Lyapunov stability of large-scale power systems
considering the voltage regulator and speed governor
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It is developed a new stability approach used to carry out transient stability studies of an N-ma-
chine power system. The system mathematical model is derived considering the generator flux
decay effect, non-uniform mechanical damping, electromagnetic damping, the voltage regulator
effect and the speed governor action. Using the decomposition-aggregation method, the system is
decomposed into (N- 1)/2, “three-machine” subsystems, and the system aggregation is performed
by using a constructed vector Lyapunov function. An aggregation (square) matrix of the order (N-
1)/2 is obtained, stability of this matrix implies asymptotic stability of the system equilibrium
state. The developed approach is applied to a 7-machine, 14-bus power system and an estimate
for the system asymptotic stability domain is determined. A 3-phase short circuit fault (with
successful re-closure) is assumed to be occurred on one of the system lines at point near a
generator bus, or near a load bus. The faulted line is isolated for clearing the considered fault,
and the critical time for reconnecting the open line is directly determined. It is found that the
developed approach is suitable and can be simply used to carry out practical stability studies of
power systems.
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1. Introduction Among these techniques the Lyapunov’s direct
method is a worthwhile contribution. This
method can be used to determine the stability
planning is the examination of dynamic and of the behavior of higher order power systems
transient stability characteristics of alternative and it is useful and practical in many cases

system design. This examination generally [1]. Furthermore, the Lyapunov direct method

An important step in power system

involves the time simulation of the behavior of
many generators and their controls using a
digital computer stability program. However,
the computation cost of this process is a
function of the complexity with which the
power system elements are modeled.

Recently, the power system stability
problem has drawn the attention of many, and
various analytical techniques have been
developed for the study of this problem.
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has proved to be a promising tool of analysis
for off-line and on-line studies [2].

Owing to the continuous increase in the
sizes and complexities of real power systems,
the scalar (function) Lyapunov method did not
seem suitable in particular when the problem
of the system stability domain estimate is
attacked [3]. In addition, it is very difficult to
derive a valid Lyapunov function for a power
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system when the automatic voltage regulator
(AVR) is considered [4].

The decomposition-aggregation via vector
Lyapunov function method has been appeared
more suitable than the scalar function method
for application to power systems. Applying the
vector Lyapunov function method to power
systems, it. can be considered a more
sophisticated mathematical models of
generators and transmission, in addition exact
estimates of the overall system stability
domain may be defined [5,6].

In the last two decades, the vector
Lyapunov function method was used to
perform transient stability analysis of an N-
machine power system considering the
generator classical model (the internal voltage
E° is constant) [5,7-14]. Also, the one-axis
model ( the voltage component E’q is changing
with time), and the two-axis model (the voltage
components E'q and E'q are changing with
time) were considered in the papers [15,16]. A
3-machine, 4-bus and A1l0-machine, 11-bus
power systems were used as illustrative
numerical examples.

In the present work, transient stability
analysis of an N-machine power system is
performed using a new Lyapunov stability
approach. A more realistic model (the one-axis
model) represents each machine, non-uniform
mechanical damping and the electromagnetic
damping are considered, in addition the
machine control systems (the voltage regulator
and speed governor) are taken into
consideration. The system mathematical
model is decomposed into (N-1)/2, 14th-order
interconnected subsystems, and an
aggregation matrix of the order (N-1)/2 is
obtained. As an illustrative example, the
developed approach is applied to a 7-machine,
14-bus power system.

2. Power system model

Consider an N-machine power system (the
transfer conductance are included) with
mechanical and electromagnetic damping in
addition to the first-order proportional speed
governor [13] and the automatic voltage
regulator (AVR), which is approximated by
simple first-order lag [17,18]. Representing
each of the system machines by the one-axis
model, the absolute motion of the i th machine
is described by the equations (see Notation)

Mi5i+Di5i+Z*Dij(5i_5j)zpmi e

+P, P

T 4o E‘qi =Eqy _E‘qi (X=X g ) I
Ty Epy =— (Eppy —Ep, + Ky V)
P ==up,-a,0,i=12.N, (1)

where P, is given under the assumption X , =
X o (solid cylindrical rotors are considered) as,

N 1 '
P = Zj=] Y, {E[Ejcos (0, -8, )-
Egsin(0,,-8,,)] E [E cos (8,8, )+
+E sin(0,, -8, )i=12,...N. (2

In Eq.1, the terminal voltage variation Vy is
given as (E',, is assumed constant),

~ o -
VoisEoch = )X dinl2 N (3)

Choosing the Nth- machine aé a comparison
machine, and introducing the following ( 5N-
1) state variables,

S ,i#= N
0= §i;§oi= E‘qi_Eqi ; Eqi= Emyi—Eppi;
P=P,-P°, ,i=12,.N @)

we can derive the whole system motion in the
form
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O'iN=mi—mN ,i# N

. * 2 ~
Cl)i =—)\i a)i—Z }\'1.](ml_(’)_])+(Pl/Ml)_(1/Ml)[Gll (EQi+2EOiEq')J_

* b —~ - !
YA f(0)+A; 8;(0;)+[E;Eq;+Eqi(Eqg;t Egj)lcos(8,-5,)+

+[B ;B Ey; Eqilsin (8;,-8,,)1]
. * A
E =-ni Eg-VviEy-L,Z Yij [Edj f (o

ij i)

P =-uiPj-ajo;
where the nonlinear functions f,; and g, are
given as

)

o o
f,,(o,j) = cos(oij+6 U.—()ij)—cos(Sij—eiJ

gU(cU)= sin (GU+6”—9U)— sin(SU.——Gij). 6)

The functions of Eq.6, satisfy the following
conditions:

f,(0) = g, (0) =0; 0<f, (c,)/ 0, < E,
O<lgll(cu)/culscu‘]¢.]aI’_] =1,2,...,N,
| ™

where &;;and (;; ,are positive numbers and
may be determined as,

=01, (0,)/00,) |5

andC .=|0g. (c.)/0C..
Cu | gu( IJ) u|0'ij=0.
3. Power system decomposition

As a first step for the system
decomposition, the system Nth-order reduced
admittance matrix Y is determined (the system
loads are represented by constant shunt
impedance, then all the system nodes, except
the machines internal nodes, are eliminated).
Applying the triple-wise decomposition
[11,12], the system is decomposed into
(N-1)/2 interconnected subsystems. Finally,
defining the state vector X, in the form

Xl Z[U\LN’ cS(I-H.N ’ (Dll 2 (L)\IH ’(DN z EG\I ’EQil*l’
L
EQN ’ Efil’ Efil+l ’ EiN’ Pi! ’ Pih:[l’ PN]
i B MR TEN RS | LT (8)

* A .
Eg=-Ti Eq; +#; E;+K,Z Y [B, f. (0, )+E ;8,,(c,)+Ey;sin(0;;-3

)

1j

)+ I:quglj(cij)vLEstin(G”—SU.)]

A2, N (5)

the system mathematical model (Eq.5) can be
decomposed into S =(N -1)/2, 1l4th-order
interconnected subsystems. Each subsystem
can be written in the general form

E T
X =P X +BJF, (o)+h(X) B ~C X,
1=1,2,..48 9)

and it may be decomposed into the free
(disconnected) subsystem

X =PX+B F,(c)o~C' X, F12,..5,  (10)

and the interconnections h (X ) .
Now, expanding the 12 (the largest

number) nonlinear functions included in each
free subsystem, it is found that there are, at
most, the following three non-linearity

. (o )=sin(o; ) —aind

i N iL N
f(op) =sin(o,., +8 ., ) -sind .
0 0
f(op)=sin(o, \ *8, . )—-sind ;. (11)
which satisfy the conditions:
ophlca)ze o, k=803, (12)

where
Eq.(7).

Referring to Egs.(5), (8), and (10), it is
obtained the I-th free subsystem matrices P,
B,, F,and C, as,

€, € (0, éﬂ) and ixx is determined from
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4 I, -a 0., A
~B 1 +P 12 o 3x3 P I3
P, =] O,ix2 -P, P (13)
06 %3 o 6x3
. 16 1 17
I\ Py 0..6 Py J
where O and I are zero and identity (square) Now, we get the interconnection (vector)

matrices, respectively, of the indicated matrix h, (x) as,
dimensions, and a is a second-order unit
M h,(X)=[0,0,h;5(X),h ,,(X)...... h,(X), 0, 0, O]
(17)
—Ail }‘u il~1 il N where
P =1 A -A. ; 2
- eiat o a=E N h (X)) =~(UMPIG ;X6 +C (0 )FCy 1
A )‘N.u | Ay - < * N
fz (@) +Z(S iu‘s a) T (D iLj
P~ dingl®.,. 0. .6, ] XLyl b
P d' [I/ M 1/ Ml+l ) 1/ MN ] hl“(X ) = —(1/ M|l+l)[G il+1, il+1 X-I7 & C il+1, N f/IZ
P =diag[l} . T, . I|] (O +C o uf s (O)+E(S,,, i+
Po= diag [x i Xies 5000 ) '
P —diag[ﬂ l nl,l : ﬂN] * Sil‘l-j)*‘\: {Du+u+ Xp L}l
16 i’ il+1* "IN s
P, =diag[v, , vy, N] h (X)) =~/ MNi[GN’.N X‘m CN,ilfll(c )+ C
Pip=diag ol @, o o] f/u (6L)+Z (S it S
P;g—dxag[u.-,, o B +=%D,, +x . Y
0203 h(X)= le[Cuan(Gn) g C.lefb (c )
Br=|BI2 BI2 BI3|, 14) +Z§,-'L, 9
0303 h (X ) =Kl C nfp(Op) C i s (Op) *
where X
ZS:H._;_Z Lu—n._J] o
BI1=[—dn: 0.d y ;1285 8- 0079 5y —by 5 0, byl h ( X)=_KN (C v fn (@) C it Fp (O )+
B2=[0.—d i NN e > 00y N Qe 05 by N, z gN_j -z*L N il
bN.iH] hw(X):-hla(X)[Lu/Ku]
B3=[-d iy d¥+1 PEAUL FERTE PR UL, R h o (X)=-h (X)L, /Kyl
i+1 il » 0] hlll(x)=_h18(x)[LN/KN]' (18)
F, (o)=[f,(0,), £, (0,,). f, (o)1 (15)
In Eq.(13), (14) and (18), we define the
following:
10 0 | [j=040-08,, - X,; )81/ T, xj=1/T'doj
T - AT
CTi=| 0 1.0 | Oup (16)  ©;=2E;G; /M V=L
1.0 —10[ J—[1'0+XdJBjj]/TEJ ﬁje‘lm
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d,=(A,,B, +A, G, )/M
Eh=(AkJGkJ—A,B 5
ij=(Edeij+E J B,)

qk)=Kk(EdJBkJ ij)
b, qu(L/K) k¢j k,jedy

f“ (o) =cos (o, |LN) cosS

o
f), (o ,) = cos (Uu N0 oy N ) —COS 5 i1, N
(G ,,)=cos (Gu, g 6 i 11ﬂ) cos 6 i i

L= {(Eq4 +E )f (o,) TE dg (o) }Y;E,;
Li=EOjYig CEY ’Si.‘k;“"j

D=(E, o)~ ~E 'O }Y; Eq

= {A,f, (o) + A, N NCAA'S
S“{EdJ ,(c) E g(c )Y,
f(c)—cos(c' -*6 —6)
g (cj)=sm (o; +5 i~9i)

JieJIN LjellIN o (19)

and the nonlinear functions fjj (ojj) and gjj
(oij) are given by Eq. (6).

4. Power system aggregation

It is constructed [19] an aggregation
(square) matrix, A = [a,,], whose elements (real

numbers) obey the inequality

: S
vl(x,)sZJ o

where V, (X)) is a Lyapunov function for the
Ith free subsystem, U, and U, are comparison
functions and they are chosen in the form [5],

UX) UyX)), I=12,....8, (20)

U X=X = X, x ) JI=12,.8. (21

For each free subsystem, it is accepted a
Lyapunov function in the form [5,7,8, 11-16]

3 ol
T
ViX) =X H X+ Z Yim J- fin (O 1) doy,
m=1 0
[=12,..8, (22)

where, H, is an 14th-order symmetric positive-
definite matrix, the functions f are given by
eqn 11, and vy, are arbitrary positive
numbers.

Now computing the total time derivative of
the function V, along the motion of the
interconnected subsystem of Eq.9, the left-
hand side of inequality 20 is determined.
Then, a number of majorizations are

introduced and wused for rnajorizingV
Finally, referring to Eq.20, elements of the
aggregation (square) matrix A =[a ) of order
(N-1) / 2, are obtained and defined as

2Z  K=LK I1=12,..,S=(N-1)/2 (23)
In Eq. (23), A* is the minimal (positive)
eigenvalue of the 15th-order symmetric matrix
R,, whose elements are given by Eq. (A-1), and
Z, is defined by Eq. (A-2). It is of importance
to note that, stability of the aggregation matrix
A, implies asymptotic stability of the system
equilibrium [19].

5. Numerical example

The developed approach is applied, in this
example, to the 7-machine, 14-bus power
system shown in Fig.1l. The system loads are
represented by equivalent shunt admittances,

and the reactance X', of each generator is

inserted. Then the system  7th-order
(symmetric) admittance matrix Y is computed
(the generators internal nodes are kept) and
its elements are given in Table 1 (see
Appendix). Selecting machine 7 as the
comparison machine and applying the triple-
wise decomposition, the system is decomposed
into three “3-machine” interconnected

subsystems. The following parameters are
chosen

=, hk33=hk44 =18 ; b ™ B ;=400 k=
123 : h55—3.9, h’,, =4.5 ,h355~4.1 =h'y
=380° , W =400 ;A =4,=27 , A }\4-246
, A=A=28 , A,=99 T,_=50,K. =200 ,
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T, =030 ,i=1,23..6 : T,,=45 , K=

150 5 . Jey=020 ®,=05 ,p=150,

i=1.2,...,7 5 Ay = 0,010, i%j,ij=12,.6 A=

0.001 j=12,....6

€, = 0:58:., €,70.54 ;3 €57 =0:59; 5+ &, T0:55
€, = 061 , &,=0.59

Then, using expression (23), it is computed
the aggregation matrix

—0.508502 0.313846 0.316635
A= 0.318380  —-0.753105 0.354680
0.317915 0.323244 - 0.72560

which satisfies the Hick’s conditions[23], and
is thus a stable matrix . This implies the
asymptotic stability of the system equilibrium.
Finally, for the system asymptotic stability

domain it is determined [12] the estimate El
given as

E =Xz [V, (X)HV,(X,) +V, (X,)] 89229}  (28)

where V, , V, and V, are the free subsystem

Lyapunov functions, given by Eq. (22).

Now, the system transient stability
computations are carried out assuming two
severe cases for occurrence of a3-phase short
circuit fault (with successful reclosure) as
follows:

1. The fault is assumed to be occurred close
to generator bus 1, at 5% length of the line
connecting buses 1 and 7. For isolating
the faulted bus it is assumed that the two
lines 1-7 and 1-14 are simultaneously
opened using 5-cycle circuit breakers. It is
assumed also that, due to operation of the
under-voltage relay, the load connected to
bus 1 is removed after 0.16 sec from the

fault instant. Applying the developed
approach, it is found directly that the
critical time for reclosing the open two

lines with reconnecting the removed load
is equal to 0.199 sec (computed from the
fault instant). Note that, the exact critical
time, by using the step-by-step method,
equals 0.247 sec. Figs. 2-a, b and ¢, show
variations of the first subsystem (includes
machines 1, 2 and 7) states just after
reconnecting the open lines and the
removed load.

2. It is assumed that the fault is occurred
close to load bus 11, at 5% length of the
line connecting buses 11 and 14. Using
10-cycle C.Bs., the faulted line is opened
for clearing the fault. A pulsating load of
the value (1.2+j0.80) is assumed to be
added, after 0.30 sec from the fault
instant, to the load of bus 6. The critical
time for reclosing the open line with
removing the added load is found, by
applying the developed approach, to be
0.363 sec (the exact time equals 0.418 sec)
from the fault instant. Figs. 3-a, b and c,
show variations of the third subsystem (
includes machines 5, 6 and 7) states just
after reclosing the open line with removing
the added load. It is to be noted that,
variations of the states of machine “7” for
the considered two fault cases are very
small and hence they are not shown in
Figs. 2 and 3.

6. Conclusions

1. The transfer conductances are considered
in the developed approach, hence for
stability studies of a = considered power
system, resistance of the lines can be
taken into consideration and the system
network can be greatly simplified by
eliminating all load nodes.

2. Order of the developed aggregation matrix
is (N -1)/2, where N is number of system
machines, instead of number of system
buses as usual. Hence, for a considered
real power system (number of machines is,
in general, greatly smaller than number of
the system buses) computations of the
aggregation matrix and its stability
conditions are simpler.

3. For transient stability studies of a real
power system the developed approach is
more suitable than the decomposition
aggregation approaches developed so far
[7-16]. Note that, in the developed
approach a more realistic generator model
(that is, the one-axis model) is considered,
and the action of both the voltage
regulator and the speed governor is taken
into consideration. v

4. The developed approach is simple and
suitable to use for practical stability
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studies of power systems. Note that, in the
given numerical example, the computed
critical times for the assumed two cases of
a 3- phase short circuit fault are nearly
equal (about 87%) the exact times
computed by the step-by-step method.
developed approach the
parameters of voltage regulator and
speed governor systems are included,
hence new horizons to sensitivity
analysis problem of power systems can
be opened. Furthermore, a comparison
between the subsystem, or the whole
system, stability domain estimates can
be easily obtained for assumed
different values of the voltage regulator
and speed governor parameters.

List of symbols

P, P, = mechanical electrical power of ith

machine

P,= variation of ith generator mechanical
power :

P°g= steady-state (pre-transient) variation of generator
mechanical power

d = rotor angle, or position of the rotor g-axis

from the reference

Xd,Xq=d-axis, qg-axis synchronous reactances

Xy X e d-axis, g-axis transient reactances

E ,=exciter voltage referred to the armature

circuit

E = voltage behind d-axis transient reactance

E'y, E' = d-axis, q-axis components of the

voltage E

E,=armature emf corresponding to the field

current

o

¥ B Eq, E, = steady-state values of 3, E .,
E~q and E, o B

V., V,= terminal voltage, terminal voltage
variation
Vi » Vi = q-axis and d-axis components of the
voltage V,

Ve, V"‘xl = steady-state values of V, and th

I"q , I°;= steady-state g-axis and d-axis current

components

K;, T ; = the exciter gain and time constant

o = rotor speed with respect to the
synchronous speed

Y;=Y;=modulus of transfer admittance
between internal nodes of ith and jth
generators

8,=6 ,= phase angle of transfer admittance Y;

G i B ij transfer conductance, transfer

susceptance

T',, = direct-axis transient open-circuit time

constant

A, = (D;/M ))= mechanical damping coefficient

Ay = (Dy /M,)= electromagnetic damping

coefficient

(1 /7 w=

governor

(o /p)= gain of first-order speed governor

Jy ={il ,il+1, N} = set introduced to denote

the Ith subsystem three machines

dcdg={H ;il+l}

time constant of first-order speed

o
8!=8i—8 =0 = o cj=65—65=ciN—ch,
O = Oy B ek 6 8,
L B s M
AF-A=EE; -EE;

Kj=<xd,-:xdj)/7m; E=E X
Aj=N+E A,
jEd o

Y are defined and as ZN and

X and 74
j#i

ZN_I ,respectively

jell =

Z9, Z3 = two functions, defined as follows:
Zy(a, ¢)=min { V2 max (|o|,[]) ;(|a|+[o])}
Z3(a, ¢,y) =min {2 max (joc |, [ ¢ .|y ) : (el + [0+ Y];

2222 (o, $) . 7] :
y 22 [Z2(d, v ),a]:Z22[22(y .a) ,0] }
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deg .,

Fig. 2-a Variations of the first subsystem states X, and X:

—Xo

t (Sec)

x/

Fig. 2-b Variations of the first subsystem states Xs and Xio

0.015]
0.010

0.005

0.0

Fig. 2-c Variations of the first subsystem states Xi> and X3
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- 120:
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Fig. 3-a Variations of the third subsystem states X; and Xo.

0.0121

-0.006 §

-0.012

Fig. 3-c Variations of the third subsystem states Xi» and X3
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Appendix

Table 1 The system reduced admittance matrix (moduli in p.u. and arguments in deg.)

-

1 1.68799 £-71.68 0.51323 £79.44 0.00051 £98.07 0.00048 £104.0 0.00058 £88.92
0.00155 £103.64  0.73660 £94.39

1.60395 £-74.06 0.00144 £101.94 0.00142 £104.24 0.00146 £97.72 0.00060 £84.22
0.71713 £83.55

3 147795 £-72.23 0.41549 £81.64 0.00054 £87.73  0.00057 £93.72 0.68687 £93.48
4 1.33515 £-73.44 0.00145 £103.91 0.00149 £105.97 0.63920 £99.46

5 1.89280 £-69.0 0.54867 £91.89 0.76704 £83.94
6
7

(3]

1.66321 £-75.80 0.81418.£89.98
7.43937 £-62.43

ll)eﬁnition of the elfments of 15-th order matrix R R - D, &, ~by B . ,-Max [—T

r'”= 2a,{D, ,-D, 1~ my.—2U it +b, D.; ]

rl32=2 al{I)lxl—l EDI_DII‘]_HIli]" _ZUiM i : r c=—aH, .- |6u, I
r[33‘2(Auh133-—h13) < _Z(A'M _h24) rI =—a [n‘ +H +H 1- E[G
rgs=2 Ayhg , 66—2rilh66 i ok Ny s
rl.,=21"”_I h'77 R r Wl 31 87 hl l +G oy, G l]_( a +C e le~|,j
rlg9 =2 Py hl66 \ lmw 2 Psia hl . r]zs §is fr Hlu—l._.}' e [8 it Nyl
r:n.n:Zhss Px rlzv9 =‘nuh?e iLit N )

w 2= 2% b+ @/ u )] £y 0® =0t il+lh 7 [G 1T Ot Gt 2 U,
|1m_2 P* i [b (2 /1)) rlz_ st hss[g i1 +N o]
r[mJ=_p ~ By e 715 I(a _a'l)dnLll* (a+al)e|1.|+1[
"113 =] (al: a)g _(_al"' a )8 IC-'B 35— —'I)\'iLNh33+ Ryl 155 hl]3
r]‘3 o b_'[ Dy+my T U ] rlse ==b[n;+H;+H,  ,+Z U il i
r“‘:—b M ™ A By r137=_b1H111M ’ ry -~ o Hy
ru:‘bl D;&;~by 8y —MM[Tu hll3 sy D il rlas l_}‘uﬂ\.h + Ay B l55_hlza|
rllsz‘a [n THy gt Hpd -4 [Gi1+6u+ r]46=_blHll*lnl 3
G 5oy 1= (8 ¥e, )ZU riu -b (g tHy o+ Hy g+ 2 Uil
rll*:_aleM_CI Gu‘.u r]48=— blH_xM.-\ t
rl1s =-aH, - [8;* Ni[] r]4,15 = b, -b)d, - (b +b ) eu il+l|
fy == Ayhl[Gy+ GG+ U, 5o~ = O Ho ~ O Hy
rluo: -1y, hl77§i1, il+1 rlss = by [yt Hyyd Hyy it 2 U 5
l’[]_,]=—ﬁ‘\-hl88[g u+ﬁu] r[5.12=_(al/ull)’ _: —r5.13__( a,/ py,)
rI:;Z N P ' F o™ =i gl E G ST € cos(20.05)
rll-l: B, D u+ZUu-1_J] rissz ~Yiny {flz+ cT2—2 ¢ eycos (28, )}
oo™ Yigia Wiy gy
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I 1 -

L L > To1s™ 76 € inir

I =32 2 .=

g == Y ny 1€+ -2C 0 cos (26, )}

i I

T ==Yy i uhesl 1

1 ~ m—

rlv.n ==YiN nlNhSS 3.4 Ts=7C 84 i1
Teo=—Yyunlghe 0 T o™Yon Dy h 7
Co_ =l s I Lo e
Tois = NpNg € oy 3T 1015 = "M ijpill 7 € i
I - _

Fisas= 28, (d g+ € 0n) / € A-1)

where the other elements of this matrix are zero.
Definition of the aggregation matrix off-

diagonal elements:

In Eq.23, Z  is given as ( see Notation),
Zy =2, [Zz(:z_l.x’ Z, )2l ZLK ’ zx.xn);
z(Z, . Zum)] (A-2)
where_
Z,,~2,(2{ il ﬁiLiK ; ﬁl Uilﬂ,ﬂ( ;
_N k) Z,{Zy(c U U iLiK c ﬁim,ix;
o Ug): Z(n P o
Ry U Y B gh S TR
Z .=Z,[Z(R, U“m, % § S
by Uy ar) 512 HZ (e U i, iK+l;CIU|l+LiK+l;
S Gw 1K-1) Zs(n h Uuum;ﬁuﬂhln
Ui s Ty Oy
% =Z, [h LK EI 11K hISS)"N,iK]
gl.K- =Z; [h Mpik-1 3 hI il+ LiK+1 ;h[ s Mkl
ZI,K=ZS[ZS(RIHH.1K; ﬁl ik > O Hy i)
s 25(¢ E-Lu\; 61 a0k O d )i
S Zy(1 h ks My hl77 LI
ﬁNhlss a )l
Zx.x+|=zs[zs(§1Hix,u<+1; ‘ﬁIHiIﬂ.iKH ;
byHy k) 3Z5(¢ 5.1 K-1 ;EI q ks
O 8y xa )i Zy(0 h uu(-l;ﬁuﬂhln
ke 5 By hlss a g1 (A-3)

In Egs.(A-1) and (A - 3), the following constants are
defined,

aI=hIl3/M ) Elihu/Mim
bl=hl33/M b1= ’M/Mil-vl
bN =h /M '

1 -~ 1
°1=Kuh?6 J C =K, h,

=K’Nh88

o - o
é[.’i = Ccos O 1Lll+l . CISZ I sin § il,ilfll
o= 2 (e e nld & R =h,/M,

K < Ciaihs

h Z (h24, i ) R\=h /My,
D,=(A LB, ntALGy)
™ |AJN G;‘N _AjN B)N ch
EJ=IE9NBJN+I§(1NGJN|CJ
gjzlAJNGjN+AjNBjN’CJ
szlEdjij+Equj~|Cj
§1.=c058j’N . Q}=|sm5JNl
D; =(ABy-Ay G
S}jzlAEdNBjN-AEqNG)N|§I
8;=EyBin By Gin 1 &, gt sud 1
I,llequn g phan; /o
nj=(KEJde/TEJTdDjn])
P, =10/, TyT ) , JEJIN
Tx;‘:IAijk,j"Aijkjlcn
T [A*J.+(1/Mjp*j)]
gl‘“J:AmleJl : 81 Ay By
dy =A;By; 5 LT A O
e'k’j=|Eq|.AGkJ EyBy,llcosd |
iK)=IEdkBk_j—EqukJI
G,“.= |E, G, ,+ EB ., k=j.kjed

U=, B8 +IEIE,

U, 7Y, Max (E,, lEf 1B, 1B 8.
Pk.j=[Uk.j+ka.lAkviék-J]

a

k,j=Yk,j§k,J > Hk,JzYk,jEk Jkedy.j
N
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