact unit contains only 20
MOS devices while the conventional synapse-
neuron unit, employing a wide-range
multiplier as a synapse and an IVC and a
sigmoid generator as a neuron, contains about
40 MOS devices [4]. This considerable
reduction in the number of MOS devices will
lead. to corresponding reductions in the chip-
area and the power consumption of the
realized complete neural network, provided
that learning algorithms tailored for sucha
type of networks are employed. The modified
backpropagation and node-perturbation
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learning algorithms discussed in Sections (2)
and (3) are good candidates for these
networks. The  synapse-neuron transfer
functions obtained in Fig. 4 can be either
fited by mathematical functions (e.g, a
polynomial function of two variables V; and
Vi) or tabulated in a look-up table after being
quantized, to obtain V; = f(V,,Vy). These fitting
or tabulated transfer functions can be then
implemented in software programs based on
the modified learning algorithms for pseudo
chip-in-loop training. In the present work, the
transfer functions are modeled by a look-up
table of size 81-81 where the inputs and
weights (varying between -2V and 2V) are
quantized to 81 different values, centered at
0V (i.e, with a quantization step of 0.05V). The
closest value is chosen when the inputs or
weights do not match the values in the table.
Derivatives are evaluated from finite
differences. After training, the final updated
weights are downloaded to the hardware
version of the network for feedforwared SPICE
simulations.

04

0 2 4 .
La (HA)

6 8 10

Fig. 3. Transfer characteristic (SPICE Simulation) of IVCs
and differential amplifier.

5. Algorithms and training approach
validation

The validity of the proposed learning
algorithms and the pseudo chip-in-loop
training approach have been tested by

designing complete MLFFNNs with different
architectures and training them to perform
different tasks.

vx Vi

Fig. 4. Overall transter characreristics (SPICE Simulation)
of the compact svniapse-neuron unit.

An example of such tasks performed
successfully by MLFFNNs, is function
approximation. In this application, it is noted
that a network with one input node, one
hidden layer containing a relatively small
number L of neurons, and one output neuron
(i.e, 1:L:1 architecture), can be used [11]. In
the present work, a 1:5:1 network has been
used. The network (Fig. 5) has a hidden layer
of 5 neurons, each of which is connected to
the input node through a synaptic connection.
This layer can be constructed from 5
nonlinear multipliers (Gilbert-cells), S IVC,
and 5 differential amplifiers. The output layer
has a single neuron with 35 synaptic
connections from the hidden neurons and can
be constructed from 5 Gilbert-cells, one [VC
and one differential amplifier. It is worth at
this point to compare the number of MOS
devices used in this compact network with
that used in networks employing conventional
neuron models (i.e, linear multipliers and
sigmoid generators). In the present compact
version, 148 MOS devices are used in
comparison with 288 devices in the
conventional network version of Ref. [4]. Thus.
roughly, a reduction of about 50% in the chip-
area and consequently in the power
consumption, may be expected.
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Fig. 5. Block diagram of a compact 1:3:1 network used in
function approximation.

An example of a function approximation is
illustrated in Fig. 6, where the network is
trained to approximate an irregular function
[11]. The training set contains 17 input/target
pairs (symbols “#”) in the interval [-2V , 2V].
The training procedure is performed using
both the modified backpropagation and node-
perturbation learning algorithms and the final
updated weights are downloaded to both the
software and hardware versions of the
network for feedforward simulations. It is
noted that some network parameters
including learning rate v, perturbation
magnitude Ayp.n and gain of synapse-neuron
unit, are not optimized for minimum number
of epochs satisfying a specific error criterion.
This point will be studied and published
elsewhere. In the present work, comparable
numbers of epochs have been obtained for the
two learning algorithms. The solid curves in
Figs. 6-a and 6-b represent the responses of
the software networks after being trained
using the modified backpropagation and node-
perturbation learning algorithms, respectively.
The “0” symbols in these figures denote the
responses of the trained hardware networks
(SPICE simulations) in both cases. Good
agreement between the software and hardware
network responses and the desired response
has been achieved. This in fact, reflects the
efficiency and accuracy of the modified
learning algorithms and the pseudo chip-in-
loop training approach employed in this work,
especially when accurate representation (high
density look-up table) of synapse-neuron
transfer functons, is taken into account.’
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o SPICE autput S 1
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Fig. 6. Irregular function approximation. (a) Training
using modified backpropagation. (b) Training
using modified node perturbation.

6. Conclusiong i

In this paper, standard backpropagation
and perturbation-based learning algorithms
have been modified to train compact analog
multilayer feedforward neural networks. In
this type of compact networks, instead of
employing wide-range multipliers and sigmoid
generators to mimic the synapse and neuron
functions, a much more compact synapse-
neuron unit, a nonlinear multiplier, has been
used. The compact unit has been simulated
and the resulting transfer functions have been
implemented in software programs based on
the modified learning algorithms. After
training, the final updated weights are
downloaded to the network for feedforwared
operation. To test the validity of modified
learning algorithms and training approach a
complete network of such a compact type has
been designed and trained to perform
successfully a function approximation task.
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