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The projection of the topographic surface onto the earth reference surface is considered as
one of the most important tasks in geodesy. The elliptic projection is a non-linear
orthogonal projection by which the actual surface of the earth is transformed into the
modeled ellipsoidal surface. This type of orthogonal projection is established herein via both
a semi-constructive and an analytical model. The geometric properties of the centro surface
of the modeled surfaces of the earth are utilized to characterize the projection. In contrary
to the spherical projection, the elliptic projection is not a common central projection. In the
orthogonal elliptic projection, the projector lines intersect the vertical axes of the earth and
are not converging to a common center. Therefore, the present projection will be defined as
a ruled-orthogonal projection on which the rays of projection are generatrices on a ruled
surface directed by two sheets of the centro surface. The centro surface consists of two
sheets corresponding to the two families of meridians and parallels of the modeled surface
of the earth. For the case of the biaxial ellipsoid, one sheet is a surface of revolution
corresponding to the family of meridians. The other sheet tends to a line coinciding with the
axis of revolution of biaxial ellipsoid and corresponding to the family of the parallels. The
projections of the elements and their related constructions are described analytically by
means of the mold of vector algebra and constructively by means of the well-known
Mongean projection. The present projection may help us to add new applications to the
usage of descriptive geometry. The developed model is valid and applicable to project the
terrestrial points, curves, straight lines, and geodetic topographic surface.
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1. Introduction

The main objective of the present study is
to develop the orthogonal projection of the
elements of the topographic surface onto the
ellipsoidal surface. For a long time, geodesists
have paid attention to the projection of the
topographic surface onto the earth reference
surface. Because the actual surface of the
earth is irregular, discontinuous and is hardly
defined in mathematical terms, determination
of the geodetic differences between the two
surfaces via the normal projection is
necessary. The accurate geodetic heights of
the actual earth (Geoid) are very important to
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adjust the observed positions on the earth.
The analytical representation of the normal
through a general external point to the surface
of biaxial or triaxial ellipsoid is limited to the
solution of a fourth degree or sixth degree
algebraic equation respectively. Therefore, this
normal is often accompanied with an iterative
geometric model. An iterative solution has
been given by Bowring [1], for determining the
direction of the normal projection to the
ellipsoid. Heiskanen and Moritz [2] gave a
non-iterative solution to the same direction
but his idea has been updated by Ozone [3]
through an exact analytical solution. A few
methods used closed formulas to represent
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the normal from only particular positions of
terrain point to the ellipsoid [3]. Recently,
Shebl and Farag [4] offer an exact solution for
the normal to the biaxial ellipsoid. Their
solution was developed analytically and based
on the evolute of the meridian through the foot
of the given terrain point.

Because the evolute of a curve is the locus
of the center of curvature of that curve, the
tangent to the evolute is normal to curve itself.
This idea is generalized to be utilized together
with the centro surface for facilitating the
conception of the developed model. The
developed projection is used to represent the
terrestrial points, straight lines and geodetic
triangulation onto the modeled surface of the
earth. In general, the normal to a surface of
double curvature, along the points of any line
of curvature, generates a developable ruled
surface whose edge of regression is the locus
of the center of curvature along that line of
curvature. All the normals tq the surface at
any point of the line of curvature touch the
edge of regression which therefore is an
evolute of the surface line. If the family of all
meridian lines of curvature on the biaxial
ellipsoid is considered, the locus of their edges
of regression will form a surface which is one
sheet of the surface of centers. The other
sheet that is corresponding to the family of the
parallels~-of latitude tends to a line coincident

with the axes of revolution of the modeled

earth. In-this case the centro surface is also a
surface of revolution. Because the normal to
the surface of biaxial ellipsoid always
intersects the axis of revolution, the
developable ruled surface generated by the
normal through a meridian will tend to the
plane of meridian itself. Also the surface
which generated by an infinite number of
normal lines through a general curve on the
surface is the ruled surface whose
generatrices intersect the axis of revolution
and are directed by the surface sheets of the
centro surface. The developable ruled surface
can help us to achieve the projected length of
the space curve. The present semi
constructive  solution is suitable and
applicable for the graphical geodetic objectives
and map projections.

2. Parametric representation of the
direction of projection

The normal to the surface is the proper
direction of the present projection onto the
surface of the earth. Let the surface of the
earth be modeled as biaxial ellipsoid specified
by the position vector:

R = R(A @) = acos cos A {+acoswsin)\ ]
+bsing k.
(1)
Where A,¢ are arbitrary parameters that

defines the surface and a, b are the surface
major and minor semi-axes. The position
vector R is referred to the geocentric
reference system (0,x,y,2). The

corresponding position vector of _the centro
surface of the biaxial ellipsoid is:

= 3 o &
Rc = Rc(h, )= (coso) cosi. 1
2 e 20182 (@)
=b e - ! -
o (coso)® sinz  j - a g (sin 0 k.
a : b
The unit vector nof the normal to the

ellipsoidal surface through a currant surface
point S(A,¢)is:

% B pcosnpcosl -

pcoscpsmk ] ¥ psing E 3)
a a 2 B

As shown in Fig. 1, Let point N(Xy,Yy,Zy)is
the foot point of the normal n from the
external point P(X,,Yp,Zp)to the ellipsoidal
surface. The vector equation of the normal n
to the surface through the surface point
S(A, @) is:

F=F(q)=P—qn ,If‘|<ll3| 4)

Where g is a scalar parameter expressing the
length from point P(Xp,Yp,Zp)to the point of
the defined position r .

Therefore, the foot point N(Xy,Yy,Zy) of the

normal n from the external point

466 Alexandria Engineering Journal Vol. 39, No. 3, May 2000




A.M. Farag/ Elliptic projection of the topographic surface of the earth

P(Xp,Yp,Zp)to the
represented by its position vector R(x N-ON)
such that:

ellipsoid can be

Riy,on)=P-apiip ,|F|<|P| (5)

Fig. 1. Ellipsoidal reference surface

where gp,np are respectively the geodetic

height and the normal unit vector through

point P. Thus, equation (5) can be
reformulated to:
aX
COSQy COShy = ——2—1——
(@ +pgp)
Y
CosSQy Sinhy = Tap—— . (6)
(@ +pgp)
‘ bZp
singy A T
(b” +pgp)

Where p is the distance from the center of the
surface to the tangent plane to the surface at
the point through which the normal passes.
Eliminating, the ellipsoidal parameters Ay, ¢y
from this equation and substituting of
pgp =t, we get the biquadratic equation:

y btz
(b2 -o-t)2

a’(X2 +¥i}

=1. (7)
(a2 - t)2

This biquadratic equation gives four roots, to
each of which corresponding to point
N(Xy,Yy,Zy). Also this equation gives at
least two real values of t . Therefore, two real
normals to the ellipsoidal surface pass
through point P. For the developed projection,
the proper value of t gives a minimum
geodetic height gp. This height is equal to
t/p for point P. Because, the magnitude p
is approximately constant for every point of
the surface of earth, the minimum real value
of t will be altered to derive the proposed
projection and geodetic heights to the points of
external geoid.

According to equation (5), the position vector
of the foot point N of the normal through P
will be:

2 2 2
(@+t) (@®+t)” (B%2+t)

N =N(t)= (8)

The normal to the surface intersects the
vertical axis of the surface at point Q(0,0,Z)

such that:

a2 I8
b%+t

Zg =-Zpl ). (9)

This point is useful for getting the position of
the normal directly during the constructive
model.

3. Point of regression of the normal to the
surface

The point of regression of the normal
through point P is the point C, at which the

normal touches the centro surface. Point Cp
is the center of curvature of the foot point N
of the normal from P . The particular position
vector C p of this point is obtained from the

parametric equation of the centro surface, Eq.
(2), such that:
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232

= = e a & &
Cp =Cplty.0n)= (cosm,\,)acosa,,, l

2 2 B 2 _ 32 B

+2 "2 (cosoy)® siniy j- . (sinoy)® k.
(10)
Replacing the parameters Ay,¢ywith the

cartesian coordinates of foot point v , one
gets:

= 2 _ 32 72
&y et P -3,
2 _ b2 22 - 2 b2
+a__2_(1_b—'2’)y,v § 13 e 23, K
(11)
Substation from (8) into (11), yields:
~ b’z (@ -B)X, -
=(1-
Cp=(1 B tP (@<t .
- b’z (@ -b)Y, - b’(@’-b*)Z; £
B2+t (@ +1) B2+ 1)
(12)

Eq. (12) represents the position vector of the
centro image of point P.

4. Semi constrictive method of projection

As shown in Fig. 2-a, having derived the
proper value of the parameter t, the
intersection point Q can be represented by the
bi-orthographic projection. If the meridian
plane [In,z]is rotated, including the normal

n, about the axis of revolution z to be frontal,
point P will take the new position P . The
new position n’of the normal intersects the
frontal meridian « at point N, which is the
rotation of Np. The views of point N,can be

established by means of the inverse rotation.
The centro image C, of point P is constructed

graphically, as shown in Fig. 2-a on the
normal to the surface through P. The center
of curvature to the frontal ellipse at point

N P'is constructed at first to give proposed

centro image.
If point F, 1is a focus of the of the frontal

meridian and H is the point at which the

rotated normal n’ intersects the major axis of
the frontal meridian, we can construct point

L on the extension of N, F and point Cp on
the normal HL 1 n"and
LC, LLN, . Point C,’is the rotation of the
center of curvature Cpat the foot point

n’ so that

Py and the required center of curvature can
be achieved by the inverse rotation.

When point N, coincides with the end Jof
major axis the construction shown in Fig. 2-b
will be applied to find C; on major axis so that

JFoy i JFoy = Cp Koy ; CP*F02
F

o

where F,; and

, are the two foci of the frontal ellipse.

5. Representation of topographic curve

The v topographic curve is represented
analytically by the position vector: g

¢ =¢(d) = X(O) + X)) + ZE)k . (13)

This curve is projected onto the ellipsoidal
surface via a ruled surface whose generatrices
intersect the axis of revolution and are
directed tangentially by the centro surface.
The projection is the curve of intersection of
the ruled surface and the ellipsoidal surface.
The equation of the ruled surface is:

F=f(6,q)=6—(%)q. (14)

Where gis a parameter varying along the

generator of the surface. The curve of
intersection of ellipsoidal surface and ruled
surface Eq. (14), gives the following orthogonal
projection of the topographic curve:

N a’Xieh 0 aye) -
= o) =
v =cnl®) (a2 +t5)l +(a2 +1t5)
2
L
(b? i)
(15)
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Fig. 2-a Semi constructive method of projection

Where the dependent parameter t;is achieved

from the solution of Eq. (7) when the current
point C(X(8), X(8),Z(8)) of curve cis applied to
be projected.

6. Projection of straight line

If the straight line c¢ is considered as a
G |0 F special case of the space curve, it will be

projected onto the ellipsoidal surface through
a developable ruled surface directed by the
axis of revolution as shown in Fig. 3.
Let the straight line be passing through P
and represented by:

Fig. 2-b Special case

Alexandria Engineering Journal Vol. 39, No. 3, May 2000 469



A.M. Farag/ Elliptic projection of the topographic surface of the earth

¢ =¢(d)=(P+3A) (16)
Where:
A=AXi+AY j+AZk and A is an arbitrary

known vector parallel to the straight line. The
equation of the ruled surface Il and the

curve of projection ¢,. are respectively:

- - S
r=r(6,q)=(P+6A)—(B—)q, (17)
and

CN = EN(S) =

a’(Xp+AX8)- a’(Yp+AYS)-
L i+
(a2 +t5) (a2 +t5)
2 _
P2+ aZ8)
(b2 +t5)
(18)

The ruled surface [l mentioned in eq. (17)
touches the centro surface at the following

curve e, of regression.

b’(Zp + AZ)P Xp + AX -

(b? + t5)? Y@+ t5) l

b(Zp « AZP Y AN +
(B% +t:)? (a4 1)

b2, + AZP i

(b + 1) '

Re = Rc(8) = (a® - b?)(1 -

+(@®-b%)Q-

_ (a2 _ b2)
, (19)

This curve e, is the evolute of the curve of
projection cy. Therefore the true length of a
finite arc along cy can be accessed as the
difference between the tow redii of curvature
of the ends of the corresponding arc on
involute e.. This characteristic property is
used to find the length along the projection
cy by developing the ruled surface which is
consists of a group of normal lines as
generatrices and directed by the external
straight line cand regression curve e, or the

vertical axis. Every developed strip of ruled
surface is bounded by known lengths of the

straight line, regression curve and
two normal lines. The developed strips
include the true lengths of corresponding
segments of cy. The true length of c is very

external

importuned when the biaxial ellipsoid is
applied to approximate the geoid.

It has to be evident that if the external straight
line ¢ is parallel to Z axis or intersecting it,
the ruled surface will be a vertical plane

specified by the two lines z.cand then c,
will be a part of meridian. In this case cy is
geodesic on the ellipsoid and e, is the

corresponding geodesic on the centro surface.
7. Vanishing point of straight line

In order to describe the projection of space
element on the ellipsoidal earth, some
analogous properties to the perspective will be
introduced herein. Considering the straight
line ¢ which is represented by equation (16).
The projection of the point V_ at infinity of
this line is a point lying on the surface of earth
such that the direction ratios of ¢ are identical
to the direction ratio of the normal to the
surface through V_ , as shown in Fig 3. Thus:

X Ver = YVcr. el ZVc-/. |
a’AX a’AY bz

Equating both side of this equation with an

arbitrary parameter one gets the

v

coordinates of the vanishing point such that:

Ve.(@®AX t. ,a’AY t, ,b?AZt, ).

Satisfying the
surface of the earth, one gets:

location of point V_ on the

]
te. = H(aAX)? +(@AY)? +(bAZ)?] 2 .
Evidently, the remarks are
concluded:

following

1- There are two vanishing points of the
straight line in two symmetric positions
with respect to the center of the ellipsoid.
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K,
c"’ N c
/ A 2
4 \
Viad
-y
1 8

Fig. 3. Projection of straight line

2- The projections of all parallel vertical lines radius R, and plane ¥ . The plane ¥ passes
are meridians that converge to the north

pole and sonth pole of the sactt. through O_and makes an angle 6 with the

3- The projections of all parallel horizontal equator plane of the surface so that its
lines are surface's curves converging to horizontal trace ty, makes an angle Q with
two points lying on the equator. the axis x . The local coordinate reference

ALY . system (O,.,%Z ,n) of the circle is selected as
8. Projection of circle

shown in Fig. 4 such that £ is horizontal. The

Let the circle ¢, as shown in Fig. 4, be local parametric equation of the circle is:
specified by the center (O (X, ,¥,.Z. ],
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s = R, cos & coordinates Xg,Ys,Zs of the position S on
ns = R, sin & (20) the circle, gives [1]:

2 f h local 1 Xs X, + R,(cos Qcos é - sin Q) cos 0 sin )|
Transformatlon o the oc cop anar Y, b=V, + R (SniEARARERE B oo O sinias | : (21)
coordinates Cs,ns to the geocentric Zs Z, + R, sinBsin !

Fig. 4. Projection of circle
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to the position vector
obtain the normal

Applying Eq. (8)
C—:E(XS,Ys,Zs), we

projection of the circle represented by:

Cy =cy(®) =

a’(X, + R,(cos Qcos d - sinQ cos B sind)) -
. i
(@ +1;)

a’(Y, + R,(sin Qcos b + cos Q cos 0 sin §)) j

(@’ +1t;)

b*(Z, + R, sin®sind) -
+ = k.
(b +t5)
(22)

Where t; is a parameter depending on 0 .

Due to substitution of Eq. (21)into (12), we
get:

b*(Z, + R, sin 0 sin )
(BETE)?
X, + R,(cos Qcosd - sin Qcos Osin 7
(02 + t5)
b*(Z, + R, sin 6 sin 3)°
i b2 ~ t;)
Y, + R,(sin{2cosd +cos QcosBsiné -
(@® + ts) o
@ - % f2eo sm?sm &
(b° +t5)

éc =éc(8)=(a’ - b1 -

)

+ (@ - b

(23)

This vector equation represents the position
vector of a current point on the curve e_of

regression to the projection cy .
9. Conclusion

The elliptic image is projected through a
ruled surface generated by the normal to the
surface and directed by the two sheets of the
centro surface. The curves of regression of the
projected curves are utilized to characterize
the present mold of projection. Due to the
revolution of the surface of projection, the
generatrix of the ruled surface is directed by
the axis of revolution through an intersection
position. The present model of projection
based on a semi-constrictive method of
projection is a combination between the vector

algebra and descriptive geometry. In contrary
to the spherical projection [6, 7], the present
elliptic projection is not a common central
projection. The projector lines of the
orthogonal elliptic projection intersect the
vertical axes of the earth and are not
converging to a common center. The present
type of projection is valid not only to
investigate the natural topographic surface of
the earth but also to add a new theoretical
usage to the descriptive geometry.

Appendix

The biquadratic Eq. (7) can be reduced to:

t*+At +Bt? +Ct+D =0 (A-1)
Where:
A =2(@®+b?), |
B = -a*(X3 + Y3)-b?Z} + a* + 4a%b? + b*) [
(

C = -2a’b?(X3 + Y3)- 2a°b*Z3 + 2a°p* + 2b%a*
D = -a’b*(X3 + Y2)+ a*b* - a*b?Z> J
(A-2)

This biquadratic equation can be solved using
Descarte method by rewriting it in the form:

t? -2nt+a)® -Bt+y)° =0 (A-3)
Where:
A 1
_Z7 BY—"E(C*‘“]O‘), (A'4)

]’]:
B2 =4n? +20-B,y2 =0’ -D
From which

2 2
2(13—ch2+(C2—A—~2D)a+(BD—-D—4A—~CT)=O

(A-5)

The correct value of a is the first real root of
Eq. (5). Thus « is the first real magnitude of
the following roots:
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K
— B3l
o 6
1
o 1
3 L =
oy s Elpdbn iz A00 (pr
20t 20 2
(A-6)
Where
p_ KK Ky K° K. L _6K,-K’
24 4 216 72’ 1
36(E)3
K, =-B, K, =(—c§4-2p)
A2 2 4
K, _Bp-2A~_C,
4 4
K, =(24K,® -3K,’K,?> ~108K,K K,
1
+324K,% +12K;K,>)2
(A-7)

The magnitudes of f and y are achieved from

eq. (A-4) and therefore the roots of the
biquadratic Eq. (A-3) are:

_@n+p)=2n+p)® -4 -y)
1 S 2

2n-B) £ /2n-B) - 4o +7)
Lyige = Ty

(A-8)
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