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In this paper, the problem of describing and identifying partitions of a general recursive
relation that is fragmented over many sites of a deductive database is considered. We
assume that the partitioning depends on the transitive closure relationships between the
elements of the relation and cannot be described by direct rules or obvious predicates. This
problem was studied previously by other researchers, for acyclic relations using the lattice
approach. In this paper, no restrictions on the type of the relation are imposed, so the
relation can be cyclic relation or acyclic one. Since using lattices will fail in case of
existence of cycles, the concepts of boundary nodes and landmark nodes of strongly
connected components are used to properly and uniquely describe each partition of the
relation. We provide a simple characterization of the necessary and sufficient nodes that
must be included in the description of arbitrary fragments of the relation. We present a
linear algorithm that produces an optimum descnptxon set in case of acyclic relations and
a near optimum description in case of cyclic one.
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1. Introduction

Relations that can be part of a recursive or
a transitive closure rule in a deductive
database are sometimes called recursive
relations. The main characteristic of such
relations is that the locality of referencing the
relevant tuples not only depends on the
query, but also on how these tuples are
related to each other. In other words, the
relevant data to a query depends on the
transitive closure of the query node in the
corresponding relation graph.

Fragmentation of recursive relations in
deductive databases is studied extensively in
the literature. See for example Refs. [1-5].
The main goal of these research studies is to
arrive to an optimal fragmentation of the
relations and distribute these fragments
through the network to achieve best
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performance using the parallel and
distributed computing capability of the
network. However, each of these studies
considers a special performance metric to
optimize. Many of them use the classical
approach to horizontally and/or“vertically
decompose the relation based on well defined
predicates or hash functions as in [6]
regardless of the locality behavior of the
relevant data. In [2], different strategies were
suggested to get small and equal size
partitions of a recursive relation suitable for
some parallel computation of the transitive
closure described in [3].

One of the problems associated with
fragmenting a recursive relation, taking into
consideration the locality of relevant data, is
how to describe and identify the resulting
fragments given that no obvious rule is used
in partitioning. In other words, given a node
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in the corresponding graph, there is no direct
predicate or a hash function that can identify
the fragment to which it belongs. This is of
vital importance since these fragments will be
distributed throughout the network and we
need to access them to complete the query
evaluation task.

In [7], a method based on lattice
structures was proposed to solve this problem
in the case of acyclic recursive relations, i.e.
when the graph corresponding to the relation
is guaranteed to have no loops or cycles. The
idea is to describe each fragment by a set of
lattices that collectively contain the nodes
and only the nodes of a fragment. Since the
graph is assumed acyclic, all elements are in
a partial order relation. Each lattice in turn is
described by two elements, namely: the min
element and the max element. The size of the
description is proportional to the number of
lattices generated. Ref. [7] also, provided a
proof that obtaining an optimal number of the
lattices is an NP-complete problem, so a
heuristic to get a sub-optimal one was given.

The condition that the graph G must be
cycle-free is a very restrictive condition for
any practical implementation. Many practical
relationships, especially that arise in
document analyses and data mining, are of
cyclic nature. Testing a large graph for cycles
is costly and transforming a cyclic graph into
an acyclic one may lead to loosing some
information. Also, the continuous
maintenance of insertions and updates to
guarantee that the graph remains cycle-free is
very costly.

In this paper, we relax this condition and
consider a general graph. Since there is no
partial ordering relationship between nodes of
the general graph, we cannot use the lattice
structures to describe the fragments any
more. In our model, we will use the
connectivity principles and graph-theoretic
concepts to derive the description of the
fragments and identify them.

The organization of this paper is as
follows. In Section II, the description of
partitions is discussed and a necessary and
sufficient criterion, which provides the
minimum number of nodes required for
unique description and identification of the

partitions, is presented. In Section III, the
algorithms mneeded to construct these
descriptions together with their complexities
are presented together with a comparison of
our method with the lattice approach is given.
In Section IV, our conclusion is given.

2. Description of fragments

As discussed in the introduction, the
relevant data to a query (locality) are likely to
be related to the transitive closure of the
query node in the corresponding relation
graph.

In this paper, it is assumed that the whole
graph G = (V, E), which describes the
relationship between nodes, is stored in each
site. However, the table containing the
detailed description of the nodes and their
attributes is partitioned into several smaller
tables (fragments). Each site stores only the
relevant fragment of the detailed tables. This
environment is the same as the one
considered in [7] and can be found in systems
that wuse deductive database tools in
document analysis and in distributed data-
mining operations. In such environment, the
size of the fact data associated with each node
is relatively too large to be stored with the
relation tables. Sometimes, for security and
copyright reasons the fact data are stored in
specific sites. Also, there may be many kinds
of relationships between the nodes that make
it difficult to store the actual facts with tables
representing these relationships.

A fragment description table (FDT) is used
to maintain the location and description of
each fragment. A copy of the FDT is stored in
each site. The space cost of the method will
depend on the relative size of the relation
representing the graph G compared to the
size of the detailed table of the nodes. The
overhead of repeating G at every site is
obviously reduced as the relative size of G
gets smaller.

We assume that the graph G is
represented as adjacency list structure. For
simplicity, this structure will be a list of
records of the form (FromNode, ToNode).
However, the concepts and methods can be
applied with little or no modifications to other
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data structures.

When a site has a query corresponding to
a node in the graph G, it uses G to derive the
identity of the fragment that contains that
node, and then consults the FDT to locate the
corresponding site that has this fragment.
The problem now is how to describe and
identify fragments in such a situation where
the original data are partitioned using no
obvious predicate rules.

Example 1

Consider the two graph structures of Fig. 1
of cyclic and acyclic relationships. Each node
represent a unique document and edges
represent some relationship (e.g. contain
related key words) between the document.
The documents are distributed on three
different sites F1, F2, and F3. It is
impractical, if feasible at all, to store the
actual documents in each site for deing
search of related documents. However, we
can easily store the whole graph representing
this relationship at each site. Since there is
no clear clue of how these documents are
distributed and partitioned, we need a
method to relate nodes in the graph to their
site location.

In our model, we will use the connectivity

i- Acyclic relationship

principles to derive the description of the
fragments. First, we need some definitions
that will be used in deriving the description.
In the rest of the paper, the following
notations are used:G=(V,E) is a general

F is a partition of the nodes

directed graph,

in V suchthatUF_,v, Fiij=<DVia=jand.
vi

Gp, =(F,,E;) is the subgraph induced by the
i

nodes in F, where E,cE.

Definition 1:
In the subgraph G , a node veF isa
i

boundary node if there is an
e=(v, v')EEfrom this node to an outside node

vV'egF.

edge

Definition 2:
In the subgraph Ggp , a node veF isa
i

terminal node if there is no edge
e=(v,v)eEfrom this node to any other node

v'. In other words,
terminal node is zero.

the out-degree of a

P
"_\f;(./‘/'?i

ii- Cyclic relationship

Fig. 1. Three fragments of a relationship.
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Definition 3:
In the graph Gpg, a node veF, is a
i

candidate landmark node if it belongs to a
strongly connected component of G .
i

Definition 4:
A set of candidate landmark nodes is called
landmarks, T, if for each strongly connected

component C in GF. , there is a node
i

v € C NI'. The set of all landmarks will be
denoted by LM(Fi).

Definition 5:
In the subgraph Gg , a node veF is a
i

contributing node if it belongs to any of the set
of boundary or terminal nodes otherwise it is
a non-contributing node. The set of all
contributing nodes in Fi will be denoted by
CONT(Fj).

Definition 6:
The reachable set from node v, “reach(v)” is
the set of nodes reachable from a node v €F,

by traversing the graph G.
Example 2:

To illustrate the above definitions,
consider the graph in Fig. 1-ii. The set of
boundary nodes in F1l, F2 and F3 are {6,7},
{10}, and {20,23}, respectively. The terminal
nodes are @{15}L{ 22, 24} In F2,
{8,9,11,12,14} is a set of candidate landmark
nodes and the set {14} is a possible landmark.

Now given a query node, we want to
identify the partition to which it belongs. The
idea of the procedure that is suggested here
is to describe each partition by a special
subset of its nodes. Then, traverse the graph
G - which is available in every site - starting
from the given query node until the first
special node(s) is reached. Then use one of
these special nodes as an index to the
partition that contains the given query node.

Notice that this method requires that
during traversal, a guarantee that at least one
special node of the subset describing the

current partition will be reached before any
node in other partitions. Although this
procedure is simple, the main difficulty is in
identifying those special nodes that can be
used in the identification of a partition.

One obvious trivial - but very costly -
identification is to use alist of all the nodes
in a partition to describe it, so the query node
itself will immediately identify the partition.

The aim is to use the smallest set of
nodes to identify each partition and
guarantee the correct behavior of the above
procedure. In [7], the lattice approach, a proof
that obtaining an optimal number of the
lattices to describe the fragments is an NP-
complete problem and provides a heuristic to
get a sub-optimal one.

In this paper, we do not use the lattice
approach; instead we use simple graph
theoretic concepts to derive a necessary and
sufficient characterization for the minimal set
of nodes that can be used in describing the
fragments. Due to the existence of cycles, to
construct an optimal description set, the
problem is exponential in the number of
strongly connected components in the
subgraph. Although the number of strongly
connected components is far smaller than the
number of edges, we provide a linear
algorithm to construct a mnear optimal
description set. The following theorem
provides a lower bound on such sets.

Theorem 1:
In G, the set of contributing nodes, CONT(F),
is the smallest set necessary to identify or

describe the partition F, .
Proof: Suppose that F, is identified uniquely
using some set S of nodes. This means that
starting traversal of G from any node in F , we
surely arrive to a node in S before any other
node in other partitions. We will prove that
CONT(F) cS.
Let v e CONT(Fi) and v ¢ S be the starting
node. Two cases are there:
1. v is a terminal node = reach(v) = {v}
= v € S = contradiction.
2. v is a boundary node = reach(v)
will contain nodes from other
partitions. = cannot identify partition
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uniquely = contradiction.
This imply that S o CONT(Fj).

Although theorem 1 provides a necessary
set, this set is not sufficient in the general
case where the graph G may contain cycles.
Theorem 2 will provide a necessary and
sufficient set to identify the partitions.

Theorem 2:
Let I't € LM(F) such that | CONT(F)ulk |

=Min(|CONT(F)uTj]). Then  the set
J

CONT(F)uI'k is the smallest necessary and
sufficient set to identify F; .

Proof: To prove that the set is sufficient to
identify Fi, we must prove that if we start
traversing with any node v € F, , we definitely
will arrive to a node in CONT(Fi)ul'k before
leaving that partition.

If v, the starting node, is already a member of
CONT(F) Ik, then it is done. Now suppose
that v is not a member of CONT(Fi)ul'k, and
we start traversing G starting from v. There
are three cases:

1. Traversal leaves F, to another partition.

2. Traversal never leaves the partition £

1
and never stop due to the existence of
cycles.

3. Traversal stops inside F .

Case 1; implies that at least one boundary
node v € CONT(F) is reached before leaving
the partition to another one. !

Case 2; implies that it must pass through all
the nodes of at least one strongly connected

component in Gp . So it must reach a node
i

ve € [k.

Case 3; implies that traversal reached a
terminal node vi € CONT(F)). In other words,
we must reach anode in CONT(F)uUI'k before
any node in other partitions.

The CONT(F)ul'k the minimum necessary
set follows proof that directly from theorem 1
and the condition that |CONT(F)ulk| is
minimum.

3 Constructing partition descriptions set

In order to construct a description for a
fragment F,, we have to find the members of

CONT(Fi) and the members of I'k as described
by theorems 1 and 2. We first present the
algorithm for obtaining the description, then
we discuss it and give total complexity. The
correctness of the algorithm is based on the
proof of previous theorems.

3.1. Procedure to compute the description set

Given G and F: , the main steps of the
procedure is given in Fig. 2. Steps are
numbered for reference. The output of the
procedure is a description_set that is minimal
necessary and sufficient to describe and
identify the fragment Fi. In the following, we
explain each step in the Figure.

1. Determine the induced graphG . This is

the graph that consists of all vertices in
F, and edges in the original E with both
end points in F,. The time complexity of
this step is linear in the size of E, O(E),
since we can inspect each edge in turn
and select it if it satisfies the condition.

2. Determine the set of leaving edges E:i. This
is the set of all edges from a vertex in F; to
a vertex outside Fi. The time complexity of
this step is also O(E) and can be executed
in parallel with the previous step.

3. The contributing set CONT(F) is the union
of two sets. The first one gives the
boundary nodes, which are the starting
nodes of edges in Ei. The second one gives
the terminal or sink nodes which are the
nodes in F; that never appear as
FromNode in any edge. The complexity of
this step is at most O(E).

4. Determine the strongly connected
components of (7 . A well-known efficient
algorithm such as Tarjan’s depth-first
search algorithm [8,9] can be used here.

The function get_strong comp() will return
the strongly connected components, each
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2.E= {(x,y)eElxeF, Ay eF};

4.SC = get_strong_comp(Gp, ).

5.not_covered = ¢

8.description_set = CONT(F) U rest_nodes

1.Gp = (R, {(x,y) €E|lx e, Ay €F}); [/ The induced graph
// The set of leaving edges
3.CONT(F) = {x|(x,y) € E,} W (F — {x|(x,y) € E}).

6.For each Ce SC if C~ CONT(F) = ¢ then not_covered = not_covered U {C};
7.rest_nodes = get_min_cover(not_covered);

Fig. 2. Procedure to construct the description of a fragment.

in a form of a set of the nodes constituting
the components. The complexity of this
step is O(E).

5. We initialize a temporary set that will be
used to hold the uncovered components
by nodes in CONT(Fj). In other words,
not_covered will hold the components that
have no common node with the
contributing set of nodes.

6. For each strongly connected component, if
no common node between it and CONT(F)
then append it to the uncovered set. So,
the next step will only operate on these
uncovered strongly connected compo-
nents.

7. The function get_min_cover () will return a
set of candidate landmark nodes for all
the not_covered strongly connected
components. If we insist on getting the
optimal cover, then this function has to
enumerate all possible covers and select
the minimum. This can be seen as a set
cover problem and is proved to be NP-
complete [9]. For arbitrary graphs, the
number of strongly connected component
may be large and the evaluation of this
function may become not practical.
However, we can decide on having a near
optimal solution by using the articulation
points of the resulting components of step
6 or just using any node from each of
them. The time complexity in this latter
case is O(Ns); where Nsis the number of
strongly connected components found
inG, .

8. In the last step, the description set is

formed by the union of the contributing
nodes with the nodes returned from
get_min_cover().

Example 3:

Let us apply the above procedure for each
fragment in Fig. 1-i and ii. The following table
gives the description of each fragment. Notice
that since only F2 in Fig. 1-ii has a strongly
connected component, alandmark node “14”
is included in the description.

Fragment Description Description
(Figure 1-i) (Figure 1-ii)

F1 6,7 6,7

F2 10,15 10,14,15

F3 20,22,23,24 20,23,22,24

3.2. Complexity of the procedure

As seen from the steps above, step 7 is the
most crucial one, considering the time
complexity of the method, if the absolute
optimum description (in terms of the number
of nodes) has to be used. All other steps has
O(E) in the worst case for cycic and acyclic
graphs. In practice, we can resort to a near
optimal description. For example, by
including the articulation nodes (two strongly
connected components can share only one
node) or just any node from each of the
uncovered components. In this case, the
complexity of step 7 is very efficient and
reduced to O(Ns), where Ns << E. So, the whole

686 Alexandria Engineering Journal, Vol. 39, No. 5, September 2000



H. H. Aly / Distributed deductive databases

procedure will be O(E).

3.3. Comparison with the lattice approach

The lattice approach given in [7]is valid
only for acyclic recursive relations. Our
approach is valid for both cyclic and acyclic
without any change. Also, in our approach,
we can construct optimal description set for
acyclic relations: in linear time in contrast to
the NP-complete problem with size |E| in
case of lattice approach. This is not saying
that we discover a linear solution to an NP-
complete problem, but the lattice approach is
too complex for the requirement of just
describing arbitrary acyclic graph. However
for graphs with cycles, to get an optimal
description we may have to solve a set-cover
problem (NP-complete) with size equal to the
number of strongly connected components.
This latter size is usually very small and
negligible compared to | E|.

The heuristic in [7] to get sub-optimal
solution for acyclic graphs, as given there, is
of O(|E| + (Na+ Na) £ |An| + |CL|2.|Fi]),
where Naand Ng are the maximum number of
ancestors and descendants, respectively, of a
node in the subgraph, A, is the number of
ancestors of the min node n, CL is the
number of suitable candidate lattices in the
graph. Our method is linear, O(| E|), and give
the optimal in case of acyclic graphs. To
conclude the comparison, it is instructive to
compare the result of applying the lattice
approach and our approach to the acyclic
graph in Fig. 1-i. The following table gives an
optimum lattice description of the fragments
in terms of a pair (max-element, min-
element) for each lattice. Comparing it with
the first column in the table of Example 3, we
see that our method is more simpler and the
description contain fewer nodes.

Fragment Lattice description

F1 (3,6), (1,6), (2,7)

F2 (8,19), (9,15), (10,13)
F3 (16,23), (17,24), (20,22)

4. Conclusions

We wuse graph theoretic concepts of

connectivity and boundary nodes to describe
partitions of a recursive relation in a
deductive database. We provide a simple
characterization of the necessary and
sufficient nodes that must be included in the
description of arbitrary fragments of the
relation. A linear algorithm is presented that
produce the optimum description with the
minimum number of nodes in case of acyclic
relations. In case of cyclic relations, the
algorithm produces a sub-optimal
description. The optimum in this latter case
can be found by solving an NP-complete -
problem of size equal to the number of
strongly connected components in the graph
representing the fragment of the relation
which is usually very small compared to the
number of edges in the graph. A comparison
between our approach and the lattice
approach given in [7] reveals that our
approach is superior to the lattice approach.
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