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In this paper, an exact dynamic field transfer matrix for free vibration analysis of
composite beam is presented. The analysis of composite beams is carried out using a
combination between the transfer matrix and the analog beam methods (TMABM). The
compeosite-beams are composed of an upper slab and a lower beam, connected at the
interface by shear transmitting studs. The theory includes the coupling between the
bending and torsional modes of deformation, which is usually present in laminated
composite beams due to ply orientation. The application of this method is demonstrated by
investigation of the free vibration characteristics of composite beam for which some
comparative results are available. The theory developed has application to composite
bridges. Although, the method is more complicated but itis.more accurate and could
prove a good tool for design purpose.
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1. Introduction

The basic idea of the analog beam method
is to replace the real beam with an enalog
beam where all the shear deformation is
concentrated in a thin horizontal layer, called
the shear layer. When the correct stiffness is
assigned to this layer it is possible to get the
real beam, and its analog, to behave thé same
way in the overall sense, i.e., they have the

identical deformation, bending moment, and

shear force.

The method of analysis is based on two-
kinematical assumptions [1]. The first one,
each sub-beam behaves as a simple beam, i.
e., the shear deformation within each beam is
neglected. All shear deformation is therefore
concentrated in the shear layer. The second,
the vertical displacement of the sub-beams is
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the same, 1. e.; the shear layer is transversely
rigid.

Most of the studles of composite beams
concentrated on the strength of the beam
rather than on its elastic behavior [1-6]. Also,
several authors have investigated the free
vibration characteristics of composite beams
[3,5,6] but only a few have taken into account
the effects of shear deformation. Banerjee and
Williams [4,5] have developed the- dynamic
stiffness matrix in order to investigate the free
vibration characteristics. However, their first
work did not account for the effects of shear
deformation and rotatory inertia, which can be
important for composite beams because they
are usually much more sensitive to these
effects than are their metallic counterparts,
due mainly to the low shear moduli of fibrous
composites. In their second work they
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extended the dynamic stiffness matrix to
include the effects of shear deformation. The
natural frequencies in this work are calculated
using the algorithm of Wittrick and Williams
[7].

Lee [8] used the energy method (Rayleigh-
Ritz method) to develop a method to calculate
the natural frequencies of thin orthotropic
composite shells. In order to formulate the
energy equations, the displacement equations,
which include the first order and sinusoidal
terms with respect to the radial coordinate of
the shell, have been used.

The objective of this paper is to investigate
the free vibration characteristics of composite
beams using a combination of the analog-
beam theory and the transfer matrix method.
Firstly, the analog beam method is developed
and it is then used in conjunction with the
stiffness matrix to yield natural frequencies in
free vibration.

2. The mathematical model

The model used in this analysis is a
composite steel-concrete beams which are
composed of a concrete slab and a steel beam,
connected at their interface by a shear
transmitting device such as studs, as shown
in Fig. 1. [2].

The purpose of the shear studs is to

transmit the horizontal shear force between
the slab and the beam. The shear interface is
of course not completely rigid but has a force
(Q)-displacement (o) relationship of the type
shown in Fig. 2.

Fig. 1. Composite beam cross-section.

Q SHEAR STUD

! s
¢

BEAM

Fig. 2. Typical slip behavior of a shear stud.

To illustrate this method further, we shall
solve the problem of the vibrating beam taking
into consideration the effect of shear
deflection. Let us consider a beam of length (/),
with the following properties that are constant
over the length: cross-sectional area (A),
second moment of area (I), and mass per unit
length (n). The slope (dw/dx) of the centerline
of the beam is affected by both the bending
moment and the shear force. The action of the
bending moment rotates the face of the cross-
section through an angle (¥), and from there
the shearing action turns the center line to
adopt the slope (dw/dx), the angle of the face
of the beam remaining unchanged (Fig. 3).

The resultant axial forces Ny and Np and
the moments My and My in the subbeams are
presented in Fig. 4. The total bending moment
(M) can be decomposed into two components.

M = M; + M. (1)

Where M; can be identified as the bending
moment in the beam from what can be called
its "truss action”, i.e., from the axial force in
the sub-beams, while M. represents the
combined bending moment from the individual

beam action of the sub-beams acting
independently.
d
M, = (EI), =, 2
dx
dZ
M, = - (EDLE @)
b
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where I; is the moment of inertia of the beam
as a truss,

I. is the moment of inertia of the sub-beams
acting independently,

E is the elastic modulus,

w is the deflection, and

(El)t and (EI). are the bending stiffnesses for
the beam component and for the truss
component, respectively. "
Equation (1) can be rewritten as,

d’)

d "W
M =(ED), L~ (EI}, —. @)
dx dx-
The shear force is somewhat more
complicated. The horizontal shear force in the
shear layer, q per unit length, can be
expressed as.
dw
=kh(y + ; 3
q v+ (5)

Where (k) is the shear stiffness of the shear
layer and (h) is the distance between the
centroids of the sub-beams (the distance
between the local z-axes.

The line force (qg) acts at the interface between
the sub-beams. Moment equilibrium of the two
sub-beams element yields;

_ dMy

Qu +qCy, (6-a)
dM
Qu=—=+aCr. (6-b)
The total shear force is therefore,
dM; dM, dM.
= = = S h = h 7
Q=0Qy+Q dx dx +q 7 +q (7)

hy
hy My
_L—6 f)__, _ﬁ_’ Nu
z TCL
: Qu

\\/
*,
A<
Z

Fig. 4. Global and local internal forces.

Where : Mc = My + M, ,and h = Cy+ Cy,

In a similar way to the total bending moment,
the total shear force Q can also be thought of
as having two components such as

Q=0Qc* Q. (8)
From Egs. (3, 5, and 7) then,

2, dw d’w
Q=kh (\U+'a;)—(EUc"éx—3- 9)
Then ¥ can be expressed as

1 1 dM. dw :

= L | 10

Y kh2Q m s (10)

Differentiation of{ 'Eq.y.,(lz()) and substitution in
Eq. (4) yields

2
Bl (11)

u - (ED 4O (ED (ED) (cjixw ~erds

kh? dx kh?

Where: EI = (EI)¢ + (El)c.

If a sinusoidal variation of w with circular
frequency o is assumed, then

w(x,t) = W(x)sin[ot]

where W(x) is the arfiplitude of the sinusoidally
varying vertical displacement.

The equilibrium considerations give the
equations:
dQ 2 dM
—~=-po“w and ,.—=Q. 12
= Tl S Q (12)
Fig. 3. Effect of shear on beam deflection.
Aexandria Engineering Journal, Vol. 39, No. 3, May 2000 489
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Where o is the circular frequency of the beam.
Taking the second derivative of Eq. (11) with
respect to x and combining it with Eq. (12)
give the equation

d%w d*w d*w
=& — =y 2+C3w:0. (13)
dx dx dx
Where;
kh?El¢? w?pe? _ o’pkh?/®

Bl = b S R 2l B S N g
(EI). (ED), (ED)¢ (E). (ED),

It is from this equation what we now
determine the transfer matrix. Since Eq. (13)
is an ordinary differential equation with
constant coefficients, its solution is of the form

X

w=Ce , where C is constant. (14)

This solution, substituted in Eq. (13), leads to
the characteristic equation in A:

-G =Gk +C =0, (15)

After extensive algebra, the roots of this
equation are *A1, Ay, and +A3 where[3-5]:
A, =[-2r'3 cos(¢/3) + C, /3]'/2,
Ay =[-2r'%cos|(¢ - 2n)/3] + C, /3]'/?,
3 =[-2r'% cos{(¢ + 2n)/3]+ C, /3]'/2,

with:
r=— ¢+ lcic,-Lcicii gl
729 ' T 81 27 27
and
o = 3
» - cos (27Ca=9CIC, = 2CF

ACTH w358
Using the relations;
0

e* = cosh@+sinh6,and e*" =cos@+ jsin®,

the solution can be written in the form

— S [ "
w = C; cosl A J+ C, sm{ Al—J

+ 0 coshl Ay— ]+C4 si h(
L

Wy cosh( ] + Cq sin
\

\lx

)
|
i
\
b7

Since the solution for all the variables is of the
same form, we can start off most conveniently
with the solution of Q,

Q=A, cos(kl %j +A, sin{k] ?j

8 e x
+ A5 cosh ho T +A4SlnhLA27 (16)

+Aq cosh(k3 %J +Ag sinh(x3 %J

From Eq. (12) we then find the deflection w,

) . LExh
w = —o;A, sinh| A, —
194 17

+ aAp cos( J
(17)
X A8l
+ apAj sin h( 7) + ayA4 coshi A, -
x ) X
+ azAs sin —J + a3A¢ cosh -
Where:
A Ao A3
(x1=-—2—,a2=~ 2,and (13=— & -
RO/ pem -/ Ho=/

The derivative of the deflection is given by
Lt s(xl J 1’“1 Azsu{A, ’I‘J

QA =X A s x)
- 2/ 2A3cosh(f.27)+ 2/2A4smh{»v2~J
¢ / /
oA R e Y B X

+—23 Ascosh(A3—J+ 33 A, 51n}‘1(A3—J.
4 / [ |G

(18)
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|

Using Eq. (17) and substituting in Eq. (9) then Sl
Y can be expressed as M; = -1,A, sin|
_ 4 i fin B +Y1A, COS
v =BA,; cosL?»1 il A, si L
, .
~ +B,A;cosh| &, %J +ByA, s.inh(-x2 %) (19) * YoAs el
L /
& LUx i X +v3Ag C
M, = 5,A, sin|
Where . il

[ Enag + 8283 8l

Bl - kh2 ( “wzf‘; )= 2f2 > {? ,
1 (EI)C + 83A5 5iﬂ

L 7»2 .
Pz = 'ikh2 B pm2f4 2/2 } ane Where:

L Enad EN B,
[33 = [khz ( o cf4 ) “mzﬁg . Yl = !——-)—;E}——-L
Finally, from Egs. (2 and 3) we ﬁnd the (WERN
expression for Mt and M. as: \® Wﬂ RoiF

Equations
matrix forr
[“’_ -, sin(fﬁ) a cos(i"—x| a, sinh(-;li—{) o cosbrat® )
w21 oty Ta sin("%) 222 coun 2% 122 .‘*’ﬁsnxh(“z"!.
v || Brcos® m sin2%) b coah("’"") B, sinh(“2%)
152) =‘. ..‘ ) X \
M, L nsnE) oy cos(-r-p Y2 mh(-——) Y2 eush(ié,i‘-;,, !
(Mc 8 sincS) -5 cos(—-) o~ mh(i‘l’-‘—) 5 cdsh(:’-‘%’iy By
o) | es® endE cosn) enndZ)

- ' . : K | Rt

Or in another form  z(x) = B(x) a

- Aexandria Engineering Joumal Vol. 39, N

- (20)
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M ] 0 o O 0  aj A, ]

wi |[-M g s x3{‘"3 0| A,

L&l Bxl 0 B2 B; 0 |As
M, 0 Y1 0 Y2 0 Y3 |l Aq
M, 0 -8 0 &, 0 85| 8s

LRI | 1 0 1 0 1 0]lAl
or z;_1 = B(0) a. (23)

Therefore, solving for the column vector a, we
obtain,

a =B 1(0)z_1 (24)
Substituting Eq. (24) into Eq. (22) yields,
z(x) = B(x) B-1(0) 2;_1 (25)

At the point x = / , z(x) = z;, so that Eq.  (25)

becomes,
[ —a;sini, o, cos Ay a,sinhi,
e . Aoy .. Aga; A
-—1Llcosh, - 1/ Lsini, . =2=2coshX, ket
{ L £
B(/) = By cos iy Bysini, B,cosha,
—-v,8ini, y1COS A, y,sinh i,
&, sin A, - 9§, cos A, d,s8inh A,
COS A4 sin A, coshi,

The final matrix operation B(/)B~!(0)then gives
the transfer matrix, so that

W] —Tn Ty T filge s Tlé_— w ]
| W T, Tz:’ T, T, Ty T W
Y 1Ty Ty Ty Ty Ty Too |l w
M, Ty To Ty Ty s Tad T bM,
Mol Ty Ty T T, Ty Ty | M,
L Q 4 _T6| T(): T63 T6-1 T65 T66_L Q St
(30)
or: Z = F Z, = (31)

3. Transfer matrix scheme

The actual beam is divided into N
elements, as shown in Fig. 5. The field matrix

zi= B(/) B'l(O) z;_.1=U; 2z 1. (26)
Hence the transfer matrix is
U;=B(/)B 1) . (27)

In this case the inversion of B(0) is found to be

[0 ajp @y |10 0 a|
a; O 0 a, ax O
0 a a 0 0 asz
B 1(0) = 300 233 36 (28)
ag; O 0 a4 agys O
0  asy Ao 0 as
lae1 O 0 ag ags O
At the point x = ¢ the matrix B(/) can be
written as,
a,coshi, o4 sinhig wscoshiy ]
. A 8 .
sinhi, ~3%3 coshi, /—3?—35mh As
B,sinh A, B, coshiy Bysinhds [ (29)
y,coshi, y3sinh A, v, coshig
8,cosha, 85 sinh A4 65 Coshi,
sinh A, coshij sinhi; |

F for each element is determined as a function
of (DzN by using eq. (31). The relation between

the state vector Zy at support N and the state
vector Zo at support O, using transfer matrix

. method is:
Zn=T Zo. ' (32)
where,
|
T= [lion F
T T 7Y
by N | ol
7
(6}

Fig. 5. Schematic diagram of the actual beam.
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which is called over-all transfer matrix. The
coefficients of this matrix (T): to Tee) all being
function of the circular frequencies wy.
Expanding Eq. (32) give six equations, by
applying the boundary conditions to these
equations the frequency determinant can be
easily obtained [9].

3.1. Boundary conditions for analog beam
For case of simply supported beam, the

moments and displacements at both ends are
zero, or in view of Eq. (1) by

M - M( + Mc ‘—"O, (33)
and
W=0. (34)

This can be realized in two different ways [1],
either by making the individual moment in
each subbeam zero, i.e.:

M: = M. =0. (35)

Or, by making the total moment M equal to
zero, i.e:

M, = - M.. (36)

The first case, Eq. (35), is called a simple
support without shear restraint, Fig. (6-a).
This type of support would occur in a simply
supported beam without any special restraint
at the end. The boundary conditions for this
case are:

W =0,
Ml=0,and
M. = 0.

Fig. 6-a No shear restraints.

The second case, Eq. (35), is called simple
supported with restraint, Fig. (6-b). The
boundary conditions for this case are:

Fig. 6-b Shear restraints.

W =0,

Y w, and
l\

M, = -°—|MC.

It /
4. Application of the model

The above method can now be used to
compute the natural frequencies of a simple
supported beam with uniformly distributed
mass. [t is convenient to introduce the
following nondimensional parameters,

EIb EII S Pl (J)TM

EI, kh2¢2’ .

gn

where 1 represents the relative importance of
bending stiffness El;, of the slab and beam
acting independently and the bending stiffness
El: caused by the truss action. For typical
composite beam n varies from about 0.2 to 1.4
[2]. £ Represents the relative importance of the
truss bending stiffness El; and shear stiffness
k of the shear layer. A very large variation in £
is possible. £ Equal to zero corresponds to
complete interaction (completely rigid shear
studs k= =), and 2 equal to infinity
corresponds to zero interaction (no shear
studs k=0). While & represents the relative
importance of the natural frequencies
calculated by transfer matrix method (wrm) and
the natural frequencies calculated by the
classical method (ocy).

Aexandria Engineering Journal, Vol. 39, No. 3, May 2000 493
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By applying simple supported boundary
conditions at each end of the classical beam,
the classical natural frequencies can be
expressed as [9,10]

f—{—a . (37)

From the above equation wcL varies between
OcLmax and ocimin due to the value of EI. Where
ocLmax corresponds to complete interaction
between the beam and slab (EI=EL+EIl.) and
ocLmin COTTESPONAS to zero interaction (EI=El).
It is very importante to note that, in the
classical beam it is not possible to distinguish
between boundary condition with and without
shear restraints.

For comparison, natural frequencies can be
calculated by applving the TMABM and Eq.
(37) using the data listed below:

bending stiffnesses for the beam component
(ED) =4x106'm.t2, * e

length of the beam (/) = 10 m,

mass per unit length = 1000 kg/m, and
distance between centroids of the sub-beams =
0.3 m.

The first four natural frequencies of the beam
have been calculated for the case of no shear
restraints (k=0) and n =1 and listed in Table 1.
The natural frequencies calculated using
TMABM agreed completely with those obtained
using Eq. (37).

Table 1. Comparison of the natural frequencies
calculated using TMABM and Ref[7]

Natural No shear restraints
frequency (k=0)
TMABM Ref[7]
1 6.24 6.24
2 24.96 24.96
3 56.18 56.17
04 99.52 99.87

4.1. Case of no shear restraints at both ends

Figures (7-9) represent the normalized
natural frequencies (w1, ., w3) for the case of
no shear restraints at both ends of the beam.
The frequencies are normalized with respect to
the maximum natural frequency obtained by
using Eq. (37).

Different values of "'n" has been considered to
represent the relative importance of bending
stiffness. From the results represented in
these figures, it is clear that for sections with
complete interaction between the beam and
the slab (k > 107 N/m?), the behavior of the
composite beam is identical to that of the
equivalent classical beam. However, when
sliding occurs (k < 10°® N/m?), the composite
beam presented lower natural frequency than
those obtained by the equivalent classical
beam.

Normalized Natural Frequency, o/oms

10 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+91E+10
Shear Stiffness(k), N/m?

0.1 1

Fig. 7. Variation of normalized natural frequency with the
shear stiffness (k) for mode 1, o1, -
1.00 -

0.0

0.80

0.70

0.60

0.50

Normalized Natural Frequency, /o e

0.40

F ;

0.30 Illlli llﬂ‘ 1 IIII‘ IHIIJ | IIIII‘ lyi‘lklﬂ lllll‘ Xlll‘ lllll‘ I,HI.I‘ 1l

01 1 10 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+91E+10
Shear Stiffness (k), N/m’

Fig. 8. Variation of normalized natural frequency with the
shear stiffness (k) for mode 2, w..
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5. Conclusion

Explicit  expressions for field transfer
thatrix of a uniform elastic composite beam
have been derived. Transfer matrix-Analog
beam method (TMABM) is applied to a simple
supported beam with uniformly distributed
mass to investigate the natural frequencies.
The method can be applied to both cases of
the no shear restraint and with shear restraint
at both ends. The results obtained from the
present method were verified with that of the
classical method [9,10] and a good agreement
were achieved. Also, the effect of changing the
values of (n and K) on the natural frequencies
of the elastic composite beams has been
04 1 10 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+91E+10 studied. The results obtained from this study

Shear Stiffness (k), N/m * indicate that, the natural frequency strongly
depends on these values and for that it is very

Fig. 9. Variaton of normalized natural frequency with important  to consider these variables

the shear stiffness (k) for mode 3, ws. . . I ;
D 2 especially in the case of studing the bridges

and the structures that exposed to dynaimc
loading. °

Appendix A. The coefficient of the field transfer matrix “F”:

Ty; =a,,0, COS Ay +a4,0, coshi, +ag,a3 coshis, Ty, =-a;,a,; sini; +as,a,sinhi, +as,oa; sinh i,
T3 = —a;30; sinA; + a33a, sinh &, + as3a;3 sinh }.3, Tiq = 340, COS A +ag4q0, coshz, ~ ag03 coshis
Ty5 =a,50; COS Ay + @450, cosh i, + agsa; coshi;, Ty = —ama1 sin iy + a3(,u2 sinh 2, + as503 sinh A,

73U
=als
52 cosh .y

3 sinh’.,, T, =—aw—-—c051, ~ 83,

2 cosh i, -as,

Uy 7 n
= "1 2% M b 434
T,, =-ay; « Sinz; +ay,; - 2 sinh ., -~ ag; ; ;

’33

cosh’., +as;

smh/z»a\(H

7qu - 750 I . AT 3 x
_ 14 2% 303 Lig i ;
T3 = -a;3 cosy +agy — - coshgy, Ty = -8y, TRy a‘H sinh /.5

B 7 Wgnsrg ol D 7 10 &1 { 73U ]
Ty5 = ~ay; smll—a43 ( smh/,~a6— / smhr3, T26=‘316—‘,—C°b/1 a3 — cosh/., ~asg ; cosh.,

Ty = 321[31 sin i, + a4,B, sinh A, + agBs sinh7.,, T3, =a;,p,cos i, + az,B;coshr, +as,p; cosh i,
Ta3 =aj3P; cos A +as;3P, coshi, + as3fscoshig, Ty =ay,p,sink; +a,,p,sinhi, + ag,fssinh i,
Tss =a,5P; sin Ay +a,5B; sinh i, + agsP; sinh i;, T34 = a,B; cos A + a34P, coshi, + as,B; cosh 2,

T, =a,y,cosA, +a,v,coshA, +a,y,coshi;, T, =—-a,y/sinA, +a;,v,sinhA, ~a,y;sinhA,

-~

3 =—a,5Y,SinA, +a.y,sinhA, +agy;sinhA,, T, =a,y,cosA, +a,y,coshA, +a,y,coshi,

15 = 8,57, COSA, +a,v,coshA, +agy;coshi;, T, =-a,y,sink, +a,y,sinhA, +a.y;sinhA,
| =—a,0,Cos A, +u,0,cosh /i, +a,0,coshi;, T, =a,0,sin 4, +a,,0, sinh 4, +a.,0. sinh 4,

'—i

o Wiy Re

s =—U,0,COS A +d 0, cosh 4, +ayd,cosh A;. Ty =a,d, sind, +u,0,sinh4, +d,0.sinh A,

Aexandria-Engineering Journal, Vol. 39, No. 3, May 2000

5 =4a,;0,8in A, +a5.0,sinh 4, +a0,sinh4;. T, =-a,,0,cos 4, +a,,d,cosh 4, +a,,0, cosh 4,
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Tey = a,; Sini; +ay; sinhi, +ag; sinh;, Ty, =4a,,cosh, +aj,coshi, +as, coshi,

Tez = @;3 COS Ay +azzcoshd, +aszcoshis, Ty =ay,sink; +ay,sinh i, +ag, sinh i,y

Tes = @,5 SinA; +ayus sinhA, + ag5 sinh Az, Ty = a;q cosA, +ag, coshi, +az, cosha,

Where the following abbreviations have been introduced:

ap = (B3 —B2)/A,

az; = (203 —v382)/ 2y,
azy =(B; -B3)/Ay,

agqy = (71183 - v381)/ Ay,
asy = (B2 —B1)/ Ay

ag; = (1182 +Y201)/ Ay,
and

a3 =(Ay0ay ~nz03)/fAy,
ay; = (803 —6303)/ Ay,
azzy =(Azaz +4,04)/ 1A,
agqq = (8103 +830)/ Ay,
as3 = (-ha0 — 704/ 14y,

Agq = (-810p — 0504) /Ay,

ae = (AzazBy —As05B3)/ 14,
ajs = (-a3y2 ~ayY3)/ A,

a3 =(~hza3P; —Aj0,B3)/ 7).
azs = (-o4Y3 + a3y1)/ A,
ase = (Aafa + 2a0P;)/ 1Ay,

ags = (a7 —az7)/ Ay

By Ba . Balrs
Ay =Tl(’~20(2 ‘}~30‘3)+—,2‘(’\1‘11 +7\30‘3)*"%(‘/\20‘2 -Aay)

Ap =ay(-738; +7283) +ay(-v38; —v183)+ a3(y185 +728;)
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